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Abstract

The study contains an application to individual Kekulé valence structures of benzenoid hy-

drocarbons of the general form of power series for total energies of molecules obtained previously

by means of the so-called non-commutative Rayleigh-Schrödinger perturbation theory, as well as

an additional derivation of expressions for energy corrections of the fifth order. The structures

concerned are modeled as sets of weakly-interacting initially-double (C=C) bonds, bonding and

anti-bonding orbitals of which play the role of basis functions. Accordingly, the averaged res-

onance parameter of initially-single (C-C) bonds is chosen to underly the energy expansion.

The main aim of the study consists in revealing an anticipated interrelation between the above-

specified perturbative approach to relative stabilities of separate Kekulé valence structures and

the well-known models based on the concept of conjugated circuits (CC). It is shown that the

principal properties of the power series for total energies resemble those of the CC models. This

especially refers to additivity of contributions of individual circuits to the relevant total energy

and to their extinction when the size of the circuit grows. On this basis, the approach suggested

is concluded to offer a perturbative analogue for the concept of conjugated circuits in benzenoid

hydrocarbons and thereby a new justification of the CC model(s). An additional discriminative

potential of the approach applied vs. the CC model(s) also is concluded by demonstrating dis-

tinct total energies for Kekulé valence structures of the same composition in terms of conjugated

circuits. The simplest hydrocarbons are considered in a detail as examples, viz. naphthalene,

anthracene and phenanthrene.

1 Introduction

The concept of conjugated circuits has been introduced more than thirty years ago [1-

3] and since then it is under an extensive development [4-13]. Nowadays this concept
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plays an important role in the branch of theoretical chemistry concerning polycyclic ben-

zenoid and non-benzenoid hydrocarbons [14]. Numerous fields of successful applications

of conjugated-circuits-based (CC) model(s) may be mentioned, e.g. establishing of rel-

ative ”weights” of individual Kekulé valence structures in the formation of the overall

stability of a certain hydrocarbon, classification of polycyclic benzenoids, characteriza-

tion of the so-called local aromaticity in extended compounds, etc. The most outstanding

achievement, however, consists in evaluations of the molecular resonance energies. Ad-

ditivity of this crucial energetic characteristic with respect to transferable increments of

individual conjugated circuits Rn and/or Qn (n = 1, 2, 3...) and a considerable extinc-

tion of absolute values of these increments when the size of the circuit (n) grows are

the most essential features of the models under discussion in the context of the present

study. [Note that Rn and/or Qn stand for circuits containing 4n + 2 and 4n electrons,

respectively, so that R1 coincides with a single Kekulé valence structure of benzene, R2

embraces five C=C and five C-C bonds alternately, etc.]. The above-described success

of the CC model, in turn, stimulated studies of its quantum-chemical foundation [15-20].

The focus of attention here was the derivation of the model concerned from the Valence

Bond (VB) theory, in particular from its Pauling-Wheland version. Some limitations of

the standard CC model also have been reported [13, 21, 22]. Difficulties with discrimi-

nating between distinct structures containing the same sets of conjugated circuits [21] is

among the most self-evident of these limitations.

Recently, a new perturbative approach [23] has been suggested to evaluate relative

stabilities of pi-electron systems of conjugated hydrocarbons that has been considered

as an alternative to the standard perturbational molecular orbital (PMO) theory [24].

The systems under interest have been modelled by sets of weakly interacting initially-

double (C=C) bonds in this approach. Accordingly, the total energy of such a system

(E) has been expressed in the form of power series, i.e. as a sum of steadily diminishing

increments E(k) of various orders (k) with respect to an averaged resonance parameter

(γ) representing the weak (initially-single) C-C bonds. Analysis of this series for some

model systems [23, 25, 26] showed that the higher is the order parameter (k), the more

extended fragment of the whole system is embraced by the given increment E(k). Finally,
a certain set of self-returning pathways via k basis orbitals specified below were shown

to correspond to each energy correction E(k). To a certain extent, these principal proper-

ties of the perturbative expansion for the total energy resemble those of the CC model.

This especially refers to the above-discussed additivity and extinction of separate contri-

butions to the molecular stability. It also deserves adding here that individual Kekulé
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valence structures of polycyclic hydrocarbons (the concept of conjugated circuits is ac-

tually applied to) evidently may be regarded as systems consisting of weakly-interacting

C=C bonds. All these circumstances give us a hint that the two approaches under dis-

cussion are somehow interrelated. Such a relation (if revealed) is likely to provide us

with a perturbative analogue of conjugated circuits and thereby with a new account for

the above-described success of this simple intuition-based concept. A resulting feasibility

of distinguishing between structures containing uniform sets of conjugated circuits also

cannot be excluded. The present study pursues just these aims.

It deserves an immediate emphasizing, however, that because of essential method-

ological distinctions between the two approaches outlined below, there are no grounds

for expecting either a straightforward parallelism or a simple one-to-one correspondence

between individual terms of the power series E(k), on the one hand, and increments of

particular conjugated circuits Rn and/or Qn, on the other hand. Quite the reverse, a

non-trivial nature of the relation under our search may be foreseen. Indeed, the series for

total energies of Ref.[23] is formulated in the basis of bonding and anti-bonding orbitals

of C=C bonds only that are further referred to as bond orbitals (BOs) as usual. As

a result, two and zero basis orbitals are correspondingly ascribed to each C=C and to

each C-C bond in the perturbative approach so that no one-to-one correspondence may

be generally expected between pathways via basis orbitals and those via chemical bonds.

Furthermore, numerous pathways of a non-cyclic (toward-backward) nature have been es-

tablished to underly the increments E(k) [25,26] along with the cyclic (roundabout) ones.

Therefore, exhaustive studies seem to be actually required to formulate a perturbative

analogue for the concept of conjugated circuits in general. As an initial stage of such

a work, we will confine ourselves to benzenoid hydrocarbons and thereby to conjugated

circuits of the 4n+2 series (Rn) in this study [Note that circuits of the 4n series (Qn) are

absent in benzenoids as proven in [6]].

The paper starts with an overview of the principal expressions of the perturbative

approach and interpretation of separate members of the power series for total energies

(E(k)) in terms of self-returning pathways via the above-defined BOs. Thereupon, we turn

to analysis of increments E(k) for individual conjugated circuits (Rn) in Section 3. The

last Sections (4 and 5) are devoted to specific benzenoid hydrocarbons. The Appendix

contains a derivation of algebraic expressions applied.
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2 The principal expressions of the perturbative ap-

proach. Interpretation of energy increments in

terms of self-returning pathways

The approach of Ref.[23] was based on application to the case of conjugated hydrocarbons

of the general form of power series for total energies (E) derived previously [27] by means

of the so-called non-commutative Rayleigh-Schrödinger perturbation theory (NCRSPT)

[28-30] (see also the Appendix). As already mentioned, conjugated hydrocarbons were

defined as systems of weakly-interacting initially-double (C=C) bonds. Thus, individual

Kekulé valence structures of benzenoids are embraced by this definition. Again, both

benzenoid hydrocarbons and their separate Kekulé valence structures are known to belong

to even alternant systems. The above-enumerated points will be taken into consideration

when constructing the relevant Hückel type Hamiltonian matrix (H).

Let us consider a certain Kekulé valence structure of a benzenoid hydrocarbon that

is initially represented by an 2N−dimensional basis set of 2pz AOs of carbon atoms {χ},
where N stands for the total number of C=C bonds. These AOs will be assumed to

be characterized by uniform Coulomb parameters (α) as usual and the equality α = 0

will be accepted. As it is the case in the standard Hückel model, resonance parameters

between AOs of chemically bound pairs of atoms only will be assumed to take non-zero

values. Further, let the basis set {χ} to be divided into two N -dimensional subsets

{χ∗} and {χ◦} so that pairs of orbitals belonging to any chemical bond (C=C or C-C)

find themselves in the different subsets. This implies all non-zero resonance parameters

representing chemical bonds to take place in the off-diagonal (inter-subset) blocks of the

Hamiltonian matrix (H). Accordingly, zero sub-matrices stand in the two diagonal (intra-

subset) positions of the matrix H as it is peculiar to alternant systems in general [31,32].

Finally, let us enumerate the basis functions in such a way that orbitals belonging to

the same C=C bond acquire the coupled numbers i and N + i. As a result, resonance

parameters of these strong bonds take the diagonal positions in the inter-subset blocks

of the Hamiltonian matrix H. Uniform values of these parameters (β) also is among

natural assumptions here. Let our (negative) energy unit to coincide with β in addition.

The usual equality β = 1 then immediately follows. Similarly, the averaged resonance

parameter of weak (C-C) bonds will be denoted by γ and supposed to be a first order

term vs. the above-specified energy unit.

In summary, Hamiltonian matrices of our Kekulé valence structures of benzenoids

(H) take a common form that may be represented as a sum of zero (H(0)) and first order
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matrices (H(1)) including parameters of C=C and C-C bonds, respectively, viz.

H = H(0) +H(1) =

∣∣∣∣ 0 I
I 0

∣∣∣∣+ ∣∣∣∣ 0 γB
γB+ 0

∣∣∣∣ , (1)

where I here and below stands for the unit matrix and the superscript + designates the

Hermitian-conjugate (transposed) matrix. It deserves adding here that unit off-diagonal

elements of the sub-matrix B (Bij = 1, i �= j) correspond to C-C bonds, otherwise these

take zero values. Meanwhile, the diagonal elements of the same sub-matrix (Bii) vanish

because entire resonance parameters of C=C bonds are included into the zero order matrix

H(0).

Let us turn now to the above-discussed basis of bond orbitals (BOs) {ϕ} consisting

of bonding and anti-bonding orbitals of C=C bonds further abbreviated as BBOs and

ABOs, respectively. These orbitals will be correspondingly defined as normalized sums

and differences of pairs of AOs involved in these bonds (i.e. χ∗
i and χ◦

N+i). Passing from

the basis of AOs {χ} to that of BOs {ϕ} may be then represented by the following simple

unitary transformation matrix

U =
1√
2

∣∣∣∣ I I
I −I

∣∣∣∣ . (2)

Application of this transformation to the Hamiltonian matrix H of Eq.(1) yields a new

matrix H′ of the following form

H′ = H′
(0) +H′

(1) =

∣∣∣∣ I 0
0 −I

∣∣∣∣+ ∣∣∣∣ S R
R+ Q

∣∣∣∣ , (3)

where

S = −Q =
γ

2
(B+B+), R =

γ

2
(B+ −B), (4)

and

Sii = Qii = Rii = 0 (5)

for any i. Besides, equalities

S+= S, Q+= Q, R+= −R (6)

easily follow from Eq.(4) and indicate symmetric (Hermitian) and skew-symmetric (skew-

Hermitian) natures of matrices S(Q) and R, respectively.

Comparison of Eq.(3) to Eqs.(A1) and (A10) shows the transformed Hamiltonian

matrix H′ to be embraced by that of homogeneous systems defined in the Appendix.

This allows the relevant formulas for separate members of power series for total energies
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E(k) (k = 0, 1, 2, ...) to be straightforwardly applied to the present case of Kekulé valence

structures of benzenoids. Individual members of the series are then expressible as follows:

i) The zero and first order members take system- structure- independent forms, viz.

E(0) = 2N, E(1) = 0; (7)

ii) The second and third order energy corrections contain simple products of the principal

matrices of the NCRSPT [27,28] of the first (G(1)) and of the second order (G(2)), viz.

E(2) = 4Trace(G(1)G
+
(1)), E(3) = 4Trace(G(2)G

+
(1)), (8)

where

G(1) = −
1

2
R, G(2) =

1

4
(SR−RQ) =

1

4
(SR+RS), (9)

the last relation being based on coincidence between Q and −S for alternant systems

seen from Eq.(4);

iii) The fourth and fifth order members of the same series (E(4) and E(5)) may be

conveniently represented via certain supplementary third order matrices G̃(3) and G(3),

respectively, as follows

E(4) = 4Trace(G̃(3)G
+
(1)), E(5) = 4Trace(G(3)G

+
(2)), (10)

where

G̃(3) = G(3) +G(1)G
+
(1)G(1), G(3) = G(3) −G(1)G

+
(1)G(1) (11)

and G(3) is the principal third order matrix of the NCRSPT [27]. In our case, this matrix

takes the form

G(3) = −
1

8
[(S)2R+2SRS+R(S)2]− 1

4
(R)3. (12)

Alternative expressions for matrices G̃(3) and G(3) also is possible, viz.

G̃(3) = −1

2
(SG(2) +G(2)S)−G(1)G

+
(1)G(1),

G(3) = −1

2
(SG(2) +G(2)S)− 3G(1)G

+
(1)G(1). (13)

Derivation of the principal formulas of Eqs.(7)-(13) is discussed in the Appendix in a

detail. It also deserves adding here that energy corrections E(k) of Eqs.(8) and (10) are

alternatively representable as sums of increments of individual C=C bonds ε(k)I , I =

1, 2...N, viz.

E(k) =
∑
I

ε(k)I , (14)

-44-



where

ε(2)I = 4
∑
(−)l

(G(1)il)
2, ε(3)I = 4

∑
(−)l

G(2)ilG
+
(1)li, etc. (15)

Notations G(k)il stand here for particular elements of matrices G(k), the subscripts i and

l referring to a BBO and to an ABO, respectively. These subscripts may be conveniently

ascribed to the relevant C=C bonds. Let BBOs and ABOs to be additionally denoted

by subscripts (+) and (-), respectively. The element G(k)il then connects the BBO of the

Ith bond ϕ(+)i and ABOs of other (Lth) bonds ϕ(−)l.

Let us turn now to interpretation of the above-exhibited formulas. Let us start with

matrix elements G(k)il following from Eqs.(9) and (12). The first order element (G(1)il)

is proportional to the relevant resonance parameter (Ril) and inversely proportional to

the inter-subset energy gap (2) as the first relation of Eq.(9) shows. Consequently, this

element represents the direct (through-space) interaction between the BBO ϕ(+)i and the

ABO ϕ(−)l. It is also evident that non-zero elements G(1)il correspond to pairs of first-

neighboring C=C bonds only (C=C bonds connected by a C-C bond are regarded here

as first-neighboring). Besides, equalities Rii = 0 (see Eq.(5)) ensure zero values of direct

intrabond interactions G(1)ii. Further, the second order elements G(2)il are accordingly

interpretable as indirect (through-bond) interactions of the same BOs. Indeed, from

Eq.(9) we obtain

G(2)il =
1

4

⎡⎣∑
(+)j

SijRjl −
∑
(−)m

RimQml

⎤⎦ , (16)

where sums over (+)j and over (−)m correspondingly embrace all BBOs and all ABOs

of the given system. It is seen that both BBOs (ϕ(+)j) and ABOs (ϕ(−)m) of other bonds

play the role of mediators of the second order interaction between orbitals ϕ(+)i and ϕ(−)l.

Moreover, the orbitals ϕ(+)j and ϕ(−)m should overlap directly both with ϕ(+)i and with

ϕ(−)l to be efficient mediators. That is why non-zero indirect interactions correspond to

pairs of second-neighboring C=C bonds possessing a common first neighbor. Analogously,

the third order elements G(3)il may be shown to represent the indirect interactions of the

same BOs ϕ(+)i and ϕ(−)l by means of two mediators. Generally, the total number of

mediators of any element of kth order (G(k)il) coincides with k−1. It also deserves adding

here that matricesG(k) may be easily shown to be skew-Hermitian (skew-symmetric) ones

for alternant systems [33] as it was the case with the matrix R (see Eq.(6)). This implies

zero values of diagonal elements G(k)ii and thereby vanishing intrabond interactions of

any order to be peculiar to these systems.

Let us turn now to energy corrections of Eqs.(8) and (10). The following rule results
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immediately from these expressions: The correction E(k) takes a non-zero value, if there is

at least a single pair of orbitals ϕ(+)i and ϕ(−)l that interact both directly and indirectly

by means of k − 1 mediators [Note that the fifth order correction E(5) is alternatively

expressible in terms of first and fourth order matrices as shown in the Appendix (see

Eq.(A13)]. In other words, pairs of orbitals ϕ(+)i and ϕ(−)l characterized by non-zero

matrix elements G(1)il and G(k−1)il are able to contribute to the kth order energy E(k).
It is also evident that the pair of basis functions concerned contributes to stabilization

(destabilization) of the system, if the above-mentioned interactions are of the same (op-

posite) signs (see also Ref.[34]). This statement will be further referred to as the first

rule.

Let us now invoke the expressions for G(k)il (and/or G̃(k)il and G(k)il) via elements of

matrices S and R resulting from Eqs.(9) and (12). Let individual elements of the latter

(resonance parameters) to be explicitly expressed as follows

Sij =< ϕ(+)i | Ĥ | ϕ(+)j >, Ril =< ϕ(+)i | Ĥ | ϕ(−)l >, (17)

where the basis orbitals concerned are shown inside the bra- and ket-vectors. An element

G(k)il then takes a non-zero value, if there is at least a single non-zero product of resonance

parameters, i.e.

< ϕ(+)i | Ĥ | ϕ1 >< ϕ1 | Ĥ | ϕ2 > ... < ϕk−2 | Ĥ | ϕk−1 >< ϕk−1 | Ĥ | ϕ(−)l > �= 0, (18)

where the notations ϕ1, ϕ2, ...ϕk−1 stand for mediating orbitals. Given that the condition

of Eq.(18) is met, we will say that in the given system there is a pathway of the (k-1)th

order between BOs ϕ(+)i and ϕ(−)l. It also deserves emphasizing that steps inside the

same C=C bond are not allowed in this pathway owing to equalities Sii = Rii = 0 of

Eq.(5).

Let us turn now to contribution of the Ith C=C bond (ε(k)I) to the energy E(k). As
is seen from Eq.(15), this contribution is determined by products of pathways of the

first and of the (k-1)th orders embracing the BBO of the given (i.e. Ith) bond (ϕ(+)i)

and ABOs of the remaining bonds (ϕ(−)l). Analogously, pathways of the second and

(k-2)th orders may be used in interpretation of ε(k)I by invoking the relations like those

of Eqs.(A15) and (A16). Hence, we may define a self-returning pathway of the kth order

both starting and terminating at the BBO ϕ(+)i and embracing the ABO ϕ(−)l. This

pathway is able to replace products of two linear pathways. On this basis, the second

rule may be formulated: The contribution of the Ith bond (ε(k)I) to the kth order energy

(E(k)) takes a non-zero value if there is at least a single bond (say, the Lth one), the
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ABO of which participates in a self-returning pathway of the kth order both starting and

terminating at the BBO ϕ(+)i.

In the case of Kekulé valence structures of benzenoids, we have to do with cycles

consisting of C=C and C-C bonds alternately (conjugated circuits). Thus, some addi-

tional definitions concerning self-returning pathways for just this specific case seem to

be expedient. In particular, the so-called roundabout pathway [25] may be defined as a

pathway which embraces the whole cycle in a clockwise or anticlockwise fashion so that

any C=C bond is visited only once. Otherwise, we will have to do with a pathway of

”toward-backward” nature, which embraces a certain linear fragment of the cycle and

seems to be an analogue of a conjugated path [14,35].

Using the above rules and definitions, we can make some general observations regard-

ing members of the power series for total energies of separate Kekulé valence structures

of benzenoids. Let us note first that the conjugated circuits Rn (n = 1, 2, 3...) present

in these systems contain odd numbers of C=C bonds (3, 5, ..). This implies that round-

about pathways over these circuits also are of odd orders and thereby these are able to

participate in the formation of energy corrections of odd orders only, viz. E(3), E(5), etc.
Hence, just these corrections may be foreseen to reflect the presence of conjugated circuits

Rn most directly. On the other hand, self-returning pathways of the ”toward-backward”

nature also are possible in benzenoids and these necessarily are of even orders. Thus,

non-zero values of energy increments of even orders also is among expectations.

Let us now dwell on individual corrections E(k). It is evident that any C-C bond en-

sures self-returning pathways of the second order referring to BBOs of the adjacent C=C

bonds whatever the whole structure of the given system. Hence, a non-zero transferable

increment to the overall second order energy (E(2)) originates from any C-C bond. Accord-

ingly, the total value of the second order energy becomes proportional to the number of

these bonds (Note that both separate increments and the final correction E(2) are positive
quantities as Eq.(15) indicates). Consequently, different Kekulé valence structures of the

same hydrocarbon may be predicted to be characterized by coinciding values of second or-

der energies. Meanwhile, pairs of C=C bonds, the orbitals of which interact both directly

and indirectly by means of a single mediator are required to ensure a non-vanishing value

of the third order energy E(3). An alternative form of the same condition consists in the

presence of at least a single self-returning pathway of the third order in the given system.

It is evident that roundabout pathways over any conjugated circuit R1 meet this condi-

tion. Thus, both presence of these principal circuits and their total number seem to play

the decisive role in the formation of the third order energy. This anticipation may be sup-
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ported by the non-zero third order energy of a single Kekulé structure of benzene [23]. By

contrast, no cycles are required to ensure a non-zero value of the fourth order energy E(4).
In particular, a two-fold realization of a pathway of the second order embracing a certain

C-C bond yields a non-zero fourth order energy increment. Furthermore, pathways of the

fourth order of the ”toward-backward” nature contribute to E(4), wherein both first- and

second-neighboring C=C bonds relatively to the Ith one are involved. In this respect,

a certain analogy reveals itself between formations of second and fourth order energies.

On the other hand, essential differences between these energies also deserve attention.

In particular, the mutual arrangement of the embraced C=C bonds playes an important

role in the case of the fourth order energy in contrast to the second order one. It is no

surprise in this connection that the fourth order energy corrections E(4) were shown to

take distinct values for isomers of dienes containing the same numbers of both C=C and

C-C bonds but different types of branching [23]. Since the second neighborhood of the

given (say Ith) C=C bond generally changes due to cyclization (e.g. when passing from

a linear hexadiene-like fragment to a circuit R1), a certain dependence of relative values

of the energy corrections E(4) upon the numbers of individual conjugated circuits (Rn) of

the given system also may be foreseen. The fifth order energy (E(5)), again, resembles the

third order one (E(3)) in respect of participation of roundabout pathways over conjugated

circuits. It is evident that the circuits R2 containing five C=C bonds play now the role of

the principal contributors. Nevertheless, the former circuits R1 also are able to provide

self-returning pathways of the fifth order and thereby to contribute to the fifth order

energy. For example, combination of the roundabout pathway over the circuit R1 and of

an additional pathway of the second order like that underlying the second order energy

(as discussed above) makes up a self-returning pathway of the fifth order. Consequently,

the energy correction E(5) seems to reflect the presence of both circuits R1 and R2.

3 Energy increments for isolated conjugated circuits

Simple linear chains consisting of C=C and C-C bonds alternately may be considered

as parent systems of conjugated circuits. Thus, let us start with an application of the

above-described perturbative approach just to these chains. Let the total number of C=C

bonds of such a chain to be denoted by N as previously. The number of C-C bonds then

accordingly equals to N-1. In accordance with the numbering of 2pz AOs of carbon

atoms {χ} underlying the matrix H of Eq.(1), atoms (AOs) of our chain will be enu-
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merated in the following order: C1=CN+1-C2=CN+2-...-CN=C2N , where numbers 1,2...N

and N+1, N+2...2N refer to subsets {χ∗} and {χ◦}, respectively. As with Hamiltonian

matrices of homogeneous chains in general, the matrices B of Eq.(1) are representable in

our case in a common form embracing any N value. Let this unified matrix to be denoted

by B(N) and note that it contains non-zero elements (equal to 1) just under the principal

diagonal (i.e. in the positions (2,N+1), (3,N+2), etc.) and zero elements elsewhere, viz.

B(N) =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 ...
1 0 0 0 ...
0 1 0 0 ...
0 0 1 0 ...
.. .. .. .. ...

∣∣∣∣∣∣∣∣∣∣
(19)

The above-exhibited common form of the matrix B(N), in turn, ensures a possibility of

an analogous unified representation of both the related first order matrices S(N),R(N)

and G(1)(N) and of those of higher orders. Indeed, substituting Eq. (19) into Eqs.(4),

(9) and (11)-(13) yields the following expressions

G(1)(N) = −γ

4

∣∣∣∣∣∣∣∣∣∣
0 1 0 0 ...
−1 0 1 0 ...
0 −1 0 1 ...
0 0 −1 0 ...
.. .. .. .. ...

∣∣∣∣∣∣∣∣∣∣
, G(2)(N) =

γ2

8

∣∣∣∣∣∣∣∣∣∣
0 0 1 0 0 ..
0 0 0 1 0 ..
−1 0 0 0 1 ..
0 −1 0 0 0 ..
.. .. .. .. .. ..

∣∣∣∣∣∣∣∣∣∣
,

G̃(3)(N) = −γ3

64

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 5 0 0 0 ..
0 0 1 0 5 0 0 ..
0 −1 0 1 0 5 0 ..
−5 0 −1 0 1 0 5 ..
0 −5 0 −1 0 1 0 ..
.. .. .. .. .. .. .. ..

∣∣∣∣∣∣∣∣∣∣∣∣
,

G(3)(N) =
γ3

64

∣∣∣∣∣∣∣∣∣∣∣∣

0 4 0 −7 0 0 0 ..
−4 0 5 0 −7 0 0 ..
0 −5 0 5 0 −7 0 ..
7 0 −5 0 5 0 −7 ..
0 7 0 −5 0 5 0 ..
.. .. .. .. .. .. .. ..

∣∣∣∣∣∣∣∣∣∣∣∣
. (20)

Finally, use of the above formulas along with Eqs.(8) and (10) results into general ex-

pressions for energy corrections E(k)(N), viz.

E(2)(N) =
γ2

2
(N − 1), E(3)(N) = 0, E(4)(N) =

γ4

32
(N − 3), E(5)(N) = 0. (21)

[An important remark deserves to be made here: The common formulas of Eq.(20) for

third order matrices G̃(3)(N) and G(3)(N) are valid for sufficiently long diene chains only
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in contrast to expressions forG(1)(N) andG(2)(N). This fact, however, exerts no influence

upon energy corrections shown in Eq.(21). For example, matrices G̃(3)(2), G̃(3)(3), G̃(3)(4)

and G̃(3)(5) representing individual starting members of the diene series and exhibited

below do not follow directly from general formulas of Eq.(20), viz.

G̃(3)(2) = −γ3

64

∣∣∣∣ 0 −1
1 0

∣∣∣∣ , G̃(3)(3) = 0, G̃(3)(4) = −
γ3

64

∣∣∣∣∣∣∣∣
0 0 0 5
0 0 1 0
0 −1 0 0
−5 0 0 0

∣∣∣∣∣∣∣∣ ,

G̃(3)(5) = −γ3

64

∣∣∣∣∣∣∣∣∣∣
0 0 0 5 0
0 0 1 0 5
0 −1 0 1 0
−5 0 −1 0 0
0 −5 0 0 0

∣∣∣∣∣∣∣∣∣∣
, etc. (22)

This result causes little surprise if we bear in mind that areas of irregular constitution

correspond to terminal C=C bonds and to their nearest neighborhoods within matrices

G̃(3)(N) of Eq.(20) and these bonds are not sufficiently separated one from another for

small N values in addition. Nevertheless, substituting Eq.(22) into Eq.(10) yields fourth

order energy corrections E(4)(2), E(4)(3), E(4)(4) and E(4)(5) coinciding with those following

from Eq.(21). The same refers also to the relevant fifth order corrections.]

Let us return again to Eq.(21). It is seen that the second order energy of our chains

E(2)(N) is a positive quantity proportional to the total number of C-C bonds (N-1),

as expected in Section 2. The observation of the same Section about non-zero direct

inter-orbital interactions corresponding to any C-C bond is now illustrated by the matrix

G(1)(N) of Eq.(20). Furthermore, vanishing energy increments of third and fifth orders

(E(3)(N) and E(5)(N)) also cause no surprise because of absence of self-returning pathways

of odd orders in the linear chains. (Pathways of the toward-backward nature always are

of even order as discussed in Section 2). An alternative accounting for zero values of both

E(3)(N) and E(5)(N) follows from the first rule of Section 2. Indeed, pairs of matrices

determining these energy corrections (viz. G(1)(N) and G(2)(N), as well as G(2)(N) and

G(3)(N) of Eq.(20)) contain non-zero elements in different positions so that products of

the relevant direct and indirect inter-orbital interactions vanish. For example, non-zero

elements correspond to pairs of second-neighboring C=C bonds in the matrix G(2)(N)

and to those of first-neighboring bonds within G(1)(N). This implies that conditions

G(1)il �= 0 and G(2)il �= 0 are not met simultaneously in the linear chains.

As discussed already in Section 2, no cycles are required for a non-zero value of the

fourth order energy to arise. The correction E(4)(N) of Eq.(21) is an excellent illustration

of the above statement. Moreover, comparison of constitutions of matrices G̃(3)(N) and
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G(1)(N) is sufficient for interpretation of proportionality between E(4)(N) and N-3. In-

deed, non-zero elements correspond to all C-C bonds except for C2-CN+1 and CN -C2N−1

in the matrix G̃(3)(N), the total number of these bonds coinciding with N-3. Moreover,

the same elements take non-zero values in the matrix G(1)(N) too. Thus, a monotonous

(linear) dependence of the correction E(4)(N) upon the chain length (N) may be con-

cluded. As opposed to the second order energy, however, the fourth order one changes

its sign when the number of C=C bonds (N) grows. Indeed, the correction E(4)(N) takes

a negative value (−γ4/32) for butadiene (N=2), vanishes for hexadiene (N=3) and be-

comes a positive quantity for higher N values (N=4,5...). This implies that long diene

chains are stabilized relatively more as compared to the short ones. Finally, increments

of individual C=C bonds to the total fourth order energy E(4)(N) deserve some attention

(see Eqs.(14) and (15)). These increments take distinct values for the 1st, 2nd and all

the internal C=C bonds of a sufficiently long chain (these are 0, γ4/64 and γ4/32, respec-

tively) and thereby demonstrate the role of the second neighborhoods of C=C bonds in

the formation of fourth order energies. The above-specified dissimilarity of increments of

individual C=C bonds, in turn, may be traced back to different numbers of self-returning

pathways of the fourth order referring to the relevant BBOs (Pathways of the toward-

backward nature are meant here). It is evident that the total number of these pathways

grows when passing from a terminal C=C bond to an internal one and this ensures an

increase of the relevant increment.

Let us now turn to a cyclic system containing an additional C-C bond between the

terminal sites 1 and 2N of the former chain and representing a conjugated circuit of any

size. This system will be denoted by R. As compared to the matrix B(N) of Eq.(19), the

new matrix B(R,N) acquires an additional non-zero element at the upper right corner

corresponding to the above-mentioned terminal positions. Accordingly, the new first

order matrix G(1)(R,N) contains non-zero elements in the upper right corner and in the

lower left one, viz.

G(1)(R,N) = −γ

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 ... 0 −1
−1 0 1 0 0 0 ... 0 0
0 −1 0 1 0 0 ... 0 0
0 0 −1 0 1 0 ... 0 0
0 0 0 −1 0 1 ... 0 0
. . . . . . ... . .
0 0 0 0 0 0 ... 0 1
1 0 0 0 0 0 ... −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (23)

The new corner elements of the matrix G(1)(R,N) give birth to additional non-zero

elements in the relevant neighborhoods when building up matrices of higher orders
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G(2)(R,N), G̃(3)(R,N) and G(3)(R,N) as it was the case with matrices of Eq.(20). As

a result, the overall dependence of common forms of these matrices upon the size of the

circuit (N) becomes more cumbersome. The same may be expected to refer also to the rel-

evant energy corrections. Inasmuch as we actually need the energy corrections for N=3,5

and 7 corresponding to the principal conjugated circuits of benzenoid hydrocarbons R1,

R2 and R3, respectively, we will dwell on each of these particular cases separately.

Let us start with the three-membered circuit R1 coinciding with a single Kekulé

valence structure of benzene. Matrices G(2)(R1), G̃(3)(R1) and G(3)(R1) prove to be

proportional to the relevant parent matrix G(1)(R, 3) of Eq.(23), i.e.

G(2)(R1) =
γ

2
G(1)(R1), G̃(3)(R1) =

γ2

16
G(1)(R1), G(3)(R1) = −

5γ2

16
G(1)(R1), (24)

where

G(1)(R1) ≡ G(1)(R, 3)=−γ

4

∣∣∣∣∣∣
0 1 −1
−1 0 1
1 −1 0

∣∣∣∣∣∣ . (25)

It is seen that all inter-orbital interactions take non-zero values in this circuit. More-

over, interactions of different orders (k) are mutually proportional in this case. This

result causes little surprise because of the highly regular structure of the circuit R1, viz.

all C=C bonds are adjacent here, all pairs of C=C bonds possess a common neighbor,

etc. Proportionalities shown in Eq.(24), in turn, ensure non-zero values of all consequent

energy corrections, as well as uniform contributions to these corrections originating from

each C=C bond. Indeed, substituting Eqs.(24) and (25) into Eqs.(8) and (10) yield the

following results

E(2)(R1) =
3γ2

2
, E(3)(R1) =

3γ3

4
, E(4)(R1) =

6γ4

64
, E(5)(R1) = −

30γ5

128
(26)

and

εI(2)(R1) =
γ2

2
, εI(3)(R1) =

γ3

4
, εI(4)(R1) =

2γ4

64
, εI(5)(R1) = −

10γ5

128
, (27)

where γ4/64 and γ5/128 are chosen here and below as “supplementary energy units”

when discussing fourth and fifth order energies, respectively. [Such an agreement makes

comparison of different corrections more convenient]. It is seen that members of the power

series for the total energy of the circuit R1 are positive quantities to within the fourth

order inclusive. Meanwhile, the fifth order term of the same series takes a negative value

owing to the minus sign in the right-hand side of the last relation of Eq.(24). Comparison

of increments E(k)(R1) to the relevant reference values for hexadiene (these are γ2, 0, 0

and 0 for k=2,3,4 and 5 as Eq.(21) shows) indicates an additional second, third and fourth
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order stabilization to take place due to cyclization of the chain that is accompanied by

destabilization of the fifth order. The growing second order energy of the circuit R1 vs.

hexadiene may be easily accounted for by emergence of a new C-C bond between the

terminal atoms of the latter when passing to the cycle. The newly-formed third order

energy of the circuit R1 evidently arises owing to emergence of roundabout pathways

of the third order over the cycle. This result is in line with expectations of Section 2.

Emergence of a positive fourth order correction E(4)(R1), in turn, may be traced back to

the fact that each C=C bond becomes an internal one when building up the circuit R1

and thereby starts to contribute 2γ4/64 to the relevant fourth order energy in analogy

with long dienes.

Let us turn now to a more extended cycle containing five C=C bonds (N=5) and coin-

ciding with the conjugated circuit R2. The relevant principal matrices G(2)(R2), G̃(3)(R2)

and G(3)(R2) take the form

G(2)(R2) =
γ2

8

∣∣∣∣∣∣∣∣∣∣
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0

∣∣∣∣∣∣∣∣∣∣
,

G̃(3)(R2) = −γ3

64

∣∣∣∣∣∣∣∣∣∣
0 1 −5 5 −1
−1 0 1 −5 5
5 −1 0 1 −5
−5 5 −1 0 1
1 −5 5 −1 0

∣∣∣∣∣∣∣∣∣∣
,

G(3)(R2) =
γ3

64

∣∣∣∣∣∣∣∣∣∣
0 5 7 −7 −5
−5 0 5 7 −7
−7 −5 0 5 7
7 −7 −5 0 5
5 7 −7 −5 0

∣∣∣∣∣∣∣∣∣∣
(28)

and prove to be no longer proportional to the first order matrix G(1)(R2) following from

Eq.(23). The consequent energy corrections are then as follows

E(2)(R2) =
5γ2

2
, E(3)(R2) = 0, E(4)(R2) =

10γ4

64
, E(5)(R2) =

70γ5

128
. (29)

For the linear chain of five C=C bonds, we accordingly obtain

E(2)(5) = 2γ2, E(3)(5) = 0, E(4)(5) =
4γ4

64
, E(5)(5) = 0 (30)

as Eq.(21) indicates. It is seen that the second order energy is increased by γ2/2 due to

cyclization and this result may be easily traced back to emergence of a new C-C bond as

previously. Further, the vanishing third order energy of the circuit R2 (E(3)(R2)) originates
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from the fact that conditions G(1)il �= 0 and G(2)il �= 0 are not met simultaneously by

elements of matrices G(1)(R2) and G(2)(R2) of Eq.(28). In other words, the reason

consists in absence of roundabout pathways of the third order in the circuit R2 in contrast

to R1. Meanwhile, the fourth order energy E(4)(R2) takes a non-zero positive value and is

increased by 6γ4/64 vs. E(4)(5) of Eq.(30) as it was the case with formation of the circuit

R1. [Besides, each C=C bond of the circuit R2 contributes 2γ4/64 to the fourth order

energy E(4)(R2) in analogy to the former circuit R1]. Finally, a large positive fifth order

energy E(5)(R2) deserves attention, each C=C bond contributing 14γ5/128. This result

also is in line with an anticipation based on the presence of roundabout pathways of the

fifth order in the circuit R2.

Cyclic systems consisting of more C=C bonds also may be studied similarly. For

example, a cycle of seven C=C bonds corresponding to a conjugated circuit R3 is char-

acterized by the following energy corrections

E(2)(R3) =
7γ2

2
, E(3)(R3) = 0, E(4)(R3) =

14γ4

64
, E(5)(R3) = 0. (31)

It is seen that both third and fifth order energies vanish in this case in accordance with

the expectation. Meanwhile, corrections E(2)(R3) and E(4)(R3) take positive values as

previously and consist of transferable increments of individual bonds, e.g. each C=C

bond contributes 2γ4/64 to the fourth order energy E(4)(R3).

Let us summarize finally the results concerning the conjugated circuits of the 4n+2

series (Rn) containing an odd number of both C=C and C-C bonds. Let this number

to be denoted by N as previously and note that N=3,5,7,... correspond to n=1,2,3...

The energy corrections of these circuits of even orders may be then concluded to grow

monotonically with increasing N values. In particular, the second and fourth order ener-

gies are correspondingly proportional to Nγ2/2 and Nγ4/32. Moreover, any N-membered

conjugated circuit proves to be characterized by a positive energy correction of the Nth

order (E(N)) related to roundabout pathways over the circuit. For example, the most

important conjugated circuits of benzenoids R1 and R2 are represented by considerable

positive third and fifth order energies, respectively.

4 Consideration of the two principal Kekulé

valence structures of naphthalene

Let us now dwell on the simplest polycyclic benzenoid hydrocarbon, viz. on naphthalene.

Let us start with the Fries structure (I) containing two conjugated circuits R1 (Fig. 1).
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Figure 1: The two Kekulé valence structures of naphthalene (I and II) along with their
compositions in terms of conjugated circuits R1 and R2. Numberings of 2pz AOs of
carbon atoms also are shown, where AOs under numbers 1,2...5 and 6,7...10 belong to
subsets {χ∗} and {χ◦}, respectively.

The relevant principal matrices of inter-orbital interactions are

G(1)(I) = −γ

4

∣∣∣∣∣∣∣∣∣∣
0 1 −1 0 0
−1 0 1 0 0
1 −1 0 −1 1
0 0 1 0 −1
0 0 −1 1 0

∣∣∣∣∣∣∣∣∣∣
,

G(2)(I) = −γ2

8

∣∣∣∣∣∣∣∣∣∣
0 1 −1 1 0
−1 0 1 0 −1
1 −1 0 −1 1
−1 0 1 0 −1
0 1 −1 1 0

∣∣∣∣∣∣∣∣∣∣
,

G̃(3)(I) = −γ3

64

∣∣∣∣∣∣∣∣∣∣
0 1 −1 2 0
−1 0 1 0 −2
1 −1 0 −1 1
−2 0 1 0 −1
0 2 −1 1 0

∣∣∣∣∣∣∣∣∣∣
,

G(3)(I) =
γ3

64

∣∣∣∣∣∣∣∣∣∣
0 5 −9 2 0
−5 0 9 0 −2
9 −9 0 −9 9
−2 0 9 0 −5
0 2 −9 5 0

∣∣∣∣∣∣∣∣∣∣
. (32)

Substituting these matrices into Eqs.(8) and (10) yields the following results

E(2)(I) = 2E(2)(R1) = 3γ2, E(3)(I) = 2E(3)(R1) =
6γ3

4
,

E(4)(I) = 2E(4)(R1) =
12γ4

64
, E(5)(I) = −

100γ5

128
. (33)
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To comment these formulas, let us start with matrices G(1)(I),G(2)(I) and G̃(3)(I). It

is evident that ”connected” 3 × 3−dimensional blocks (taking the diagonal positions in

these matrices) may be ascribed to individual conjugated circuits R1 of the structure I.

These sub-matrices may be called the intra-circuit blocks. Comparison of these blocks to

matricesG(1)(R1),G(2)(R1) and G̃(3)(R1) representing an isolated circuit R1 (see Eqs.(24)

and (25)) indicates their coincidence for particular order parameters. [Overturn of signs

of matrix elements of the second intra-circuit blocks is entirely due to the chosen num-

bering of AOs in naphthalene (Fig.1)]. In the case of first order matrices G(1)(I) and

G(1)(R1), the above-concluded transferability of intra-circuit blocks may be straightfor-

wardly accounted for by the presence of two circuits R1 in the structure I. Meanwhile,

an analogous transferability of the second order sub-matrices may be traced back to the

fact that pairs of C=C bonds of the left circuit R1 possess no common first neighbors

among C=C bonds of the right one and vice versa. So far as the third order matrix

G̃(3)(I) is concerned, the overall situation is even less simple. Indeed, orbitals of C4=C9

and C5=C10 bonds participate as mediators in the third order interactions represented by

matrix elements G̃(3)13(I) and G̃(3)23(I). Nevertheless, the relevant contributions cancel

out one another in the final formulae for these elements and consequent constitutions of

intra-circuit blocks of the matrix G̃(3)(I) resemble those of the matrix G̃(3)(R1). Finally,

the remaining 2× 2−dimensional corner blocks of matrices G(1)(I),G(2)(I) and G̃(3)(I)

contain inter-circuit elements. It is seen that all elements of this type take zero values in

the first order matrix G(1)(I). This implies that orbitals belonging to different circuits

do not interact directly in the Fries structure of naphthalene I.

The above-concluded transferability of intra-circuit blocks of matricesG(1)(I),G(2)(I)

and G̃(3)(I) along with zero direct inter-circuit interactions ensure additivity of energy

corrections up to the fourth order (k = 4) with respect to contributions of individual

conjugated circuits R1, and the latter coincide with the relevant energy increments of

isolated circuits R1 in addition. Contributions of individual C=C bonds to energy cor-

rections E(2)(I), E(3)(I) and E(4)(I) also exhibit an analogous additivity. For example,

contributions of C1=C6, C3=C8 and C5=C10 bonds to the fourth order energy E(4)(I)
equal to 2γ4/64, 4γ4/64 and 2γ4/64, respectively, in accordance with the result of a sim-

ple superposition of increments of individual circuits R1.

As opposed to the above-discussed first three members of the power series under our

interest, the fifth order energy E(5)(I) is no longer additive with respect to increments of

individual circuits. Indeed, the absolute value of this negative correction (i.e. 100γ5/128)

exceeds the relevant two-fold value for an isolated circuit R1 (60γ5/128) considerably.
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This result causes little surprise if we bear in mind that the fifth order energy E(5)(I)
contains both intra- and inter-circuit increments of negative signs as multiplying of ma-

trices G(3)(I) and G+
(2)(I) shows. Moreover, an intra-circuit increment now coincides

with −46γ5/128 and proves to be of an increased absolute value as compared to the fifth

order energy of an isolated circuit R1 (−30γ5/128). Thus, the fifth order intra-circuit

increments are no longer transferable in addition. This fact may be entirely traced back

to the changing nature of the intra-circuit blocks of the matrix G(3)(I) vs. G(3)(R1).

Indeed, elements of such a block take increased absolute values in the positions (1,3) and

(2,3) as compared to the relevant elements of the matrix G(3)(R1). An analogous growth

in absolute values is reflected also in the contributions of individual C=C bonds to the

total fifth order energy E(5)(I). In particular, the bonds C1=C6, C3=C8 and C5=C10

correspondingly contribute −16γ5/128, −36γ5/128 and −16γ5/128 instead of −10γ5/128

referring to any C=C bond of the isolated circuit R1. In summary, a certain fifth order

”inter-circuit repulsion” may be concluded to take place in the Fries structure of naph-

thalene (I) that gives rise to its destabilization vs. superposition of two isolated circuits

R1.

Let us now consider the anti-Fries structure of naphthalene (II) containing two con-

jugated circuits of different size, i.e. both R1 and R2 (Fig. 1). The analogues of Eqs.(32)

and (33) are then as follows

G(1)(II) = −γ

4

∣∣∣∣∣∣∣∣∣∣
0 1 −1 0 0
−1 0 1 0 1
1 −1 0 −1 0
0 0 1 0 −1
0 −1 0 1 0

∣∣∣∣∣∣∣∣∣∣
,

G(2)(II)= −
γ2

8

∣∣∣∣∣∣∣∣∣∣
0 1 −1 1 −1
−1 0 1 −1 0
1 −1 0 0 1
−1 1 0 0 0
1 0 −1 0 0

∣∣∣∣∣∣∣∣∣∣
,

G̃(3)(II) = −γ3

64

∣∣∣∣∣∣∣∣∣∣
0 2 −2 6 −6
−2 0 4 −5 −1
2 −4 0 1 5
−6 5 −1 0 −2
6 1 −5 2 0

∣∣∣∣∣∣∣∣∣∣
,

G(3)(II) =
γ3

64

∣∣∣∣∣∣∣∣∣∣
0 6 −6 −6 6
−6 0 4 7 7
6 −4 0 −7 −7
6 −7 7 0 −2
−6 −7 7 2 0

∣∣∣∣∣∣∣∣∣∣
(34)
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and

E(2)(II) = 3γ2, E(3)(II) = E(3)(R1) =
3γ3

4
,

E(4)(II) = E(4)(R1) + E(4)(R2) =
16γ4

64
, E(5)(II) =

20γ5

128
, (35)

respectively. To interpret these results, let us consider the anti-Fries structure II as

consisting of a circuit R1 and the butadiene-like fragment C5=C10-C4=C9. Accordingly,

3×3−and 2×2−dimensional blocks taking diagonal positions within matrices of Eq.(34)

represent these substructures, whereas the remaining off-diagonal sub-matrices contain

the inter-subsystem interactions. It is seen that the first order matrix G(1)(II) now

contains a single intra-circuit block coinciding withG(1)(R1) (This specific block takes the

first diagonal position). Meanwhile, the remaining parts of matrices G(1)(I) and G(1)(II)

are of distinct constitutions. Nevertheless, the total numbers of non-zero elements are

uniform in these matrices because of the same numbers of C-C bonds present in the

structures I and II. Thus, coincidence of second order energies E(2)(I) and E(2)(II) seen
from Eqs.(32) and (35) causes little surprise.

The second order matrix G(2)(II) also contains an intra-circuit block coinciding with

the matrixG(2)(R1). This implies that presence of the diene-like fragment C5=C10-C4=C9

exerts no influence upon indirect interactions via a single mediator between BOs of the

principal circuit R1. Such a result may be accounted for by emergence of no new common

neighbors for pairs of BOs belonging to the circuit R1 due to addition of the above-

mentioned four-atomic fragment. Furthermore, non-zero elements take different positions

within matrices G(1)(II) and G(2)(II) except for those referring to the circuit R1. As a

result, the third order energy E(3)(II) coincides with that of a single isolated circuit R1

(E(3)(R1)) in accordance with the expectation.

Let us turn now to the fourth order energy E(4)(II) of the anti-Fries structure of naph-
thalene (II). As is seen from comparison of Eqs.(26), (29) and (35), the correction E(4)(II)
coincides with the sum of fourth order energies of isolated circuits R1 and R2 (equal to

6γ4/64 and 10γ4/64, respectively). Meanwhile, the actual increments of individual C=C

bonds to the total correction E(4)(II) differ from those following from superposition of

separate circuits R1 and R2 in this case (although a certain similarity of both energy dis-

tributions may be noticed). For example, the actual increments of bonds C1=C6, C2=C7

and C5=C10 correspondingly equal to 4γ4/64, 5γ4/64 and γ4/64 instead of 4γ4/64, 4γ4/64

and 2γ4/64 resulting from the simple superposition of both circuits. This seeming incon-

sistency indicates that the origin of additivity of E(4)(II) is much less straightforward as
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compared to that of E(4)(I). The fact that the whole circuit R2 (containing five C=C

bonds) cannot be embraced by the fourth order correction E(4)(II) (in contrast to R1)

also contributes to strengthening of the above anticipation about an involved origin of

this additivity.

A more detailed analysis of separate increments to E(4)(II) shows that some self-

returning pathways yield negative contributions to this correction in contrast to fourth

order energies of isolated circuits R1 and R2 (Let us note, for example, that products both

G̃(3)25G(1)25 and G̃(3)34G(1)34 are of negative signs for the structure II). Consequently, the

inter-subsystem component of the fourth order energy E(4)(II) is a negative quantity. This
fact causes little surprise because branched fragments are present in the structure II (e.g.

C8=C3-C7(=C2)−C5=C10) that were shown previously to be characterized by negative

fourth order energies [23]. Furthermore, the above-mentioned inter-subsystem increment

and a positive contribution originating from the butadiene-like fragment C5=C10-C4=C9

cancel out one another in the final expression for E(4)(II) so that the latter may be

formally traced back to intra-circuit blocks of matrices G(1)(II) and G̃(3)(II) referring to

the circuit R1. In this connection, the circuit R2 participates in the formation of E(4)(II)
indirectly via increased absolute values of elements of the above-specified decisive block

of the matrix G̃(3)(II). This especially refers to elements G̃(3)23(II) and G̃(3)32(II),

the increased absolute values of which are unambiguously related to emergence of new

roundabout pathways between orbitals of C=C bonds concerned (i.e. of C2=C7 and

C3=C8) via BBOs and ABOs of the butadiene-like fragment (viz. via BOs of bonds

C4=C9 and C5=C10). It is evident that the above-specified extra pathways become

possible just owing to the presence of the circuit R2. That is why the above-observed

additivity of the fourth order energy E(4)(II) with respect to increments of isolated circuits

R1 and R2 is not entirely unexpected.

Finally, the fifth order energy of the structure II (i.e. E(5)(II)) remains to be discussed.

Let us recall in this connection that the isolated circuits R1 and R2 are characterized by

fifth order energies of opposite signs, namely by −30γ5/128 and 70γ5/128, respectively

(Section 3). Thus, a positive correction E(5)(II) equal to 40γ5/128 may be expected in

the case of additivity of the fifth order energy with respect to increments of individual

circuits. The actual value of E(5)(II) (20γ5/128), however, does not amount the above-

anticipated quantity. This fact indicates a certain ”inter-circuit repulsion” to take place

in the structure II too. Again, comparison of absolute values of these inter-circuit interac-

tions for structures I and II indicates the latter to coincide with only a half of the former.

Thus, we may conclude the overall scheme of formation of E(5)(II) to be rather close to
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an additive one, wherein negative and positive contributions correspond to circuits R1

and R2, respectively. Consideration of increments of individual C=C bonds to the en-

ergy E(5)(II) also supports the above conclusion. For example, the actual increments of

bonds C1=C6, C2=C7 and C5=C10 correspondingly equal to 0, −3γ5/128 and 13γ5/128,

whereas the simple superposition of circuits R1 and R2 yields 4γ5/128, 4γ5/128 and

14γ5/128, respectively (in the isolated circuits R1 and R2, individual C=C bonds con-

tribute −10γ5/128 and 14γ5/128). It is seen, therefore, that increments of both circuits

almost cancel one another for bonds C1=C6 and C2=C7 and, consequently, their actual

contributions are relatively small. By contrast, the increment of the remaining C5=C10

bond is close to that of an isolated circuit R2.

5 Discussion of Kekulé valence structures of more

extended benzenoids

Figure 2: Kekulé valence structures of anthracene (III, IV) and phenanthrene (V-VII)
along with their compositions in terms of conjugated circuits. Numbers of C=C bonds
also are shown that coincide with those of AOs of the first subset {χ∗}.

Let us dwell first on the Kekulé valence structures of anthracene (III, IV) and phenan-

threne (V-VII) shown in Fig. 2.

It deserves an immediate mentioning that the overall scheme of formation of the
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relevant second and third order energies closely resembles that of naphthalene (Section

4). In particular, non-zero elements of first order matrices (i.e. of G(1)(III), G(1)(IV )

, . . .G(1)(V II)) refer to C-C bonds as previously and, consequently, the second order

energies of all structures concerned equal to 9γ2/2 in accordance with nine C-C bonds

present there. Furthermore, 3 × 3−dimensional blocks coinciding with G(1)(R1) and

G(2)(R1) of Eqs.(24) and (25) correspond to any circuit R1 in the total first and second

order matrices of structures III-VII. Consequently, the relevant third order energies are

proportional to numbers of circuits R1 contained in these structures, i.e.

E(3)(V ) =
9γ3

4
, E(3)(III) = E(3)(V I) =

6γ3

4
, E(3)(IV ) = E(3)(V II) =

3γ3

4
. (36)

Meanwhile, the fourth order energies of the same structures are as follows

E(4)(V ) =
18γ4

64
, E(4)(III) = E(4)(V I) =

22γ4

64
, E(4)(IV ) =

26γ4

64
,

E(4)(V II) =
30γ4

64
(37)

and correlate with the relevant numbers of circuits R2 and R3. An analogous correlation

is observed for the fifth order corrections too, viz.

E(5)(V ) = −170γ5

128
, E(5)(III) = −

50γ5

128
, E(5)(V I) = −30γ5

128
,

E(5)(IV ) =
20γ5

128
, E(5)(V II) =

70γ5

128
. (38)

Thus, an interdependence is beyond any doubt between energy corrections and numbers of

conjugated circuits Rn in this case as well. Let us turn now to a more detailed discussion

of these results.

Let us start with the structure V characterized by three uniform circuits R1 and by

the largest third order energy as Eq.(36) indicates. The overall scheme of formation of the

relevant fourth order energy E(4)(V ) resembles that of the Fries structure of naphthalene

(I). In particular, three connected 3 × 3−dimensional intra-circuit blocks are present in

the matrix G̃(3)(V ), each of them coinciding with G̃(3)(R1) and contributing 6γ4/64 to

the total fourth order energy E(4)(V ). As a result, the latter equals to the threefold fourth

order energy of a single Kekulé structure of benzene as Eq. (37) shows. Structures III

and VI, in turn, are characterized by coinciding fourth order energies in accordance with

their uniform composition in terms of conjugated circuits (2R1+R2). Moreover, the value

of these energies (22γ4/64) equals to the sum of increments of isolated circuits 2R1 and

R2 as it was the case with the anti-Fries structure of naphthalene (II). A detailed analysis

of the overall schemes of formation of corrections E(4)(III) and E(4)(V I) also supports
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their similarity to E(4)(II). In particular, matrices G̃(3)(III) and G̃(3)(V I) both contain

a single intra-circuit block coinciding with G̃(3)(R1) and contributing 6γ4/64 to the total

fourth order energy. These blocks correspond to cycles (1,2,3) and (5,6,7) of the structures

III and VI, respectively. Furthermore, the same third order matrices (i.e. G̃(3)(III) and

G̃(3)(V I)) contain ”perturbed” intra-circuit blocks like the first sub-matrix of the matrix

G̃(3)(II) of Eq.(34). These blocks embrace the cycles (3,4,5) and (1,2,3) of structures III

and VI, respectively, and contribute 16γ4/64 to the total fourth order energy as it was the

case with the anti-Fries structure of naphthalene II. Since the remaining increments cancel

out one another when building up both E(4)(III) and E(4)(V I) in a close resemblance

with E(4)(II), the above-concluded additivity of fourth order energies with respect to

increments of isolated circuits is obtained. As with E(4)(II), this additivity also is not

accompanied by a complete coincidence of increments of individual C=C bonds with those

following from a simple superposition of contributions of isolated circuits. For example,

the second, third, fourth and sixth C=C bonds of the structure III actually contribute

2γ4/64, 6γ4/64, 5γ4/64 and γ4/64, respectively, whereas the superposition of individual

circuits correspondingly yields 2γ4/64, 6γ4/64, 4γ4/64 and 2γ4/64. Similar distinctions

are observed in the structure VI too.

The fourth order energies of the remaining structures IV and VII do not amount the

relevant sums of increments of isolated conjugated circuits (although proportionality to

numbers of these circuits is still preserved and thereby the last structure VII proves to be

characterized by the largest E(4) value). Nevertheless, formation of the energy corrections

E(4)(IV ) and E(4)(V II) may be easily rationalized on the basis of previous experience. Let

us dwell first on the structure IV and note that contributions of the right butadiene-like

fragment (containing the 6th and 7th C=C bonds) and of its interaction with the central

ring cancel out one another as it was the case with the anti-Fries structure of naphthalene

(II). Accordingly, the left ring (1,2,3) contributes 16γ4/64 to the total fourth order energy

E(4)(IV ). The remaining increment (10γ4/64) to the same energy may be traced back to

the 4th and 5th C=C bonds characterized by largely increased absolute values of elements

G̃(3)45(IV ) and G̃(3)54(IV ) because of the presence of roundabout pathways between BOs

of these bonds via orbitals of the 6th and 7th C=C bond. So far as the last Kekulé

structure of phenanthrene VII is concerned, the most part of the significant fourth order

stabilization may be ascribed to the central ring (3,4,5) embraced by both circuits R2.

Indeed, the third order matrix G̃(3)(V II) contains a ”perturbed” intra-circuit block of
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the following constitution

G̃(3)(V II) = −γ3

64

∣∣∣∣∣∣∣∣∣∣
.. .. .. .. ..
.. 0 3 −5 ..
.. −3 0 5 ..
.. 5 −5 0 ..
.. .. .. .. ..

∣∣∣∣∣∣∣∣∣∣
, (39)

which refers to the cycle (3,4,5) and yields 26γ4/64 after multiplying it by G+
(1)(R1).

Furthermore, an additional contribution to the total E(4)(V II) (equal to 4γ4/64) arises

owing to differences between increments of terminal butadiene-like fragments and those

of their interaction with the central ring (3,4,5).

Let us turn now to interpretation of the fifth order energies and start with the structure

V as previously. As already mentioned, this structure resembles the Fries structure of

naphthalene (I) in respect of formation of third and fourth order energies. This analogy

embraces the relevant fifth order energies too. Indeed, the absolute value of the actual

correction E(5)(V ) exceeds that of the three-fold fifth order energy of an isolated circuit

R1 (90γ5/128) considerably due to an additional intra- and inter-circuit destabilization.

Besides, increments of terminal rings ((1,2,3) and (5,6,7)) coincide with the relevant values

for the Fries structure of naphthalene I and equal to −46γ5/128. Meanwhile, the central

ring (3,4,5) is destabilized more significantly in the structure V (the relevant increment

equals to −62γ5/128). Finally, the two-fold inter-ring contribution (−16γ5/128) should

be added to complete the overall scheme of formation of E(5)(V ).

The fifth order energies of structures III and VI are considerably higher as compared

to E(5)(V ) discussed above. This alteration resembles passing from the Fries structure

of naphthalene (I) to the anti-Fries one (II). The most important point here, however,

consists in distinct absolute values of E(5)(III) and E(5)(V I) in spite of both uniform com-

positions of structures concerned in terms of conjugated circuits (2R1+R2) and coinciding

fourth order corrections E(4)(III) and E(4)(V I). Moreover, the Kekulé valence structure

of phenanthrene VI is predicted to be more stable as compared to that of anthracene

(III). This result shows that the perturbative approach of the present study allows us

to discriminate between structures containing the same sets of conjugated circuits. This

important advantage of the new approach may be unambiguously traced back to the lack

of additivity of the fifth order energies with respect to increments of conjugated circuits.

As a result of such an non-additive nature, the fifth order energies become sensitive to

particular mutual arrangements of the conjugated circuits along with their numbers. To

discuss the latter aspect in a more detail, let us consider the structures III and VI as con-

sisting of an anti-Fries structure of naphthalene (II) (coinciding with the circuit R2 and
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referred to below as the parent structure) and of an additional circuit R1. (For structures

III and VI, the parent structure embraces the C=C bonds under numbers 3,4,5,6,7 and

1,2,3,4,5, respectively). The Kekulé valence structures under comparison (i.e. III and VI)

are then characterized by distinct positions of the new circuit R1 with respect to the par-

ent structure. Indeed, the new circuit is attached to the circuit R1 of the parent structure

and to its diene-like fragment when building up the structures III and VI, respectively. It

is evident that these cases correspondingly resemble the formation of the Fries structure

of naphthalene (I) and of the relevant anti-Fries structure (II). As a result, just the first

case (III) may be expected to be characterized by a more significant intra- and inter-

subsystem destabilization. This anticipation is entirely supported by relative values of

both total fifth order energies and of the relevant intra- and inter-ring contributions. For

example, the increments of the ”newly-added” circuit R1 (i.e. of the ring (1,2,3) of III and

of the ring (5,6,7) of VI) coincide with −46γ5/128 in both cases. Meanwhile, the parent

anti-Fries structure of naphthalene is additionally destabilized in the case of anthracene

(III) vs. phenanthrene (VI) (the respective increments to the total fifth order energy

correspondingly equal to 4γ5/128 and 20γ5/128, the latter coinciding with E(5)(II) of

Eq.(35)). Finally, the same trend is supported by the relevant inter-subsystem contri-

butions coinciding with −8γ5/128 and −4γ5/128 for structures III and VI, respectively.

Thus, different stabilities of Kekulé valence structures III and VI may be entirely traced

back to dissimilar mutual arrangements of conjugated circuits contained. Besides, the

structures III and VI may be also used to illustrate the rule of Section 3 concerning pos-

itive and negative signs of contributions of circuits R2 and R1, respectively, to the total

fifth order energy. To this end, increments of individual C=C bonds should be invoked as

previously. Consideration of these characteristics for structures under our interest shows

that positive increments correspond to C=C bonds participating in the circuits R2 only,

e.g. to the 6th and 7th bond of the structure III and to the 4th bond of the structure VI.

Meanwhile, bonds belonging to the “additional” circuit R1 are characterized by negative

increments of largest absolute values in both structures concerned. This especially refers

to bonds 1,2 and 3 of III and to the 6th and 7th bonds of VI.

Finally, the positive fifth order energies of the remaining structures IV and VII deserve

attention. Coincidence of the correction E(5)(IV ) to E(5)(II) should be mentioned in the

first place. This result causes no surprise if we bear in mind the following two points:

First, the structure of anthracene (IV) differs from the anti-Fries structure of naphthalene

(II) in the presence of an additional circuit R3 and, second, this new extended circuit is

characterized by a zero fifth order energy (see Eq.(31) of Section 3). Thus, the circuits
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R1 and R2 only may be expected to determine the correction E(5)(IV ) and the equality

E(5)(IV ) = E(5)(II) accordingly follows. On the basis of the same arguments we may then

expect the last correction E(5)(V II) to consist of increments of a single circuit R1 and of

two circuits R2. The algebraic sum of the relevant values for isolated circuits then yields

110γ5/128. The actual value of E(5)(V II) (70γ5/128), however, does not amount to the

above-anticipated one. This implies a certain inter-circuit interaction to take place in the

structure VII as it was the case with naphthalene.

Figure 3: Two Kekulé valence structures of benzanthracene (VIII and IX) containing the
same sets of conjugated circuits (3R1+R2).

Before finishing this Section, let us consider briefly another example of structures

containing uniform sets of conjugated circuits, namely two Kekulé valence structures of

benzanthracene VIII and IX (Fig. 3), the composition of both coinciding with 3R1+R2

(discussion of these structures may be found also in Ref.[21]). These structures are rep-

resented by uniform energy increments up to the fourth order and by distinct fifth order

corrections in accordance with the expectation, viz.

E(2)(V III) = E(2)(IX) = 6γ2, E(3)(V III) = E(3)(IX) =
9γ3

4
, E(4)(V III) =

E(4)(IX) =
28γ4

64
, E(5)(V III) = −100γ5

128
, E(5)(IX) = −120γ5

128
. (40)

It is also seen that both third and fourth order energies of structures VIII and IX consist

of sums of transferable increments of individual circuits as it was the case with former

examples I-III, V and VI. On the other hand, the relevant fifth order energies indicate the

structure VIII to be more stable as compared to IX. This result may be easily rationalized

by considering the structures concerned as consisting of the parent structure of anthracene

III and of an “additional” circuit R1 (taking a somewhat lower position in Fig.3). The

latter is then attached to circuits R2 and R1 of the parent structure III, when building

up the structures VIII and IX, respectively, and, consequently, just the second system
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(IX) is destabilized more significantly owing to the stronger inter-circuit repulsion, as it

was the case with the structure III vs. VI.

Therefore, our previous conclusion concerning a possibility of discriminating between

Kekulé valence structures containing the same numbers of conjugated circuits proves to

be supported by another example.

6 Conclusions

The results of the present study demonstrate an unambiguous parallelism between terms

of power series for total energies of individual Kekulé valence structures of benzenoid

hydrocarbons (E(k)) on the one hand, and increments of particular conjugated circuits Rn

(n=1,2...) in the CC model(s), on the other hand. The most important aspects of this

parallelism are as follows:

i) The higher is the order parameter k of the given energy correction E(k), the more

extended conjugated circuits participate in its formation. For example, the third or-

der energy E(3) reflects the presence of the principal (three-membered) circuits R1 only,

whereas corrections of higher orders (k = 4, 5...) exhibit a dependence upon numbers

of the remaining circuits R2, R3, etc. This implies steadily diminishing increments to

correspond to conjugated circuits Rn in the power series for total energies when the size

of the circuit (n) grows.

ii) A large extent of additivity with respect to transferable increments of individual

conjugated circuits (Rn) proves to be peculiar to separate members of power series E(k)
and thereby to total energies of Kekulé valence structures of benzenoid hydrocarbons.

Thus, the third order energies E(3) of these structures are expressible as sums of uni-

form increments of the principal circuits R1 coinciding with the third order energy of an

analogous isolated circuit. As a result, the total corrections E(3) are proportional to the

actual numbers of these circuits present in the given structure. Moreover, additivity of

the fourth order energies with respect to increments of individual circuits R1 and R2 is

established for Kekulé valence structures containing no conjugated circuits of a larger

size (i.e. R3, R4, etc.).

The above two points allow us to conclude the power series for total energies of pi-

electron systems to provide us with a perturbative analogue for the concept of conjugated

circuits in benzenoid hydrocarbons and thereby to contribute to revealing of quantum-

chemical foundations and/or to justification of the conjugated- circuits- based model(s).

Again a new cognitive potential of the perturbative approach vs. simple conjugated-
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circuits- based model(s) also is demonstrated. Moreover, the approach suggested offers

us an extension of the above-mentioned model(s) in some respects:

i) The approach proves to embrace perturbative analogues not only of conjugated-

circuits- but also of conjugated- paths- based model(s). Indeed, contributions of both

linear (non-cyclic) and cyclic conjugated fragments are shown to be taken into consid-

eration on the unified basis in the approach applied. In particular, energy corrections

of the fourth order E(4) contain information about numbers of linear and/or branched

hexadiene-like fragments present in the given Kekulé valence structure along with those

of conjugated circuits. Non-zero values of fourth order energies for non-cyclic diene sys-

tems [23] serve to illustrate the above statement.

ii) The approach of the present study enables us not only to establish the very fact of

additivity of a certain energy correction with respect to increments of separate conjugated

fragments but also to interpret this property in terms of intra- and inter-circuit interac-

tions. Consequently, it appears that some seemingly similar additivity relations are of

rather different origins. This especially refers to the above-mentioned additivity of fourth

order energies with respect to increments of individual conjugated circuits R1 and R2 :

For systems containing the circuits R1 only (such as the Fries structure of naphthalene

I), the additivity concerned is shown to originate from coincidence of the decisive third

order intra-circuit interactions with those of an isolated circuit R1 (i.e. their transferabil-

ity) along with vanishing first order (direct) inter-circuit interactions. By contrast, the

same third order intra-circuit interactions are shown to be influenced by the presence of

more extended circuits R2 in the case of structures containing both types of circuits (e.g.

the anti-Fries structure of naphthalene II). Nevertheless, such a lack of transferability of

intra-circuit interactions goes together with additivity of fourth order energy corrections

in this case.

iii) The perturbative expansion for total energies is shown to contain non-additive

terms with respect to increments of individual conjugated circuits along with the above-

enumerated additive increments. A non-additive nature is especially peculiar to energy

corrections of the fifth order, wherein both intra- and inter-circuit increments may be

distinguished, the former being no longer transferable in addition. As a result, these

corrections become sensitive to particular mutual arrangements of conjugated circuits

along with the total numbers of the latter. This implies an additional discriminative

potential of the approach suggested vs. that of the CC model(s) in the case of Kekulé

valence structures of benzenoid hydrocarbons containing the same sets of conjugated

circuits.
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Appendix

A The power series for total energies of molecules

Let us dwell here on the power series for total energies of molecules and/or molecular

systems (E) following from application of the non-commutative Rayleigh-Schrödinger per-

turbation theory (NCRSPT) [27-30] and underlying the relations of Section 2. Members

of this series (E(k)) up to the fourth order (k = 4) have been derived in Refs. [23, 27].

An extension of the same derivation to terms of the fifth order (k = 5) will be discussed

below.

Let us start with the most general initial Hamiltonian matrix (H), the NCRSPT is

applicable to. To this end, let us consider a molecule or molecular system consisting of a

certain number of fragments. Individual chemical bonds both of saturated and of conju-

gated molecules, phenyl rings along with substituents and separate molecules contained

in molecular systems are able to play this role. Let us note immediately that no specify-

ing is required here either of the nature of fragments themselves or of their numbers(s).

Further, let us introduce a set of basis functions ({Ψ}) localized on separate fragments of

our system(s). These functions will be referred to below as fragmental orbitals. The only

important assumption concerning these orbitals consists in their divisibility into initially-

occupied (bonding) and initially-vacant (anti-bonding) ones separated by a substantial

energy gap. The total basis set {Ψ} then accordingly consists of two subsets so that the

inter-subset interactions (resonance parameters) may be considered as first order terms

vs. the above-specified gap. The Hückel type one-electron Hamiltonian matrix of our

system(s) (H) may be then expressed as a sum of first- and second order matrices as

follows

H = H(0) +H(1) =

∣∣∣∣ E(+) 0
0 −E(−)

∣∣∣∣+ ∣∣∣∣ S R
R+ Q

∣∣∣∣ , (A1)

Sub-matrices E(+) + S and −E(−) +Q of the matrix H contain intra-subset interactions

(resonance parameters) along with one-electron energies of fragmental orbitals, whilst the

off-diagonal block R involves inter-subset interactions. The minus sign in front of E(−)

is introduced for convenience. The superscript + designates the Hermitian- conjugate

matrix as previously. Besides, zero order intra-subset interactions are generally allowed

in Eq.(A1) and these are included into sub-matrices E(+) and E(−).

Application of the NCRSPT to the Hamiltonian matrix of Eq.(A1) allowed us to derive

members of the power series (E(k)) of the relevant total energy (E). For k = 0, 1, 2, 3 and
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4, the following formulas have been obtained [27]

E(0) = 2TraceE(+), E(1) = 2TraceS, (A2)

E(2) = −2Trace(G(1)R
+), (A3)

E(3) = −2Trace(G(2)R
+), (A4)

E(4) = −2Trace[(G(3) +G(1)G
+
(1)G(1))R

+], (A5)

where G(k), k = 1, 2, 3... are the so-called principal matrices of the NCRSPT conditioned

by matrix equations of the following common form

E(+)G(k) +G(k)E(−) +W(k)= 0, (A6)

the last G(k)−free terms of which are expressible via matrices of lower orders, viz.

W(1) = R, W(2) = SG(1) −G(1)Q,

W(3) = SG(2) −G(2)Q−(RG+
(1)G(1) +G(1)G

+
(1)R). (A7)

No essential difficulties arise in the way of extending the derivation of Ref.[27] to terms

of higher orders (although the overall procedure is somewhat more cumbersome). For

example, the fifth order member of the series of Eqs.(A2)-(A5) takes the form

E(5) = −2Trace[(G(4) +G(2)G
+
(1)G(1) +G(1)G

+
(2)G(1) +G(1)G

+
(1)G(2))R

+], (A8)

where G(4) also meets an equation of Eq.(A6) containing a new matrix W(4), viz.

W(4) = SG(3) −G(3)Q−[R(G+
(1)G(2) +G+

(2)G(1)) + (G(1)G
+
(2) +G(2)G

+
(1))R]. (A9)

Let us now dwell on the particular case of systems consisting of N uniform weakly-

interacting chemical bonds. These systems will be referred to as homogeneous ones.

The relevant fragmental orbitals (coinciding with bond orbitals (BOs) of Section 2 in this

case) will be additionally assumed to be characterized by vanishing zero order intra-subset

resonance parameters and by uniform one-electron energies inside subsets of bonding BOs

(BBOs) and of anti-bonding ones (ABOs). Let the energy reference point to be chosen

in the middle of the energy gap between BBOs and ABOs, whilst the energy unit will

coincide with the one-electron energy of BBOs. These assumptions are representable by

the following relation

E(+)= E(−) = I, (A10)

where I stands for the unit matrix. The principal equations of Eq.(A6) may be then solved

algebraically for any k. As a result, the matrices G(k) being sought become proportional
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to W(k) of Eqs.(A7) and (A9). This implies separate members of the series of matrices

G(k), k = 1, 2, 3... to be actually connected by some recurrence relations, e.g.

G(2) = −
1

2
(SG(1) −G(1)Q), (A11)

G(3) = −
1

2
(SG(2) −G(2)Q)−2G(1)G

+
(1)G(1), etc. (A12)

where the matrix R is additionally replaced by −2G(1) on the basis of Eq.(A6) for k = 1

when deriving Eq.(A12). Similarly, the matrix R may be eliminated from Eqs.(A3)-(A5)

and (A8) so that the energy corrections E(k) become expressed in terms of products of

matrices G(k−1) and G(1) only. Accordingly, from Eq.(A8) we obtain

E(5) = 4Trace[(G(4) + 3G(2)G
+
(1)G(1))G

+
(1)], (A13)

where G(4) now follows from Eq.(A9) and takes the form

G(4) = −
1

2
(SG(3) −G(3)Q)−(G(2)G

+
(1)G(1) + 2G(1)G

+
(2)G(1) +G(1)G

+
(1)G(2)). (A14)

Formulas of Eqs.(A13) and (A14), however, prove to be rather cumbersome in practical

applications. In this connection, we will invoke now the previous experience in dealing

with the fourth order energy E(4) [23]. Indeed, this correction was shown to be alter-

natively expressible in terms of matrices G(1) and G(2) only by employing the following

interrelation

Trace(G(3)G
+
(1)) = Trace(G(2)G

+
(2))− 2Trace(G(1)G

+
(1)G(1)G

+
(1)) (A15)

that may be easily proven [23] on the basis of Eqs.(A11) and (A12). Thus, our aim

now consists in derivation of the fifth order analogue of the above relation. To this end,

let us take the Trace(G(4)G
+
(1)) and substitute the right-hand side of Eq.(A14) for G(4).

Thereupon, we invoke the cyclic transposition of matrices inside the Trace signs of the

resulting expression along with Eq.(A11). We then obtain

Trace(G(4)G
+
(1)) = Trace(G(3)G

+
(2))− 4Trace(G(2)G

+
(1)G(1)G

+
(1)). (A16)

Use of this relation within Eq.(A13) allows the fifth order energy E(5) to be alternatively

expressed via the principal matrices up to G(3) only.

Let us now summarize the origin of the principal formulas of Section 2.

i) Equation (7) follows from Eq.(A2) after invoking Eq.(A10) and Eq.(5) of Section 2.

ii) Expressions for E(2) and E(3) of Eq.(8) result from Eq.(A3) and (A4) after substi-

tuting −2G(1) for R.
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iii) The first relation of Eq.(9) follows from solution of the matrix equation of Eq.(A6)

for k = 1 after invoking Eq.(A10), whilst the second one results from Eq.(A11) after

replacing G(1) by (−1/2)R and invoking the equality Q = −S shown in Eq.(4).

iv) Formulas for E(4) and E(5) of Eq.(10) along with the definition of the subsidiary

matrices G̃(3) and G(3) of Eq.(11) result from Eqs.(A5) and (A13) after substituting

−2G(1) for R. A subsequent employment of Eq.(A16) also is required for the fifth order

correction E(5).
v) The expression for G(3) of Eq.(12) results from Eq.(A12) after substituting Eq.(9).

vi) Alternative formulas for subsidiary matrices of Eq.(13) result from Eq.(11) after

invoking Eq.(A12).
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