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Abstract

In this paper, we investigate mathematical structures of chemical reactions for three
consecutive oxidation states of elements.

1 Introduction

In 1934 F. Marty introduced that algebraic hyperstructures represent a natural extension

of classical algebraic structures[14], and to this day, the study have been studied by

many mathematicians[3, 4]. In 2013, B. Davvaz[6] had to summarize the basic algebraic

hyperstructures in his book ‘Polygroup Theory and Related Systems.’

*Corresponding author: kmchun255@hanmail.net

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 72 (2014) 389-402 

                          
                                          ISSN 0340 - 6253  

 



We can see the results of research that B. Davvaz and A. D. Nezad studied for n-ary

hypergroups and chemical examples in hypergroups[7, 12]. Also B. Davvaz, A. D. Nezad

and A. Benvidi especially showed ternary algebraic hyperstructures in chain reactions and

chemical hyperalgebra in dismutation reactions[8, 9]. In 2012[9], they had a set of tin(Sn)

ions {Sn, Sn2+, Sn4+}, a set of indium(In) ions {In, In+, In3+} and a set of vanadium(V )

ions {V, V 2+, V 3+, V O2+, V O+
2 } studied algebraic hyperstructures and also K. M. Chun[1]

and S. C. Chung[2] did for the same subjects. In 2014, B. Davvaz, A. D. Nezad and M.

Mazloum-Ardakani [10, 11] give some algebraic hyperstructures for redox reactions and

radiolytic processes in cement medium.

In this paper, we present examples of hypersructures for mathematical operations of

standard reduction potentials for three consecutive oxidation states of elements.

2 Algebraic structures

Let H be a non-empty set and a function · : H×H −→ ℘∗(H) be a hyperoperation, where

℘∗(H) is the set of all non-empty subset of H. The couple (H, ·) is called a hypergroupoid.

For the non-empty subset A,B of H, we define A ·B = ∪a∈A,b∈Ba · b, and for a singleton

{a} we denote {a} · B = a · B and B · {a} = B · a.

Definition 2.1 [6] The hypergroupoid (H, ·) is called a semihypergroup if

x · (y · z) = (x · y) · z, for all x, y, z ∈ H.

The hypergroupoid (H, ·) is called an Hv-semigroup if

x · (y · z) ∩ (x · y) · z �= ∅, for all x, y, z ∈ H.

The hypergroupoid (H, ·) is called a quasihypergroup if

x ·H = H · x = H, for all x ∈ H.

The hyperoperation (·) is called commutative if

x · y = y · x, for all x, y ∈ H.

The hypergroupoid (H, ·) is called a hypergroup if it is a semihypergroup and a quasi-

hypergroup.
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The hypergroupoid (H, ·) is called an Hv-group if it is an Hv-semigroup and a quasi-

hypergroup.

The hypergroupoid (H, ·) is called a commutative hypergroup if it is a hypergroup with

a commutative hyperoperation (·).
The hypergroupoid (H, ·) is called a commutative Hv-group if it is an Hv-group with a

commutative hyperoperation (·).

3 Oxidation-reduction reactions

Luder and Zuffanti have been classified primarily overall of chemical reactions into acid-

base reaction, oxidation-reduction reaction and free radical reaction. Whereafter Pearson

regarded free radical reaction as oxidation-reduction reaction and then all of chemical

reactions was a simplification to acid-base reaction and oxidation-reduction reaction.

We know that most elements have more than one positive oxidation state; almost

all can be prepared as the free elements with oxidation state 0 but some have negative

oxidation states. Reactions in which elements change their oxidation numbers are known

as oxidation-reduction or redox reactions. Redox reactions normally require the presence

of two reactants: in one reactant, the oxidation number of an element is reduced, and in

the other, an oxidation number of an element increases.

Electrochemistry is defined as the study of the interchange of chemical and electrical

energy. It is primarily concerned with two processes that involve oxidation-reduction

reactions; the generation of an electrical current from a spontaneous chemical reaction

and the opposite process, the use of a current to produce chemical change.

Thermodynamically, redox reactions under the standard conditions go if the free en-

ergy change(�G◦) is negative. Instead of measuring thermodynamic parameters through

the experiments, we measure the electromotive force(EMF; symbolized as E◦ and mea-

sured in volts) generated when the reaction occurs spontaneously in a electrochemical

cell. The EMF(E◦) can be related to the free energy change(�G◦) by the equation

�G◦ = −nFE◦

where n is the number of equivalents oxidized or reduced, and F is the the Faraday

constant(9.64853× 104C/mol).

Disproportionation is a chemical reaction, typically a redox reaction, where a molecule

is transformed into two or more dissimilar products. Disproportionation reactions follow
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the form:

Hg2Cl2 −→ Hg +HgCl2

And because of the oxidation states of the oxygen and the hydrogen don’t change in

water(H2O) dissociating into H3O
+ + OH−, it is an example of a disproportionation

reaction that is not a redox reaction. The reverse reaction of disproportionation, when a

compound in an intermediate oxidation state is formed is called comproportionation:

+2 +4 +3

NO N2O4 NO−
2 (not balanced)+ �

4 Standard reduction potentials for three consecu-

tive oxidation states of elements

Through the Latimer diagrams of all elements, we selected a lot of chemical species

that were recorded three consecutive standard reduction potentials in acidic and/or basic

solution, e.g.[17].

Sn4+ Sn2+ Sn�0.15 �−0.137

In3+ In+ In�−0.444 �−0.126

The reverse of disproportionation is called comproportionation. It will form a product

with an oxidation number intermediate of the two reactants.

For example,

Sn+ Sn4+ −→ 2Sn2+

an element tin(Sn) in the oxidation states 0 and 4+ can comproportionate to the state

2+, and the comproportionation reaction is spontaneous, since EMF(0.15+0.137) is pos-

itive. But an element indium(In) in oxidation states 0 and 3+ can not comproportionate

to the state +1, since EMF(−0.444 + 0.126) is negative. The products from the compro-

portionation of two each other elements are different. From now, we can know the fact

that major products of reaction depend on the stability of thermodynamics in all possible

combinations.

Let A1, A2 and A3 be chemical species and let x, y and z be the number of equivalents

oxidized or reduced of A1, A2 and A3 respectively. Let m = x− y and n = y − z be the
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electronic differences and let α, β and γ be potential differences between Ai’s such as the

following Figure 1:

Figure 1: The standard reduction potentials of three chemical species

x y z
m n

A1 A2 A3
�α �β

γ �

Then γ relates to α and β such as following Lemma.

Lemma 4.1 [13] Let α and β be potential differences in the Figure 1. Then we have a

value of γ such that

γ =
mα + nβ

m+ n

Proof. Consider the following diagram:

A1
x −→ A2

y, ΔG1
◦ = −mαF (1)

A2
y −→ A3

z, ΔG2
◦ = −nβF (2)

where F is the Faraday constant. Let’s find γ such that

A1
x −→ A3

z, ΔG3
◦ = −(m+ n)γF

Using (1) and (2), we can find

γ = − ΔG3
◦

(m+ n)F

= −−mαF − nβF

(m+ n)F

=
mα + nβ

m+ n

Example 4.2 Gold(Au) forms two of different ions including Au3+, Au+ and Au. The

oxidation states of these species are +3,+1 and 0 respectively. The standard reduction

potentials of Au3+, Au+ and Au reactions are:

Au3+ Au+ Au�α �β

γ �

Au3+ −→ Au+, ΔG1
◦ = −mαF = −2αF

Au+ −→ Au, ΔG2
◦ = −nβF = −βF,
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where α = 1.36 and β = 1.83 ([17]). Using Lemma 4.1, we can find γ = (2·1.36+1.83)/3 =

1.52.

The three consecutive oxidation states of elements can be generalized as the following

expression:

Figure 2: The diagram of three consecutive oxidation states

a b c�α
m

�β
n

γ �

where a, b and c are chemical species, real numbers α, β and γ are potential differences,

and positive integers m and n are electronic differences.

As explained above, the following Table 1 obtained from the thermodynamic results

in all possible combinations of oxidation reduction reactions.

Table 1: All possible oxidation-reduction reactions of three species

+ a b c

a a+ a ( 0 )
b+a (α−α = 0 )
c+ a (−α + γ )

b+ a (α− γ )
b+ b (α− β )
c+a ( γ−γ = 0 )
c+ b ( γ − β )

b
a+ c (−α + β )
b+ b ( 0 )

c+ a (β − γ )
c+b (β−β = 0 )

c c+ c ( 0 )

Definition 4.3 Let G be a set of two or more chemical species and a hyperoperation ⊕
on G is defined as follows;

⊕ : G×G → ℘∗(G)

where ℘∗(G) is the set of all non-empty subset of G. For all x, y ∈ G, x⊕ y is defined the

major product, that is, it is selected from the largest combination among all spontaneous

redox reactions.
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Theorem 4.4 If G is a set of two chemical species a and b, then (G,⊕) is a commutative

hypergroup.

Proof. Since (G,⊕) has the following hyperoperation table,

⊕ a b
a a a, b
b a, b b

we can easily show that it is a commutative hypergroup.

In this case, (G,⊕) is called a type 2H.

Example 4.5 Let G = {a, b, c} be a set of three chemical species and α, β and γ be

positive real numbers, and m, n be positive integers.

Consider the following diagram with potential differences α,−β and −γ, and electronic

differences m and n.

a b c�α
m

�−β
n

−γ �

We define b⊕ c for b, c ∈ G. Firstly, we think all possible combinations for oxidation-

reduction reactions about b+c. There are two cases about b+c in all possible combinations

for oxidation-reduction reactions as follows:

{
b+ c

b+ c

�

�

γ

−β β

−β

c+ a (γ + (−β))

c+ b (β + (−β) = 0)

Hence {a, c} or {b, c} candidates for the hyperoperation b ⊕ c . Since γ + (−β) =
−mα + nβ

m+ n
− β =

−mα + nβ −mβ − nβ

m+ n
=

−m(α + β)

m+ n
< 0, we define b⊕ c = {b, c} as

the major product.

When G = {a, b, c}, we want to define a hyperoperation ⊕ on G. In order to define the

hyperoperation, it is sufficient to investigate all possible combinations for redox reactions

which are 0,±(α− β),±(α− γ),±(γ− β) in Table 1. The following Lemma 4.6 gives the

hyperoperation table in Theorem 4.7.

Lemma 4.6 Let a, b and c be chemical species, real numbers α, β and γ be potential

differences, and positive integers m and n be electronic differences with Figure 2. Then

we have the following.
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(1) If α > β, then we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α− γ > 0

γ − β > 0

α− β > max{α− γ, γ − β}

(2) If β > α, then we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α− γ < 0

γ − β < 0

α− β < min{α− γ, γ − β}

Proof. (1) If α > β, then

α− γ = α− mα + nβ

(m+ n)

=
mα + nα−mα− nβ

(m+ n)

=
n(α− β)

m+ n
> 0,

γ − β =
mα + nβ

(m+ n)
− β

=
mα + nβ −mβ − nβ

(m+ n)

=
m(α− β)

m+ n
> 0,

(α− β)− (α− γ) = −β + γ = γ − β > 0 and (α− β)− (γ − β) = α− γ > 0.

Then, the proof is completed from the above.

Similarly, we can prove (2).

Theorem 4.7 With the same assumption in Lemma 4.6, let G = {a, b, c} and ⊕ be a

hyperoperation on G. Then we have the following.

(1) When α > β, we have the following hyperoperation table, called a type 3SHv,

⊕ a b c
a a a,b b
b a,b b b,c
c b b,c c

and the hyperstructure (G,⊕) with the type 3SHv is a commutative Hv-semigroup.

(2) When β > α, we have the following hyperoperation table, called a type 3SH,
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⊕ a b c
a a a,c a,c
b a,c a,c a,c
c a,c a,c c

and the hyperstructure (G,⊕) with the type 3SH is a commutative semihypergroup.

Proof. Using Table 1 and Lemma 4.6, we get the hyperoperation tables.

(1) For all x, y, z ∈ G, we show that x⊕ (y ⊕ z) ∩ (x⊕ y)⊕ z �= ∅.
⎧⎨⎩

x⊕ (y ⊕ z) ∩ (x⊕ y)⊕ z = {a}, if x = a, y = a, z = a;
x⊕ (y ⊕ z) ∩ (x⊕ y)⊕ z = {c}, if x = c, y = c, z = c;
x⊕ (y ⊕ z) ∩ (x⊕ y)⊕ z � b, otherwise.

But it is not a semihypergroup; for example, c⊕(a⊕a) = c⊕a = {b} and (c⊕a)⊕a =

b⊕ a = {a, b}. Hence c⊕ (a⊕ a) �= (c⊕ a)⊕ a.

(2) For all x, y, z ∈ G, we show that x⊕ (y ⊕ z) = (x⊕ y)⊕ z.

x⊕ (y ⊕ z) = (x⊕ y)⊕ z =

⎧⎨⎩
{a}, if x = a, y = a, z = a;
{c}, if x = c, y = c, z = c;
{a, c}, otherwise.

Next we give a more generalized hyperoperation on a set of two or more chemical

species.

Definition 4.8 Let G be a set of two or more chemical species and a hyperoperation ⊕′

on G is defined as follows;

⊕′ : G×G → ℘∗(G)

where ℘∗(G) is the set of all non-empty subset of G. For all x, y, x′, y′ ∈ G, consider the

following all possible combinations for oxidation-reduction reactions

x+ y �
β

α
x′ + y′

where α and β are potential differences. We define x⊕′ y as follows;

x⊕′ y =

{ ∪α+β>0{x′, y′}, whenever x+ y → x′ + y′;
{x, y}, otherwise.

Theorem 4.9 With the same assumption in Lemma 4.6, let G = {a, b, c} and ⊕′ be a

hyperoperation on G. Then we have the following.

(1) When α > β, we have the following hyperoperation table, called a type 3H
′,
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⊕′ a b c
a a a,b a,b,c
b a,b b b,c
c a,b,c b,c c

and the hyperstructure (G,⊕′) with the type 3H
′ is a commutative hypergroup.

(2) When β > α, we have the following hyperoperation table, called a type 3SH
′,

⊕′ a b c
a a a,c a,c
b a,c a,c a,c
c a,c a,c c

and the hyperstructure (G,⊕′) with the type 3SH
′ is a commutative semihypergroup.

In this case, both (G,⊕) and (G,⊕′) are the same semihypergroup.

Proof. Using Table 1 and Lemma 4.6, we get the hyperoperation tables.

(1) For all x, y, z ∈ G, we show that x⊕′ (y ⊕′ z) = (x⊕′ y)⊕′ z.

x⊕′ (y ⊕′ z) = (x⊕′ y)⊕′ z =

⎧⎪⎪⎨⎪⎪⎩
{a}, if x = a, y = a, z = a;
{b}, if x = b, y = b, z = b;
{c}, if x = c, y = c, z = c;
{a, b}, {b, c} or {a, b, c}, otherwise.

Clearly for all x ∈ G we have x⊕′ G = G⊕′ x = G.

(2) The proof is the same as Theorem 4.7(2).

5 Examples and chemical analysis

From the standard reduction potentials data in the periodic table at [17], we get a hy-

perstructure by Theorem 4.7. Consider the following the standard reduction potentials

data,

a b c�x �y

where a, b and c are chemical species and x and y are potential differences. We denote

Gelement = {a, b, c}, and we investigate the hyperstructure (Gelemnt,⊕).

Example 5.1 Consider the following standard reduction potentials data[17] of Hydro-

gen(H) in [group 1];
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(acidic solution) H+ H2 H−�0.000
1

�−2.25
1

(basic solution) H2O H2/OH− H−�0.828
1

�−2.25
1

Let GH(acidic) = {H+, H2, H
−} and GH(basic) = {H2O,H2/OH−, H−}. Since (x, y) =

(0.000,−2.25) at acidic solution, (GH(acidic),⊕) is a ‘type 3SHv’ by Theorem 4.7. Also

(GH(basic),⊕) is the ‘type 3SHv’s by Theorem 4.7. We can be summarized as follows:

Group Elements (x, y) Type

1 GH(acidic) = {H+, H2, H
−} (0.000,−2.25) 3SHv

1 GH(basic) = {H2O,H2/OH−, H−} (0.828,−2.25) 3SHv

For the other cases[17], as follows:

Table 2: Chemical hyperstructures of three species
Group Elements (x, y) Type

2 GMg(acidic) = {Mg2+,Mg+,Mg} (−2.054,−2.657) 3SHv

3 GAc(acidic) = {Ac3+, Ac2+, Ac} (−4.9,−0.7) 3SH
4 GCe(acidic) = {Ce4+, Ce3+, Ce} (1.76,−2.34) 3SHv

4 GCe(basic) = {CeO2, Ce(OH)3, Ce} (−0.7,−2.78) 3SHv

5 GNb = {Nb2O5, Nb3+, Nb} (−0.1,−1.1) 3SHv

5 GPr(acidic) = {Pr4+, P r3+, P r} (3.2,−2.35) 3SHv

5 GPr(basic) = {PrO2, P r(OH)3, P r} (0.8,−2.79) 3SHv

6 GCr(basic1) = {CrO2−
4 , Cr(OH)3, Cr} (−0.11,−1.33) 3SHv

6 GCr(basic2) = {CrO2−
4 , Cr(OH)−4 , Cr} (−0.72,−1.33) 3SHv

6 GMo(basic) = {MoO2−
4 ,MoO2,Mo} (−0.78,−0.98) 3SHv

6 GW (basic) = {WO2−
4 ,WO2,W} (−1.259,−0.982) 3SH

6 GNd(basic) = {NdO2, Nd(OH)3, Nd} (2.5,−2.78) 3SHv

7 GTc = {TcO−
4 , T cO3, T c} (0.70, 0.83) 3SH

8 GFe(acidic1) = {Fe3+, F e2+, F e} (0.77,−0.44) 3SHv

8 GFe(acidic2) = {Fe(CN)3−6 , F e(CN)4−6 , F e} (0.36,−1.16) 3SHv

8 GOs(acidic) = {OsO4, OsO2, Os} (1.005, 0.687) 3SHv

8 GSm(acidic) = {Sm3+, Sm2+, Sm} (−1.55,−2.67) 3SHv

9 GIr(acidic1) = {IrO2, Ir
3+, Ir} (0.223, 1.156) 3SH

9 GIr(acidic2) = {IrCl2−6 , IrCl3−6 , Ir} (0.867, 0.86) 3SHv

9 GEu(acidic) = {Eu3+, Eu2+, Eu} (−0.35,−2.80) 3SHv

10 GCm(basic) = {CmO2, Cm(OH)3, Cm} (0.7,−2.5) 3SHv

11 GCu(acidic) = {Cu2+, Cu+, Cu} (0.159, 0.520) 3SH
11 GAu(acidic1) = {Au3+, Au+, Au} (1.36, 1.83) 3SH
11 GAu(acidic2) = {AuCl−4 , AuCl−2 , Au} (0.926, 1.154) 3SH
11 GAu(acidic3) = {AuBr−4 , AuBr−2 , Au} (0.802, 0.960) 3SH
11 GAu(acidic4) = {AuI−4 , AuI−2 , Au} (0.55, 0.578) 3SH
11 GTb(acidic) = {Tb4+, T b3+, T b} (3.1,−2.31) 3SHv

11 GTb(basic) = {TbO2, T b(OH)3, T b} (0.9,−2.82) 3SHv
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Group Elements (x, y) Type

12 GHg(acidic) = {Hg2+, Hg+, Hg} (0.911, 0.796) 3SHv

12 GDy(basic) = {DyO2, Dy(OH)3, Dy} (3.5,−2.80) 3SHv

13 GGa(acidic) = {Ga3+, Ga2+, Ga} (−0.65,−0.45) 3SH
13 GIn(acidic) = {In3+, In+, In} (−0.444,−0.126) 3SH
13 GT l(acidic) = {T l3+, T l+, T l} (1.25,−0.3363) 3SHv

14 GFm(acidic) = {Fm3+, Fm2+, Fm} (−1.15,−2.37) 3SHv

14 GSn(basic) = {Sn(OH)2−6 , SnO2H
−, Sn} (−0.93,−0.91) 3SH

15 GSb(acidic) = {Sb2O5, SbO
+, Sb} (0.605, 0.204) 3SHv

15 GTm(acidic) = {Tm3+, Tm2+, Tm} (−2.2,−2.4) 3SHv

15 GMd(acidic) = {Md3+,Md2+,Md} (−0.15,−2.4) 3SHv

16 GY b(acidic) = {Y b3+, Y b2+, Y b} (−1.05,−2.8) 3SHv

16 GNo(acidic) = {No3+, No2+, No} (1.4,−2.5) 3SHv

18 GXe(acidic1) = {H4XeO6, XeO3, Xe} (2.42, 2.12) 3SHv

18 GXe(acidic2) = {XeF2, XeF,Xe} (0.9, 3.4) 3SH
18 GXe(basic) = {[HXeO6]

−
3 , [HXeO4]

−, Xe} (0.99, 1.24) 3SH

Based on the standard reduction potential for three consecutive oxidation states of

elements in acidic or basic solutions, we showed that each element have the predominant

type in Table 2. For the chromium(Cr) in [Group 6] element, It can be classified as the

type 3SHv from mathematical operation through the Latimer diagram in Table 2, and

also the result was considered from thermodynamic point of view.

In the case of indium(In), In3+ is the most thermodynamically stable and it is the

type 3SH in the hyperoperation table of Theorem 4.7(2). That is, chromium iron(type

3SHv) and indium(type 3SH) have a different type.

The lanthanide elements have the type 2H or 3SHv, and here, the type 2H is defined

as the element that have 0 and only one form of a positive value in oxidation state. For

example,

Gd3+
−2.28−−−→ Gd.

Cerium(Ce) in [group 4] and terbium(Tb) in [group 11] classify the type 3SHv and we can

know the fact that Ce3+ and Tb3+ are present most abundant from the type 3SHv, and

they are thermodynamic point of view. Because it can be seen that the fact that Ce3+ to

Ce4+ is to be reduced easily, and also 3+ is the most stable in the case of lanthanides[5].

The 4f orbital in the electron configuration of cerium 4+ are empty(4f 0), thus additional

stability may be present[5]. From Table 2, terbium(Tb) for the type 3SHv shows that 4+

can exist in a relatively stable. It can be seen due to the electronic configuration, 4f 7,

from the fact that the half-filled rule is applied.
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As the type 3SHv for lanthanide elements of another tribe, we can find the results of

samarium(Sm) in [group 8] and europium(Eu) in [group 9]. In terms of chemistry, Sm3+

and Eu3+ are the most stable. But Table 2 in the mathematical operation shows that

Sm2+ and Eu2+ are regarded as the most representative chemical species respectively.

Thus we can understand the fact that will possible predict the oxidation state of any

element that was going to be the most predominant in the actual chemical reaction that is

not visible through the results of the mathematical operation. This is a great significance.

Because we only have experienced for the oxidation state of the elements which are in the

most stable in the chemistry. This description is related to the Pourbaix diagram of the

predominant area of the acidic solution in the f -block element[15].

Also on iron(Fe) in [group 8] that is other transition element. Both of Fe3+ and

Fe(CN)3−6 are easy to be reduced to 2+, especially complex ion, Fe(CN)3−6 is more

stable than free Fe3+ due to the standard reduction potential. They are the type 3SHv

for mathematical operations, and they all belong to the reaction of 2+ state may be the

most common.

In [group 2], magnesium(Mg) has the oxidation state 2+ and 0. But recently the

chemists have created stable dimer of magnesium(I) compounds[16]. Our results classi-

fied the type 3SHv for magnesium and the actual energy of Mg+ is thermodynamically

unstable, but it can prove to be the most abundant from the mathematical operation.
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