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Abstract 

We employ a graphical proof-oriented tool, ZZDecomposer, to discover formal derivations of 

Zhang-Zhang (ZZ) polynomials for various families and subfamilies of benzenoid structures 

including tripods, zigzag-edge coronoids fused with a starphene, oblate rectangles , 

hexagons , , and , and multiple zigzag chains , , 

, , , and . Current derivations are based on formal graph 

decompositions of the analyzed structures. The decompositions provide appropriate 

recurrence formulas, which are subsequently solved, yielding closed-form expressions for the 

ZZ polynomials. We hope that in addition to many new basic facts about ZZ polynomials of 

some important classes of benzenoids, the current study will provide the researchers who are 

interested in mathematical graph theory with a practical guide to the ZZDecomposer 

functionality and will enable and facilitate their research. 
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1. Introduction 

In a series of two recent papers [1, 2] we suggested a collection of techniques applicable 

for finding closed form of Zhang-Zhang (ZZ) polynomials for various subfamilies of 

catacondensed and pericondensed polycyclic benzenoid compounds. The presented 

techniques were based on a structural analysis of the ZZ polynomials for the smallest 

members  of a given subfamily of structures. The main goal of the analysis 

was discovering the underlying algebraic structure of the ZZ polynomial for the studied 

subfamily and expressing its algebraic coefficients as functions of the index . The 

discovered ZZ polynomial formulas were subsequently tested for a large number of analogous 

structures in order to verify their validity. Our approach, though practically useful and 

yielding ready-to-use algebraic formulas, had one serious methodological drawback. Namely, 

the ZZ polynomials for a given entire subfamily of benzenoid compounds were derived from 

the analysis of a finite number of its members. Therefore, it is not impossible that for an 

appropriately large value of , the discovered formulas stop to be valid and produce erroneous 

results. An interesting example of such a situation would be the case of cyclotomic 

polynomials , [3] for which an analogous analysis based on the first 104 members of 

this class would suggest that all their coefficients are equal to  or . This pattern first 

breaks for , where the coefficients for  and  are . [4] Such a situation is very 

unlikely in our heuristic analysis taking into account the structural similarities detected 

between the ZZ polynomials for subsequent members in the series, relatively small number of 

parameters used to generate the final formulas (substantially smaller than the number of 

analyzed series members), and numerous final tests of the discovered formulas against the ZZ 

polynomials of big isostructural compounds computed using formal recursive decomposition 

techniques. Nevertheless, despite of their structural beauty and apparently correct form, most 

of the ZZ polynomial formulas discovered by us in [1] and [2] are pure conjectures, which 

remain to be formally established using standard proof techniques, similarly as it was been 

done for other topological indices derived using formal interpolation techniques. [5, 6]  

In the current study we attempt to correct for the aforementioned omission using a 

specialized, proof-oriented, graphical computer environment (ZZDecomposer) developed 

recently in our group. ZZDecomposer is capable of performing interactive decompositions of 
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ZZ polynomials for an arbitrary benzenoid structure and enabling one in this way to conduct a 

formal proof of the derived formulas. This tool, described in detail in the prequel [7] to the 

current paper and distributed free of charge (http://qcl.ac.nctu.edu.tw/zzdecomposer), is 

applied here for performing formal proofs for the heuristically discovered formulas presented 

in our previous work [1, 2]. The preceding publication [7] used ZZDecomposer to give formal 

derivations (or re-derivations) of the ZZ polynomial formulas for the four well-known 

families of benzenoid structures: multiple-segment polyacene chains , zigzag-edge 

coronoids , fenestrenes , and parallelograms . These proofs were 

mainly meant as an illustration of capabilities of ZZDecomposer designed to introduce a 

freshman user to this new software. Here, we use ZZDecomposer to give formal proofs for 

further six families of benzenoid structures: tripods , structures  of Randić [1, 

8-11], zigzag-edge coronoids fused with a starphene , oblate rectangles , 

hexagons , , and , and multiple zigzag chains , , 

, , , and . These formal derivations are new. The approach used 

here will be further generalized to other families of benzenoid structures treated in detail in 

our next publications due to the complexity of the underlying theory. First two of these 

publications, giving a general, closed-form formula for chevrons  and generalized 

chevrons [12] and for prolate rectangles  and generalized prolate 

structures  [13] accompany this paper. The remaining classes, 

including general classes of multiple zigzag chains , ribbons  and 

generalized ribbons , [14] and oblate rectangles , require 

somewhat more involved theory and will be published shortly. In our opinion, the structures 

posing most serious problems for finding closed-form of their ZZ polynomials are hexagon 

benzenoids , for which all our attack attempts remained in vain except for a few of 

their subfamilies. 

2. Review of available closed-form formulas for the ZZ 

polynomials of benzenoid structures 

In our recent two studies [1, 2], we have reported a number of heuristically discovered 

formulas for the ZZ polynomials of various classes of benzenoid structures. Namely, we have 

reported general closed-form formulas for the ZZ polynomials of 14 families of benzenoid 
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structures: polyacenes , single armchair chains , multiple-segment polyacene chains 

, zigzag-edge coronoids , fenestrenes , linear and cyclic 

polyphenyles  and , tripods , starphenes , hammers , 

zigzag-edge coronoids fused with a starphene , parallelograms , prolate 

rectangles , and generalized prolate structures . For some 

of these structures, formal proofs of the results obtained by us were already available. The 

formulas for the ZZ polynomials of , , , and   were provided in 

the seminal papers by Zhang and Zhang. [15-18] The formulas for the ZZ polynomials of 

 and  were given originally by Guo, Deng, and Chen [19] with a small 

technical lapse, which was corrected in [20]. The ZZ formula for the parallelograms  

was derived by Gutman and Borovićanin. [21] To our best knowledge, no formal proofs are 

available for the remaining families of structures.  

In addition to the general closed-form formulas for the ZZ polynomials for the 14 above-

listed families, the ZZ polynomial formulas for 14 subfamilies of pericondensed benzenoid 

structures: multiple zigzag chains , , , , , , and 

, hexagons  and , chevrons  and , ribbons 

 and , and oblate rectangles , were also reported in our 

recent studies [1, 2]. No formal proofs of these results are available in the literature. Formal 

derivation of ZZ polynomials of oblate rectangles  was offered by Gutman, Fortula, 

and Balaban [22]; unfortunately, this result cannot be easily generalized to other subfamilies 

of oblate rectangles. However, the ideas behind this proof stimulated us to start our work on 

ZZ polynomials and design the ZZDecomposer graphical environment presented in the 

current series of papers [7, 12-14]. It should also be mentioned here that a collection of ZZ 

polynomials for generalized multiple zigzag chains  and  was 

offered by Chen, Deng, and Guo [23], but the resulting formulas are very lengthy and 

cumbersome for immediate everyday use, and do not give much insight in the internal 

structure of these subfamilies of benzenoids. We believe that additional analysis can cast 

these equations in much shorter and more structured form. 

It is also appropriate to mention here that general recurrence formulas for the structures 

 of Randić [1, 8-11] and for the multiple zigzag chains  were offered [1, 2], but 

solving these recurrences proved to be exceedingly difficult. For the structures , a 
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satisfactory expression for the ZZ polynomials could be obtained in terms of an appropriate 

generating function, [1] while for the , the two-dimensional recurrence could not be 

solved at that time. [2] 

It is clear that some of the closed-form ZZ polynomial formulas for various benzenoid 

systems are known and used, but no formal demonstration of their correctness has been 

presented. A good example here can be the closed-form expressions for the ZZ polynomials 

of prolate rectangles  given by Zhang and Zhang [15, 17], where a formal proof is 

replaced by the “it is easy to see” argument. The reported here program, ZZDecomposer, 

gives us a convenient tool for performing formal derivations (or re-derivations in some cases) 

of the known ZZ polynomial formulas for the discussed earlier families and subfamilies of 

benzenoid structures and for discovering the ZZ polynomials for various new classes of 

benzenoids, which did not permit such a discovery until now. 

3. ZZ polynomials of the  structures of Randić 

The formal proof of the recurrence formula found in [1] for the  structures of Randić 

[1, 8-11] starts here with the analysis of a finite member of this family, . Recursive 

decomposition of  in the way presented in Figure 1 shows that the ZZ polynomial of 

 can be represented in two equivalent forms: 

 � �� � � � � �� � � �� �ZZ 8 , 1 ZZ 7 , ZZ 7 ,S x x S x Sa x� � �   (1) 

if the decomposition is terminated after the first step or  

 � �� � � � � �� � � � � �� �ZZ 8 , 2 ZZ 7 , 1 ZZ 5 ,S x x S x x Sa x� � � �   (2) 

if the decomposition is terminated after the second step. Provided that  both equations 

can be immediately generalized to the case of , which is associated with the fact that the 

part of the structure  located inside the gray shaded boxes in Figure 1 does not take an 

active part in the decomposition process and in principle can be arbitrarily long. The 

generalized equations 

 � �� � � � � �� � � �� �ZZ , 1 ZZ 1 , ZZ 1 ,S n x x S n x Sa n x� � 	 � 	   (3) 
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and  

 � �� � � � � �� � � � � �� �ZZ , 2 ZZ , 1 ZZ 3 ,S n x x S n x x Sa n x� � � � 	   (4) 

constitute a convenient departure point for the proof, which is based on the elimination of the 

ZZ polynomials of the structure  from Eq. (4). Slight modification of Eq. (3)with 

the index  replaced by , gives 

 � �� � � �� � � � � �� �ZZ 3 , ZZ 2 , 1 ZZ 3 ,Sa n x S n x x S n x	 � 	 	 � 	   (5) 

This formula, when substituted in Eq. (4) produces the formula of the ZZ polynomial of  

agreeing with Eq. (24) of [1]  

 
� � � � � �

� �2

ZZ ( ), (2 ) ZZ ( 1), (1 ) ZZ ( 2),

(1 ) ZZ ( 3), .

S n x x S n x x S n x

x S n x

� � 	 � � 	

	 � 	
 (6) 

Solution to this recurrence equation has quite simple form given by 

 � �� � � �
� � � �

23

23 2
1

1 1 1ZZ ,
2 1 1 1

i
n

i ii i

R x
S n x

RR x R x�

� 	
� 


� 	 � 	
�   (7) 

where , , and  are the solutions to the polynomial equation  

 � � � � � �23 21 1 2 1 0i i iR x R x x R� 	 � 	 � � �   (8) 

Figure 1. A convenient graph decomposition of the structure . The gray shaded 
area is passive in the decomposition process and thus can be of arbitrary length, 
allowing one to generalize the decomposition to an arbitrary structure  and 
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Unfortunately, algebraic roots of this equation have rather complex and lengthy form, making 

the evaluation of the ZZ polynomial of  using Eq. (7) quite a cumbersome and time-

consuming process. Yet, Eq. (7) can be conveniently used for determining the total number of 

Clar covers for the structures . This value can be easily obtained by substituting  in 

Eq. (7), which evaluates to 

 

2 2

2 2

5 1 5 11 2 1 2
4 4 4 41

5 5 1 5 1 5 1 5 12 5 12 2 5 12
4 4 4 4 4 4 4 4

n n

�  � 
	 	 	 �� � � �

� � � �� �
�  � �  �  �  � 
� � � �� 	 	 	 	 	 � 	 	� � � � � � � �� � � �� � � � � � � �� � � �

  (9) 

The recurrence formula given by (6) can be also solved in terms of an appropriate 

generating function 

 � � � �� �
0

, , k

k

GF t x ZZ S k x t
�

�

� 
�   (10) 

which can be computed using standard methods with MAPLE [24] or obtained directly from 

Eq. (6) by multiplying both sides by  and summing the resulting formula over all non-

negative integers, yielding 

 � � � �
� � � � � �

2

22 3

1 1
,

1 2 1 1
x t

GF t x
x t x t x t

	 � 

�

	 � 
 	 � 
 � � 

  (11) 

with the boundary conditions given by , , and  listed in 

Eq. (23) of [1].  To get a useful expression for the ZZ polynomials of , we expand the 

generating function in the following way 

 � �

2

2 3 2

2 2 3 2

0

2

0 0 0

1 (1 )( , )
(1 ) (1 ) (2 ) 1

(1 (1 ) ) ( 1) (1 ) (1 ) (2 )

(1 (1 ) ) ( 1) (1 ) (2 )

ll

l

l k
m k l m k m l k

l k m

x tGF t x
x t x t x t

x t x t x t x t

l k
x t t x x

k m

�

�

�
� � � 	

� � �

	 �
�

� 	 � 	 � �

� 	 � 
 	 � 	 � 	 �

� � 
� 	 � 
 	 
 
 � 
 �� �� �

� �� �

�

���

  (12) 

The triple summations can be rearranged by the following sum identity 
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2
2 3

, , , 2 ,
0 0 0 0 0 0

A A

n n k
l k

k l m n
k l m l k n l k l

l k m n k l
t t

	� � � �
� � � �� � � � � �

� �
� 	 	

� � � � � �


 ���� � � �   (13) 

where  denotes the floor function, into the following closed-form formula 

� � � �

� �

2
2 3

3 22 2

0 0 0

2
2 3

2 3 2

1 0 0

2
( , ) (1 (1 ) ) 1 (1 ) 2

2 32 21 1 (1 ) (2 )
2

n n k

l n l kn l k

n k l

n n k

ln l k n l k

n k l

n l k l k
GF t x x t t x x

l k l

n l k n l kn l kt x x
l kn l k

	� � � �
� � � �� � � � �

	 	�

� � �

	� � � �
� � � �� � � �

� 	 	

� � �

	 	 �� � 
� 	 � 	 
 � 
 �� �� ��� �� �

	 	 	 	� � 	 	
� � 	 � � � �� �	 	 � �� �

� � �

� �
�

�

  (14) 

The series of transformations leading to the final equation is quite complex and involves 

multiple change of summation indices and a number of binomial identities; we skip the 

intermediate steps showing here only the final result. Comparison of the second line of 

Eq. (14) with Eq. (10) shows that the ZZ polynomial of the structure  for  is given 

by 

 � � � �
2

2 3
2 3 2

0 0

2 32 2( ), 1 (1 ) (2 )
2

n n k

l l k n l k

k l

n l k n l kn l kZZ S n x x x
l kn l k

	� � � �
� � � �� � � �

� 	 	

� �

	 	 	 	� � 	 	
� 	 � � � �� �	 	 � �� �
� �   (15) 

Numerical experiments show that Eq. (15) is correct. It is quite possible that further 

transformations of this equation may simplify it significantly; this task is not attempted here. 

4. ZZ polynomials of tripods  

The formal derivation of the ZZ polynomial for tripods  is most conveniently 

initiated with the analysis of the case with . The ZZ polynomial for such a “hockey 

stick” structure, , was derived originally by Zhang and Zhang (one of initial 

conditions to Eq. (4.4) of [17]) and formally by us (Figure 6 of [7]); it is given by 

 � � � � � �ZZ ( ,1, ), ( 1) ZZ ( 1), ZZ ( 1),T n l x x L n x L l x� � � 	 
 	 , (16) 

For m > 1, a possible graph decomposition of  is shown in Figure 2. It can be seen 

that the ZZ polynomial of  has the following formula 
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� � � � � �

� � � �
ZZ ( , , ), ZZ ( ,1, ), ZZ ( 2),

( 1) ZZ ( 2), ZZ ( 2), .

T n m l x T n l x L m x

x L l x L n x

� 
 	� �� �
� � 
 	 
 	� �� �

 (17) 

Substituting Eq. (16) into Eq. (17) produces the resulting ZZ polynomial of T(n,m,l) identical 

to the formula given by Eq. (27) of [2] 

 
� � � � � � � �

� � � � � �
ZZ ( , , ), ZZ ( 2), ZZ ( 1), ZZ ( 1),

(1 ) ZZ ( 2), ZZ ( 2), ZZ ( 2),

T n m l x L m x L n x L l x

x L m x L n x L l x

� 	 
 	 
 	� �� �
� � 
 	 � 	 
 	� �� �

 (18) 

5. ZZ polynomials of zigzag-edge coronoid fused with starphene 

 

The ZZ polynomial of zigzag-edge coronoid fused with starphene  is 

definitely the most complicated formula obtained in our previous study. [2] Here, we present 

its formal derivation, which turns out to be a fairly complicated process. A partial graphical 

decomposition of  is shown in Figure 3. After a number of decomposition steps, 

the ZZ polynomial of  can be represented as a sum of ZZ polynomials of 14 

intermediate structures 

 � � � �� � � �� �
14

1
2

ZZ ( , , ), (1 ) ZZ , , , , , ,i
i

ZCS n m l x x F n m l x ZZ F n m l x
�

� � 
 ��   (19) 

Ten of the intermediate structures are easily identified 

Figure 2. A convenient graph decomposition of a tripod . 
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Figure 3. A recursive decomposition of  used in text to derive a closed 
form formula for the ZZ polynomial of this structure. 
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The remaining four intermediate structures are new. Structures , , and  belong to the 

same family; they can be called “tridents” owing to their shape. The ZZ polynomial of a most 

general trident  is given by 

 
� � � � � �

� � � �
1 2 3 4 1 2 3 4

1 2 3 4

ZZ ([ , , , ], ), ZZ ([ , , , ]), ZZ ( 2),

(1 ) ZZ ([ , ], ZZ ([ , ]),

TD k k k k j x L k k k k x L j x

x L k k x L k k x

� 
 	

� � 
 

  (20) 

as can be easily seen from the decomposition performed in Figure 4 with the width-mode 

ZZDecomposer. Thus, we have 

 � �� �2 2, , , 2 , 1F TD m n l m m� 	 	 	   (21) 

 � �� �3 2, , , 2 , 1F TD n m l n n� 	 	 	   (22) 

 � �� �4 2, , , 2 , 1F TD l n m l l� 	 	 	   (23) 

The remaining intermediate structure, , is almost as complex as the original 

structure  and requires a separate decomposition. The highly-symmetric products 

of its recursive decomposition obtained with the width-mode ZZDecomposer are shown in 

Figure 5. The resulting ZZ polynomial formula is given by  

Figure 4. The width-mode decomposition of   
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� � � � � � � �
� � � � � �
� � � � � �
� �

5

1 1 1

2
2 2 2

3

ZZ ( , , ), ZZ ( 1, 1, 1), ZZ ( 1, 1, 1, ZZ ( 1, 1, 1),

( 1) ZZ ( , , ), ZZ ( , , ), ZZ ( , , ),

( 1) ZZ ( , , ), ZZ ( , , ), ZZ ( , , ),

( 1) ZZ ( 2), ZZ ( 2

F n m l x T n m l x T l n m x T m l n x

x X n m l x X m l n x X l n m x

x X n m l x X m l n x X l n m x

x L n x L m

� 	 	 	 
 	 	 	 
 	 	 	

� � 
 � �� �� �
� � 
 � �� �� �
� � 
 	 
 	� � � �

� � � � � �
� � � � � �

), ZZ ( 2),

ZZ ( 1), ZZ ( 1), ZZ ( 1),

ZZ ( 3), ZZ ( 3), ZZ ( 3),

x L l x

L n x L m x L l x

L n x L m x L l x


 	� �� �
� 	 
 	 
 	

� 	 
 	 
 	

  (24) 

Figure 5. Decomposition products of  obtained with the width-mode ZZDecomposer. 
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where  and  are defined as 

 � � � �1 1 2 3 1 2 3 1 2 3 2, , 1, 1, 1 ([ 2,2, 2]) ([ 2,2, 2])X k k k T k k k L k k L k k� 	 	 	 
 	 	 
 	 	   (25) 

 � � � �2 1 2 3 2 1 3 1 3, , 2 ([ 2,2, 2]) ([ 2,2, 2])X k k k L k L k k L k k� 	 
 	 	 
 	 	   (26) 

with the dot representing the union of disconnected structures. Direct substitution of the ZZ 

polynomials of all intermediate structures to Eq. (19) produces the ZZ polynomial of the 

structure  equivalent to Eqs. (65) and (66) of [2], completing the formal 

derivation presented here. The complexity of the underlying intermediate structures and their 

abundance partially explain the complexity of the  ZZ polynomial formula; it is 

rather unlikely that it can be further simplified into substantially shorter form. 

6. ZZ polynomials of multiple zigzag chains ,  and 

 

The two step decomposition of the multiple zigzag chain   shown in Figure 6 

yields a recursion formula for its ZZ polynomial in the following form 

 

� �� � � �� � � � � �� �
� � � �� � � �� � � �� �

� �� � � �� �

2

ZZ 4, , ZZ 4, 1 , 1 ZZ 3, 1 ,

1 ZZ 1 , ZZ 2, , ZZ ,

ZZ 2, 1 , ZZ 1 ,

Z n x Z n x x Z n x

x x L n x M n x L n x

x M n x L n x

� 	 � � 
 	

� 
 � 
 	 � 


� 
 	 
 	

  (27) 

This decomposition, similarly to many others appearing in this study later, relies heavily on 

Theorem 7 of [12], which states that the ZZ polynomial of two fused parallelograms is equal 

to the product of their ZZ polynomials. The structure obtained by fusing two parallelograms is 

represented in the following figures as  to stress the parallel alignment of 

the parallelograms or as  to stress the essentially disconnected character 

of such a composite structure. Eq. (27) can be telescopically folded to yield 

� �� � � �� � � �� � � � � �� �

� � � �� � � �� � � � � �� �

1

0
1 1 2

0 0

4, , 2, , , 1 3, ,

1 2, , , 1 ,

n

k
n n

k k

ZZ Z n x ZZ M n x ZZ L n x x ZZ Z k x

x ZZ M k x ZZ L k x x x ZZ L k x

	

�

	 	

� �

� 
 � �

� � 
 � 
 � 


�

� �
  (28) 
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Since , the ZZ polynomial of  is given by Eq. (15) of [12] as 

 � �� � � �� � � � � �� �
12 2

0

3, , , 1 ,
k

l

ZZ Z k x ZZ L k x x ZZ L l x
	

�

� � � 
�   (29) 

Direct substitution of this formula to Eq. (28) produces a closed formula for the ZZ 

polynomial of  expressed in terms of ZZ polynomials of the simplest building blocks, 

polyacenes  and parallelograms  

 

� �� � � �� � � �� �

� � � �� � � �� �

� � � �� �

1

0
1 22

0 0

4, , 2, , ,

1 2, , ,

1 ,

n

k
n k

k l

ZZ Z n x ZZ M n x ZZ L n x

x ZZ M k x ZZ L k x

x ZZ L l x

	

�

	

� �

� 


� � 


� �

�

��

  (30) 

which can be further simplified using relation (58) to 

 

� �� � � �� � � �� �

� � � �� � � �� �

� � � � � �� �

1

0
1 22

0

4, , 2, , ,

1 2, , ,

1 ,

n

k
n

k

ZZ Z n x ZZ M n x ZZ L n x

x ZZ M k x ZZ L k x

x n k ZZ L k x

	

�

	

�

� 


� � 


� � 	 


�

�

  (31) 

Figure 6. Graph decomposition of . Each shaded hexagon represents schematically a 
horizontal polyacene of length . 
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This form is already suitable for numerical evaluation of , but direct 

substitution of  and  after substantial algebraic manipulations 

yields much more compact and quite surprising formula 

 
� �� � � �

� �� � � �� � � �

4

0

4

3 3 0 2
4, , 1

1 1 4

2
3, , , 1

4

k

k

n n n
ZZ Z n x x n

k k k k k k

n
ZZ M n x ZZ L n x x

�

� � �� �  � �  � � 
� � � �� �� �� � � �� � � �� �	 	 	� �� � � �� � � �� �� �

�� 
� 
 � �� �

� �

�
  (32) 

which is consistent with Eq. (44) of [2], justifying the previous heuristic reasoning. 

Analogous three level decomposition of the multiple zigzag chain  yields the 

decomposition products shown in Figure 7 and produces a recursion formula for its ZZ 

polynomial in the following form 

 

� �� � � �� � � �� �
� �� � � � � �� �

� � � �� �
� � � �� � � �� �
� � � �� �

2

2

2

22

5, , 5, 1 , 2, ,

2, 1 , 2 1 4, 1 ,

1 3, 1 ,

2 1 2, 1 , 1 ,

1 1 ,

ZZ Z n x ZZ Z n x ZZ M n x

x ZZ M n x x ZZ Z n x

x ZZ Z n x

x x ZZ M n x ZZ L n x

x x ZZ L n x

� 	 �

� 
 	 � � 
 	

� � 
 	

� 
 � 
 	 
 	

� 
 � 
 	

  (33) 

which can be telescopically folded and simplified to yield 

 

� �� � � �� � � � � �� �

� � � �� � � �� � � �� �

� � � � � �� � � �

12 2

0

1

0

1 23 5

0

5, , 2, , 1 2, ,

2 1 , 2, , 3, ,

2
1 , 2 1

5

n

k
n

k

n

k

ZZ Z n x ZZ M n x x ZZ M k x

x ZZ L k x ZZ M k x ZZ M k x

n
x n k ZZ L k x x

	

�

	

�

	

�

� � �

� �� � 
 �� �

�� 
� � 	 
 � � � �

� �

�

�

�

  (34) 

This form can be again suggested for numerical computations. Direct substitution of ZZ 

polynomials of  and  produces a lengthy expression containing sums of double 

and triple products of binomial coefficients that could be simplified to  
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� �� � � � � �

� � � �

� �

5
2

3 4

5

5 1
5, , 1 6 1

2

1 1 1 1
20 1 27 7 1

3 2 4 3

1 1 1
15 9 1

5 4 3

k

k

n n
ZZ Z n x x x

k k

n n n n
x x

n n n
x

�� �  � 
� � � �� �� � � �

� �� � � �
� � �  � � � �  �  �  � 

� � � � � �� � � �� � � � � � � �
� � � � � � � �� � � �

� � � � �  �  � 
� � � �� �� � � � � �

� � � � � �� �

�
  (35) 

This formula is consistent with the heuristically derived ZZ polynomial of  given by 

Eq. (45) of [2].  

Analogous technique can be employed for deriving the ZZ polynomial of . The three-

level decomposition process, yields the decomposition products shown in Figure 8 and 

produces the following recursion formula 

� �� � � �� � � � � �� � � �� �
� � � �� � � �� �
� � � �� � � �� �
� � � �� � � � � �� �
� � � �� � � � � �� � � �� �
� � � �� � � � � �� �

2

2

2

6, , 6, 1 , 1 3, , 2, ,

1 4, 1 , 1 ,

1 3, 1 , 1 ,

1 5, 1 , 1 4, 1 ,

1 3, 1 , 1 2, , ,

1 3, , 1 ,

ZZ Z n x ZZ Z n x x ZZ Z n x ZZ M n x

x ZZ Z n x ZZ L n x

x ZZ Z n x ZZ L n x

x ZZ Z n x x ZZ Z n x

x ZZ Z n x x x ZZ M n x ZZ L n x

x x ZZ Z n x x x ZZ L n x

� 	 � � 
 


� � 
 	 
 	

� � 
 	 
 	

� � 
 	 � � 
 	

� � 
 	 	 
 � 
 


	 
 � 
 � 
 � 


  (36) 

Figure 7. Decomposition products of   obtained with the width-mode ZZDecomposer. 
Each shaded hexagon represents schematically a horizontal polyacene of length . 
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After telescopic folding and extensive algebraic manipulations analogous to those described 

earlier for  and , it is possible to cast this equation in the following binomial-

based form 

 
� �� � � � � � � �

� �

6
2 3

4

6 1 1 1
6, , 1 10 1 48 4 1

2 3 2

1 1
102 30 1

4 3

k

k

n n n n
ZZ Z n x x x x

k k

n n
x

� � � � � �  �  �  � 
� � � � � � �� �� �� � � � � � � �

� �� � � � � � � �� �
� � � �  � 

� � �� �� � � �
� � � �� �

�
  

 
� �

� �

5

6

1 1 1
116 72 8 1

5 4 3

1 1 1 1
60 62 17 1

6 5 4 3

n n n
x

n n n n
x

� � � � �  �  � 
� � � �� �� � � � � �

� � � � � �� �
� � � � � �  �  �  � 

� � � � �� �� � � � � � � �
� � � � � � � �� �

  (37) 

which agrees with the heuristically-derived Eq. (46) given by us previously in [2]. 

The presented here method gives a ready-to-use technique of developing closed-form ZZ 

polynomial formulas for multiple zigzag chains with larger values of . It is easy to show 

that the ZZ polynomial of  is given by 

Figure 8. Decomposition products of   obtained with the width-mode ZZDecomposer. 
Each shaded hexagon represents schematically a horizontal polyacene of length . 
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� �� � � �� � � � � �� �� �

� �� � � �� �

� �� � � �� �

22

0 1
1

0

1 22

0

ZZ 7, , ZZ 3, , ZZ (3, ), (1 ) ZZ ,

2 (1 ) ZZ 5, , ZZ ( ), 1

(1 ) ZZ 3, , ZZ ( ), 1

n n

k k
n

k
n

k

Z n x Z k x x Z k x x L k x

x Z k x L k x

x Z k x L k x

� �

	

�

	

�

� � 
 	 � 


� �� 
 � 
 �� �

� �� � 
 �
� �

� �

�

�

  (38) 

which can be readily transformed into a working equation given by 

 
� �� � 2 3

2 4

5ZZ 7, , 1 7 (1 ) 3 (6 1)(1 ) (13 1)(2 1)(1 )
6

(4 1)(10 10 1)(1 )
3

Z n x n x n n x n n n x

n n n n x

� � 
 � � 
 	 � � 	 	 �

� � 	 � �
  

 

2 5

3 2 6

4 3 2 7

( 1)(2 1)(22 12 1)(1 )
10

( 1)(2 1)(34 45 23 3)(1 )
90

( 1)(2 1)(68 136 133 65 18)(1 )
2520

n n n n n x

n n n n n n x

n n n n n n n x

� 	 	 	 � �

� 	 	 	 � 	 �

� 	 	 	 � 	 � �

  (39) 

analogous to Eqs. (44), (45), and (46) given in [2] for , , and . Similar 

working equations for  and  obtained in the same manner are given by 

� �� � 2 2 3

2 4

3 2 5

4 3 2 6

5 4 3 2

7ZZ 8, , 1 8 (1 ) (7 1)(1 ) (37 1 18 )(1 )
2

5 (5 1)(29 25 2)(1 )
24

( 1)(421 339 76 4)(1 )
30

( 1)(301 480 275 60 4)(1 )
80

( 1)(1385 3249 3275 1695 44
2520

Z n x n x n n x n n n x

n n n n x

n n n n n x

n n n n n n x

n n n n n n

� � � � 
 	 � � � 	 �

� 	 	 � �

� 	 	 � 	 �

� 	 	 � 	 � �

� 	 	 � 	 � 7

6 5 4 3 2

8

0 36)(1 )

( 1)(1385 4155 5967 5009 2656
40320

844 144)(1 )

n x

n n n n n n n

n x

	 �

� 	 	 � 	 �

	 � �

  (40) 
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� �� � 2 2 3

2 4

4 3 2 5

3 2 6

4 3 2

7ZZ 9, , 1 9 (1 ) 4 (8 1)(1 ) (50 21 1)(1 )
6

(6 1)(20 15 1)(1 )
2

(220 350 160 25 1)(1 )
6

( 1)(2 1)(308 264 55 3)(1 )
45

( 1)(2 1)(1300 2124 1295 303
840

Z n x n x n n x n n n x

n n n n x

n n n n n x

n n n n n n x

n n n n n n

� � 
 � � 
 	 � � 
 	 � �

� 	 	 � �

� 	 � 	 � �

� 	 	 	 � 	 �

� 	 	 	 	 	 7

5 4 3 2

8

6 5 4 3 2

9

18)(1 )

( 1)(2 1)(496 1172 1228 673
2520

193 18)(1 )

( 1)(2 1)(124 372 547 474 265
11340

90 18)(1 )

n x

n n n n n n n

n x
n n n n n n n n

n x

� �

� 	 	 	 � 	

� 	 �

� 	 	 	 � 	 �

	 � �

  (41) 

Unfortunately, the presented here derivations have not brought us much closer to the main 

goal of our analysis, i.e., finding a general closed formula for the ZZ polynomial of a general 

multiple zigzag chain .  Substantial research effort in our group is devoted to this 

topic and we hope to shed more light on this issue in one of the forthcoming publications. 

7. ZZ polynomial of oblate rectangle  

Closed form of ZZ polynomial for the oblate rectangle  can be formally derived 

in the following way. The recursive decomposition of  shown in Figure 9 shows how 

to express its ZZ polynomial in terms of ZZ polynomials of a shorter oblate rectangle , 

multiple zigzag chains  and , intermediate rectangles  and  [11], 

and a pentagon . It is clear that the fragments of the studied structures located in the 

shaded gray areas are passive in the decomposition process and can in principle be of arbitrary 

length without changing the decomposition scheme. Therefore, it is obvious that the presented 

decomposition of  can be immediately generalized to a general oblate rectangle 

 yielding the following recurrence formula 
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� �� � � �� � � �� � � � � �� �
� � � �� � � � � �� �

� � � �� �

, 2 , 1,2 , 3, , 1 2 3, 1 ,

1 5, 1 , 1 4, 1 ,

1 2,3, 1 ,

ZZ Or m x ZZ Or m x ZZ R m x x ZZ R m x

x x ZZ Z m x x x ZZ Z m x

x ZZ D m x

� 	 � � � 
 	

� 
 � 
 	 � 
 � 
 	

� � 
 	

  (42) 

which can be telescopically folded to the following form 

 

� �� � � �� �

� � � �� � � � � �� �

� � � �� � � � � �� �

1 1

0 0
1 1

0 0

, 2 , 3, ,

2 1 3, , 1 5, ,

1 4, , 1 2,3, ,

m m

k k
m m

k k

ZZ Or m x ZZ R m x

x ZZ R k x x x ZZ Z k x

x x ZZ Z k x x ZZ D k x

	 	

� �

	 	

� �

�

� � � 
 �

� 
 � � �

� �

� �

  (43) 

The ZZ polynomial of the pentagon  is given by Eq. (54). The ZZ polynomial of the 

last missing puzzle, the intermediate rectangle  can be derived as follows. The 

decomposition process shown in Figure 10 for  can be immediately generalized on the 

base of the same arguments as for  to a general intermediate rectangle  

yielding the following recurrence formula 

 
� �� � � �� � � �� � � � � �� �

� �� � � � � �� �
3, , 3, 1 , 5, , 1 2,3, 1 ,

5, 1 , 1 4, 1 ,

ZZ R n x ZZ R n x ZZ Z n x x ZZ D n x

x ZZ Z n x x x ZZ Z n x

� 	 � � � 
 	

� 
 	 � 
 � 
 	
  (44) 

which can be telescopically folded to give 

Figure 9. Decomposition tree of . The shaded area is passive in the decomposition 
process and therefore it can be practically of arbitrary length. 
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� �� � � �� � � � � �� �

� � � �� � � � � �� �

1

0
1 1

0 0

3, , 5, , 1 2,3, ,

1 5, , 1 4, ,

n

k
n n

k k

ZZ R n x ZZ Z n x x ZZ D k x

x ZZ Z k x x x ZZ Z k x

	

�

	 	

� �

� � �

� � � 
 �

�

� �
  (45) 

Substitution of the ZZ polynomial formulas for  and  into Eq. (43) allows us 

to express the ZZ polynomial of  solely in terms of the ZZ polynomials of  

and , suggesting that the multiple zigzag chains  may play an important role in 

the general theory of ZZ polynomials for pericondensed benzenoids in addition to the 

parallelograms . The resulting formula reads 

 

� �� � � �� �

� �� � � � � �� �

� � � � � �� �

1
2

0

1
3 2

0

, 2 , 5, ,

2 2 1 1 2 1 5, ,

2 1 1 4, ,
2 1

m

k

m

k

ZZ Or m x ZZ Z m x

m k x x ZZ Z k x

m k m k
x x ZZ Z k x

	

�

	

�

�

� �� 	 	 � � � 
� �

� 	 	 ��  � 
� � � � 
� �� � � �

� � � �� �

�

�

  (46) 

Direct substitution of ZZ polynomials for  and  given by Eqs. (35) and (32) 

yields the ZZ polynomial in the basis of  monomials; the final formula justifies the 

heuristically derived Eq. (58) given by us previously in [2]. Note finally that analogous 

technique to that presented here can be applied for derivation of ZZ polynomials for , 

, , etc, but the complexity of final formulas and the number of intermediate 

Figure 10. Decomposition tree of . The shaded area is passive in the decomposition 
process and therefore it can be practically of arbitrary length.  
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structures is anticipated to be substantially larger. 

8. ZZ polynomials of hexagons ,  and 

 

The closed-form ZZ polynomial formulas for the  and  hexagons are 

reported in [2]. Despite of their quite structured form, the discovered formulas do not provide 

much insight in the general theory of ZZ polynomials of the  hexagons. Here we 

present formal derivation of these equations together with analogous derivation of ZZ 

polynomial for the  hexagons. The presented derivations partially explain the 

intrinsically complex structure of the ZZ polynomial formulas for hexagons. 

The first two steps of a recursive decomposition of the  hexagon are shown in 

Figure 11. (The shaded benzene units are a symbolic representation of a segment of the 

hexagon  of width ; clearly, the width of this symbolic segment is immaterial 

for the presented here decomposition.) The first step of the decomposition process yields a 

recursive equation for the ZZ polynomial of  given by 

� �� � � �� � � �� � � �� �2,2, , 2,2, 1 , 2,2, , 2,2, 1 ,ZZ O n x ZZ O n x ZZ Ch n x x ZZ Ch n x� 	 � � 
 	   (47) 

where  is a chevron structure with the ZZ polynomial given by Eq. (39) of [2]; the 

second step of the recursive decomposition shown in Figure 11 suggest how one could obtain 

such a formula. Eq. (39) of [2] is generalized to an arbitrary chevron structure  in 

[12]. The resulting formal formula reads 

 
� �� � � �� � � �� �

� � � �� � � �� �
1

0

, , , 1, , 1, ,

1 1, , 1, ,
n

i

ZZ Ch k m n x ZZ M k n x ZZ M m n x

x ZZ M k i x ZZ M m i x
	

�

� 	 
 	

� � 	 
 	�
  (48) 

Eq. (47) can be telescopically folded with the boundary condition  to yield 

 � �� � � �� � � � � �� �
1

0

2,2, , 2,2, , 1 2,2, ,
n

k

ZZ O n x ZZ Ch n x x ZZ Ch k x
	

�

� � � �   (49) 

which, upon substituting with Eq. (48), gives 
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2

1 2

0
1 1 22

0 0

2,2, , 1, ,

2 1 1, ,

1 1, ,

n

k
n k

k l

ZZ O n x ZZ M n x

x ZZ M k x

x ZZ M l x

	

�

	 	

� �

�

� �

� �

�

��

  (50) 

Explicit evaluation of this expression with   

gives in the basis of the  monomials the following formula 

 
� �� � � � � �

� � � �

1 1 1 1 1
4 32 2

0 0 0 0 0

1 1 1 1
2 2

0 0 0 0

2,2, , 1 1 2 2

1 4 1 1 2 2 1

n k n n k

k l k k l

n n k n

k k l k

ZZ O n x x l x k l

x n k x n

	 	 	 	 	

� � � � �

	 	 	 	

� � � �

� �
� � � � �� �

� �
� � � �

� � � � � � � �� � � �
� � � �

�� � ��

� �� �
  (51) 

which agrees and justifies, upon evaluation of all the sums, the previously derived heuristic 

Eq. (35) of [2]. The algebraic complexity of the coefficients  in this expansion clearly 

explains the difficulties associated with finding general closed form of the coefficients  in 

the previous study; as we will see further, the complexity is even more severe for other 

hexagons,  and . In our opinion, the resulting Eq. (50) can be a convenient 

departure point for further simplification of the obtained here formula; direct substitution of 

the ZZ polynomial of the parallelogram  in the hypergeometric form as given by 

Figure 11. Graph decomposition of . Each shaded hexagon represents 
schematically a horizontal polyacene of length .  
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Eq. (5) of [12] and explicit evaluation of the sums may lead to much more compact 

representation, possibly also in hypergeometric form.  

The recursive decomposition of , shown in Figure 12, is almost identical as for 

. The first step of the recursive decomposition produces a recurrence equation for the 

hexagon  given by 

 � �� � � �� � � �� � � �� �ZZ 2,3, , ZZ 2,3, 1 , ZZ 2,3, , ZZ 2,3, 1 ,O n x O n x D n x x D n x� 	 � � 
 	   (52) 

where  is a regular four-tier strip usually referred to as pentagon [11]. Eq. (52) can 

be telescopically folded with the boundary condition , yielding  

 � �� � � �� � � � � �� �
1

0

ZZ 2,3, , ZZ 2,3, , 1 ZZ 2,3, ,
n

k

O n x D n x x D k x
	

�

� � � �    (53) 

The closed-form formula for the ZZ polynomial of a general regular pentagon  

is not known, but it is relatively easy to obtain the formula for  as suggested by the 

second step of the recursive decomposition shown in Figure 12. The resulting recurrence 

formula 

 � �� � � �� � � �� � � �� �ZZ 2,3, , ZZ 2,3, 1 , ZZ 4, , ZZ 4, 1 ,D n x D n x Z n x x Z n x� 	 � � 
 	   (54) 

where  is a multiple zigzag chain, can be again telescopically folded with the 

boundary condition  giving 

 � �� � � �� � � � � �� �
1

0

ZZ 2,3, , ZZ 4, , 1 ZZ 4, ,
n

k

D n x Z n x x Z k x
	

�

� � � �   (55) 

This formula can be substituted in the expression for the ZZ polynomial of  yielding 

an expression analogous to Eq. (49) 

 
� �� � � �� �

� � � �� � � � � �� �
1 1 1

2

0 0 0

ZZ 2,3, , ZZ 4, ,

2 1 ZZ 4, , 1 ZZ 4, ,
n n k

k k l

O n x Z n x

x Z k x x Z l x
	 	 	

� � �

�

� � � �� ��
  (56) 
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Substituting into this equation the ZZ polynomial of  given by Eq. (31) gives 

 

� �� � � �� � � �� �

� � � �� � � �� �

� � � �� � � �� �

� � � �� � � �� �

� � � �� � � � � �� �
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1

0
1 1

2

0 0
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3
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0 0 0 0 0
1

4
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3 1 2, , ,
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1

n

k
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n k l
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n k n k l

k l k l m
n

k l

ZZ O n x ZZ M n x ZZ L n x

x ZZ M k x ZZ L k x

x ZZ M l x ZZ L l x

x ZZ M m x ZZ L m x

x ZZ L l x x ZZ L m x

x
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� �

	 	 	

� � �
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� �
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� � 


� � 


� � 


� � � �

� �

�

��

���

�� ���

� � �� �
1 1 2

0 0

,
k l m

m j

ZZ L j x
	 	

� �
���

  (57) 

which can be greatly simplified using the following set of combinatorial identities 

� � � �
1 1

0 0 0 1

n k n

k l k

n k
F l F k

	 	

� � �

	� 
� � �

� �
�� �   (58)  � � � �

1 1 1

0 0 0

1
1

n k n

k l k

n k
F l F k

	 	 	

� � �

	 	� 
� � �

� �
�� �   (59) 

Figure 12. Graph decomposition of . Each shaded hexagon represents schematically a 
horizontal polyacene of length .  
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� � � �
1 1 1

0 0 0 0 2

n k l n

k l m k

n k
F m F k
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	� 
� � �

� �
��� �   (60)  � � � �

1 1 1 1
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2

n k l n
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	 	� 
� � �
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��� �   (61) 

� � � �
1 1 1 1

0 0 0 0 0 3

n k l m n

k l m j k

n k
F l F k
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	� 
� � �

� �
���� �   (62)  � � � �

1 1 1 1 1

0 0 0 0 0

1
3

n k l m n

k l m j k

n k
F l F k

	 	 	 	 	

� � � � �

	 	� 
� � �

� �
���� �   (63) 

giving the most compact formula for the ZZ polynomial of  in the following form 

 
� �� � � �� � � �� �

� �� � � �� � � �
1 1 3

1

0 0 1

2,3, , 2, , ,

2
1 , , , 1

1

n
j l

l k j

ZZ O n x ZZ M n x ZZ L n x

l n k l
ZZ M l k x ZZ L k x x

j l j l

	
� 	
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� 


� 	 	� � 
� � 
 �� �� �� 	 	� �� �
�� �

  (64) 

Explicit substitution of ZZ polynomials for  and  and evaluation of 

the sums produces a working equation for  given by 

 

� � 2 3

2 4 2 2 5

2 2 6

2ZZ (2,3, ), 1 6 (1 ) 3 (3 2)(1 ) (8 7)( 1)(1 )
3

( 1) (17 28)(1 ) ( 1) ( 2) (1 )
12 6

( 3)( 1) ( 2) (1 )
144

O n x n x n n x n n n x

n nn n x n n x

n n n n x

� � � � 	 � � 	 	 �

� 	 	 � � 	 	 �

� 	 	 	 �

  (65) 

Formal derivation of the ZZ polynomial for the hexagons  closely follows 

analogous processes for the hexagons  and  presented above. The first step 

of the recursive decomposition shown in Figure 13 produces a recurrence equation for the 

hexagon  given by 

 � �� � � �� � � �� � � �� �3,3, , 3,3, 1 , 3, , 3, 1 ,j jZZ O n x ZZ O n x ZZ D n x x ZZ D n x� 	 � � 
 	    (66) 

where  is an auxiliary intermediate structure usually referred to as an oblate pentagon 

[11]. Eq. (66) can be telescopically folded with the boundary condition , 

yielding  

 � �� � � �� � � � � �� �
1

0

3,3, , 3, , 1 3, ,
n

j j

k

ZZ O n x ZZ D n x x ZZ D k x
	

�

� � � �   (67) 

The closed-form formula for the ZZ polynomial of a general oblate pentagon  

is not known, but it is relatively easy to obtain the formula for  as suggested by the 
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second step of the recursive decomposition shown in Figure 13. The resulting recurrence 

formula 

 � �� � � �� � � �� � � �� �3, , 3, 1 , 2, , 2, 1 ,j jZZ D n x ZZ D n x ZZ Or n x x ZZ Or n x� 	 � � 
 	   (68) 

where  is an oblate rectangle structure, can be again telescopically folded with the 

boundary condition  giving 

 � �� � � �� � � � � �� �
1

0

ZZ 3, , ZZ 2, , 1 ZZ 2, ,
n

j

k

D n x Or n x x Or k x
	

�

� � � �   (69) 

This formula can be substituted in the expression for the ZZ polynomial of  yielding 

an expression analogous to Eqs. (56) and (49) 

 

� �� � � �� �

� � � �� �

� � � �� �

1

0
1 1

2

0 0

ZZ 3,3, , ZZ 2, ,

2 1 ZZ 2, ,

1 ZZ 2, ,

n

k
n k

k l

O n x Or n x

x Or k x

x Or l x

	

�

	 	

� �

�

� �

� �

�

��

  (70) 

Figure 13. Graph decomposition of . Each shaded hexagon represents schematically a 
horizontal polyacene of length .  
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Substituting into this equation the ZZ polynomial of  given by Eq. (46) gives 

 

� � 2 2 3

2 4 2 2 5

3 2 6

4 3 2

9ZZ (3,3, ), 1 9 (1 ) (5 3)(1 ) (149 249 106)(1 )
2 6

( 1) (86 103)(1 ) ( 1) (28 89 72)(1 )
6 6

( 1)( 2)(316 1464 2201 1059)(1 )
360

1 (236 1784 4921 5749
3420

nO n x n x n n x n n x

n nn n x n n n x

n n n n n n x

n
n n n n

� � � � 	 � � 	 � �

� 	 	 � � 	 	 � �

� 	 	 	 � 	 �

� 
� 	 � 	� �

� �
7

4 3 2 8

2 3 2 9

2430)(1 )

1 (105 838 2427 2918 1272)(1 )
4840

( 1) ( 2) ( 3) ( 4)(1 )
8640

x

n
n n n n x

n n n n n x

� �

� 
� 	 � 	 � �� �

� �

� 	 	 	 	 �

  (71) 

which agrees with the heuristically derived Eq. (37) of [2]. 

9. Conclusion 

We have presented formal derivations of ZZ polynomials for various families and 

subfamilies of benzenoid structuress using the semi-automatic computer environment 

(ZZDecomposer) recently developed in our group. [7] The formal derivations presented here 

justify the general formulas obtained previously [1, 2] for various classes of benzenoids using 

heuristic reasoning. Current derivations are based on formal graph decompositions of the 

analyzed structures, which yield appropriate recurrence formulas, which are subsequently 

solved, yielding closed-form expressions for the sought ZZ polynomials. In most cases, the 

recurrences are solved using telescopic folding. We hope that in addition to many new basic 

facts about ZZ polynomials of some important classes of benzenoids, the current study will 

provide the researchers who are interested in mathematical graph theory with a practical guide 

to the ZZDecomposer functionality and will enable and facilitate their search for the general 

ZZ polynomial formulas of benzenoids.  
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