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Abstract

Distance properties of molecular graphs form an important topic in chemical
graph theory. The Szeged index is a molecular structure descriptor equal to the sum
of products neu(e|G) · nev(e|G) over all edges e = (uv) of the molecular graph G,
where neu(e|G) is the number of vertices whose distance to vertex u is smaller than
the distance to vertex v, and where nev(e|G) is defined analogously. In this paper
we compute the Szeged index of certain chemical graphs without using distance
matrix.

1 Introduction

Graph theory has found considerable use in Chemistry, particularly in modeling chemical

structures. To identify molecular structures of chemical compounds, the molecular graph

invariants, called topological indices could be used too. Topological indices are designed

basically by transforming a molecular graph into a number. The first use of a topological

index was made in 1947 by the chemist Harold Wiener [1]. Wiener introduced the notion
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of path number of a graph as the sum of distances between any two carbon atoms in the

molecules, in terms of carbon-carbon bonds. Wiener originally defined his index on trees

and studied its use for correlations of physico-chemical properties of alkanes, alcohols,

amines and their analogous compounds.

The Wiener index W is the first topological index to be used in chemistry. In graph

theoretical language, the Wiener index is equal to the count of all shortest distances in

a graph [2, 3, 4]. In 1990s, a large number of other topological indices have been put

forward, all being based on the distances between vertices of molecular graphs and all

being closely related to W . The Szeged index is one of these topological indices, which is

introduced by Ivan Gutma [5].

Many physicochemical properties related to organic compounds acting as drugs were

modeled by using Szeged index to develop structure-property-relationships. Important

physicochemical properties which were modeled using Szeged index are: molecular weight

(MW), density (d), boiling point (bp), vapor pressure (VP), molar volume (MV), molar

refraction (MR), parachor (PR), van der Waals volume (Vw), equalized electronegativity

(χeq), dipole moments (μ), proton-ligand formation constants and polarizability (α). In

addition, some spectroscopic parameters, such as infrared (i.r.) group frequency, edge-

shift (�E) in the extended X-ray absorption fine structure spectroscopy, isomer shift

(IS) and quadrupole splitting (QS) in Mossbauer spectroscopy, and chemical shifts (δ) in

Nuclear Magnetic Resonance Spectroscopy (NMR Spectroscopy) are also modeled using

Szeged index [6].

In addition to the above, Szeged index has also been found useful in modeling various

biological activities viz. antihypertensive, antimalarial, antituberculotic, anti HIV, CA

inhibitory antagonists, Lipoxygenase inhibitory activity, lipophilicity etc [6].

In a series of papers, authors defined and computed the Szeged index of some chemical

graphs [7, 8, 9, 10, 11, 12, 13, 14]. In this paper, we compute the Szeged index of certain

chemical graphs.

2 Basic Concepts and Terminology

All graphs in this paper will be finite, simple and undirected and we will use standard

graph-theoretic terminology. A graph G consists of a set of vertices V (G) and a set of

edges E(G). In chemical graphs, the vertices of the graph correspond to the atoms of the
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molecule, and the edges represent the chemical bonds.

In this section we give the basic definitions and preliminaries which are required for

the remaining study.

Definition 2.1. Let G be a graph and e = uv an edge of G. Then the vertex Szeged index

of G is defined as

Szv(G) =
∑

e∈E(G)

[neu(e|G) nev(e|G)]

where neu(e|G) denotes the number of vertices lying closer to the vertex u than the vertex

v and nev(e|G) denotes the number of vertices lying closer to the vertex v than the vertex

u.

We also define the edge Szeged index Sze(G) of G introduced by Gutman et al. [15]

as follows.

Definition 2.2. Let G be a graph and e = uv an edge of G. Then the edge Szeged index

of G is defined as

Sze(G) =
∑

e∈E(G)

[meu(e|G) mev(e|G)]

where meu(e|G) denotes the number of edges lying closer to the vertex u than the vertex v

and mev(e|G) denotes the number of edges lying closer to the vertex v than the vertex u.

Remark 2.3. In both definitions, vertices equidistant from both ends of the edge e = uv

are not counted.

To our knowledge, there is no unified technique to compute Wiener and Szeged index

of graphs. This motivated Bojan Mohar and Tomaž Pisanski to throw an open problem,

Is there an algorithm for general graphs that would calculate the Wiener index without

calculating the distance matrix?. This open problem was posed in 1988 in the Journal of

Mathematical Chemistry [16]. It remains unsolved until now. Our objective in this paper

is to compute the Szeged index of certain nano structures without using distance matrix.

Partitioning edge set of chemical graphs has been studied in [17]. We apply a specific

way of partitioning the edge set E of G, called the J-Partition and use embedding of

graphs as a tool to establish an elegant technique to compute the Szeged index of graphs.

We apply this tool to certain nano structures. We begin with the definitions of embedding

parameters.
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Embedding: Graph embedding has been known as a powerful tool for implementation

of parallel algorithms or simulation of different interconnection networks. An embedding

[18] of a guest graph G into a host graph H is defined by an injective function f : V (G)→
V (H) together with a mapping Pf which assigns to each edge (u, v) of G a path Pf ((u, v))

between f(u) and f(v) in H. If e = (u, v) ∈ E(G), then the length of Pf ((u, v)) in H is

called the dilation of the edge e.

The dilation-sum [19] D̃f (G,H) of an embedding f of G into H is defined as

D̃f (G,H) =
∑

(u,v)∈E(G)

|Pf (u, v)|

where |Pf (u, v)| is the length of the path Pf (u, v) in H.

Then the dilation-sum of G into H is defined as

D̃(G,H) = min
f

D̃f (G,H),

where the minimum is taken over all embeddings f of G into H.

The congestion of an embedding f of G into H is the maximum number of edges of

the guest graph that are embedded on any single edge of the host graph. Let Cf (G,H(e))

denote the number of edges (u, v) of G such that e is in the path Pf ((u, v)). In other

words,

Cf (G,H(e)) = |{(u, v) ∈ E(G) : e ∈ Pf (u, v)}|.

The congestion-sum [19] C̃f (G,H) of an embedding f of G into H is defined as

C̃f (G,H) =
∑

e∈E(H)

Cf (G,H(e)).

Then the congestion-sum of G into H is defined as

C̃(G,H) = min
f

C̃f (G,H)

where the minimum is taken over all embeddings f of G into H.

For S ⊆ E(H), the congestion on S is the sum of the congestions on the edges in S.

That is, Cf (G,H(S)) =
∑
e∈S

Cf (G,H(e)).

For any embedding, the dilation-sum and the congestion-sum are one and the same

[19, 20]. It is also referred to as the wirelength of embedding G into H and is denoted as

W (G,H).
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When the guest graph is the complete graph Kn and is embedded on graph G, then

the wirelength of embedding Kn onto G is nothing but the Wiener index of G and is

denoted by W (G) [21]. The I-Partition and the kI-Partition Lemma [21] have been used

as tools to compute the Wiener index of graphs.

Definition 2.4. [17, 21] Let G be a graph on n vertices. Let {S1, S2, ..., Sm} be a partition
of E(G) such that each Si is an edge cut of G and the removal of edges of Si leaves G

into 2 components Gi and G′
i. Also each Si satisfies the following conditions:

(i) For any two vertices u, v ∈ Gi, a shortest path between u and v has no edges in Si.

(ii) For any two vertices u, v ∈ G′
i, a shortest path between u and v has no edges in Si.

(iii) For any two vertices u ∈ Gi and v ∈ G′
i, a shortest path between u and v has exactly

one edge in Si.

Such a partition of E(G) is called an I-Partition of G. Each member of an I-Partition

is referred to as an I-edge cut.

Definition 2.5. [17, 22] Let G be a graph on n vertices and m edges. Let {S1, S2, ..., Sp}
be a partition of E(G) such that each Si is an edge cut of G and the removal of edges of

Si leaves G into 2 components Gi and G′
i satisfying the following conditions:

(i) For any edge e = uv in Si, 1 ≤ i ≤ p and a vertex x in Gi, d(x, u) < d(x, v)

(ii) For any edge e = uv in Si, 1 ≤ i ≤ p and a vertex y in G′
i, d(y, v) < d(y, u).

Such a partition of E(G) is called a J-Partition of G. Each member of a J-Partition

is referred to as a J-edge cut.

Remark 2.6. In the literature, the edge cuts defined above are also referred to as or-

thogonal cuts [23].

Theorem 2.7. [22] Let G ba a graph. Then every J-edge cut of G is an I-edge cut of G.

Remark 2.8. [22] Let G be a graph. Not every I-edge cut of G is a J-edge cut of G.

However when G is bipartite, we have the following result.

Theorem 2.9. [22] Let G be bipartite. Then every I-edge cut of G is a J-edge cut of G.

-343-



Theorem 2.10. [22] Let G ba a graph and S ba an edge cut of G. Then S is a J-edge

cut if and only if S is an I-edge cut.

Theorem 2.11. [22] Let G ba a bipartite graph. Let S be a J-edge cut of G which

partitions G into G′ and G′′. Then for any edge e′ in G′ and an edge e = (u, v) in S, e′ is

closer to u than v.

Theorem 2.12. [22] Let G be a bipartite graph and {S1, S2, · · · , Sp} be an I-Partition

of G. Let Si = {e1i , e2i , · · · , e
|Si|
i }, 1 ≤ i ≤ p, eij = (uij, vij), k

′
ij be the number of edges

in Si closer to uij than vij and k′′
ij be the number of edges in Si closer to vij than uij,

1 ≤ j ≤ |Si|, 1 ≤ i ≤ p. Then

Szv(G) =

p∑
i=1

|Si| [|V (G′
i)| (n− |V (G′

i)|)] and

Sze(G) =

p∑
i=1

|Si|
|Si|∑
j=1

(|E(G′
i)|+ k′

ij) (|E(G′′
i )|+ k′′

ij).

3 Computing Szeged index

Even though there is an extensive literature available on the computation of Szeged index,

there is no known method to solve the Szeged index of general graphs. In this paper, we

describe an efficient method of computing Szeged index of certain hexagonal and octagonal

nano structures such as C4C8(S) Nanosheet and H -Naphtalenic Nanosheet.

3.1 C4C8(S) Nanosheets of Type I and II

A C4C8(S) Nonosheet is a trivalent decoration made by alternating squares C4 and oc-

tagons C8. The arrangement of C4 and C8 determine two types of nanosheets which we

refer to as Type I and Type II. See Figure 1(a) and (b). Throughout this paper the Type

I and Type II C4C8(S) Nanosheets are denoted by T 1[2p, 2q] and T 2[2p, 2q] respectively.

The number of vertices in T 1[2p, 2q] and T 2[2p, 2q] is 8pq and 4(p+1)(q+1) respectively

[21].
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Figure 1: (a) Type I-C4C8(S) Nanosheet T 1[2p, 2q] (b) Type II-C4C8(S) Nanosheet
T 2[2p, 2q]

Szeged Index Algorithm A

Input : The Nanosheet T 1[2p, 2q], p, q ≥ 1.

Output : Szeged index of the nanosheet T 1[2p, 2q].

Proof of correctness : We use vertical, horizontal and diagonal cuts as shown in

Figure 2(a) that yield an J-Partition of the edge set of T 1[2p, 2q].

Now let {Si : 1 ≤ i ≤ 2p− 1}, {S ′
i : 1 ≤ i ≤ 2q− 1}, {Sj

i : 1 ≤ i ≤ 2, 1 ≤ j ≤ p+ q− 1}
as shown in Figure 3 be the vertical, horizontal and diagonal cuts in T 1[2p, 2q] respectively.

We observe that {Si : 1 ≤ i ≤ 2p− 1}, {S ′
i : 1 ≤ i ≤ 2q − 1} and {Sj

i : 1 ≤ i ≤ 2, 1 ≤ j ≤
p+ q − 1} form an J-Partition of E(T 1[2p, 2q]).

For 1 ≤ i ≤ 2p − 1, the removal of Si leaves T 1[2p, 2q] into two components GSi

and G′
Si

where |V (GSi
)| = 4iq and |V (G′

Si
)| = 8pq − 4iq. For 1 ≤ i ≤ 2q − 1, the

removal of S ′
i leaves T 1[2p, 2q] into two components GS′

i
and G′

S′
i
where |V (GS′

i
)| = 4ip

and |V (G′
S′
i
)| = 8pq − 4ip.

By the symmetry of T 1[2p, 2q], we consider only the case when p > q. For i = 1,

1 ≤ j ≤ q − 1, the removal of Sj
i leaves T 1[2p, 2q] into two components GSj

i
and G′

Sj
i

where |V (GSj
i
)| = 4j2 and |V (G′

Sj
i

)| = 8pq− 4j2. For i = 1, 0 ≤ j ≤ p− q, the removal of

Sj′
i leaves T 1[2p, 2q] into two components G

Sj′
i

and G′
Sj′
i

where |V (G
Sj′
i

)| = 4q2 + 4jq and

|V (G′
Sj′
i

)| = 8pq − (4q2 + 4jq). Similar results hold good when i = 2.
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Figure 2: (a) The edge cut of octagonal structure (b) The edge cut of hexagonal structure

Hence the edge cuts {Si : 1 ≤ i ≤ 2p− 1}, {S ′
i : 1 ≤ i ≤ 2q − 1}, {Sj

i : 1 ≤ i ≤ 2, 1 ≤
j ≤ p+ q − 1}, satisfy conditions (i)-(ii) of J-Partition Lemma. Also, for 1 ≤ i ≤ 2p− 1,

|Si| = 2q, for 1 ≤ i ≤ 2q − 1, |S ′
i| = 2p and for i = 1, 2 and when 1 ≤ j ≤ q − 1, |Sj

i | = 2j

and when 0 ≤ j ≤ p− q, |Sj
i | = 2q.

Thus, for each i, 1 ≤ i ≤ 2p− 1, Cf (Kn, G(Si)) = 8iq2(8pq − 4iq), for 1 ≤ i ≤ 2q − 1,

Cf (Kn, G(S ′
i)) = 8ip2(8pq−4ip), for i = 1, 2, 1 ≤ j ≤ q−1, Cf (Kn, G(Sj

i )) = 8j3(8pq−4j2)
and for i = 1, 2, 0 ≤ j ≤ p− q, Cf (Kn, G(Sj′

i )) = 2q(4q2 + 4jq)[8pq − (4q2 + 4jq)]. Hence

Szv(T
1[2p, 2q]) = 16

2p−1∑
i=1

(2q)iq(2pq − iq) + 16

2q−1∑
i=1

(2p)ip(2pq − ip) + 64

q−1∑
j=1

(2j)j2(2pq − j2)

+32

p−q∑
j=0

2q(q2 + qj)(2pq − (q2 + qj))

=
8

3
q[6q5 − 6(3p+ 1)q4 + (12p− 1)q3 + 2p(24p2 + 6p− 1)q2 + q − 4p3].

From Szeged Index Algorithm A, we have the following result.

Theorem 3.1. The Szeged index of the nanosheet T 1[2p, 2q] is given by

Szv(T
1[2p, 2q]) =

8

3
q[6q5 − 6(3p+ 1)q4 + (12p− 1)q3 + 2p(24p2 + 6p− 1)q2 + q − 4p3].

Figure 3: The edge cut of T 1[8, 4]
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Szeged Index Algorithm B

Input : The Nanosheet T 2[2p, 2q], p, q ≥ 1.

Output : Szeged index of the nanosheet T 2[2p, 2q].

Proof of correctness : We use vertical, horizontal and diagonal cuts as shown in

Figure 2(a) that yield an J-Partition of the edge set of T 2[2p, 2q].

Now let {Si : 1 ≤ i ≤ p}, {S ′
i : 1 ≤ i ≤ q}, {Sj

i : 1 ≤ i ≤ 2, 1 ≤ j ≤ p + q + 1} as

shown in Figure 4 be the vertical, horizontal and diagonal cuts in T 2[2p, 2q] respectively.

We observe that {Si : 1 ≤ i ≤ p}, {S ′
i : 1 ≤ i ≤ q} and {Sj

i : 1 ≤ i ≤ 2, 1 ≤ j ≤ p+ q + 1}
form an J-Partition of E(T 2[2p, 2q]).

For 1 ≤ i ≤ p, the removal of Si leaves T 2[2p, 2q] into two components GSi
and G′

Si

where |V (GSi
)| = 4i(q+1) and |V (G′

Si
)| = 4(p+1)(q+1)− 4i(q+1). For 1 ≤ i ≤ q, the

removal of S ′
i leaves T

2[2p, 2q] into two componentsGS′
i
and G′

S′
i
where |V (GS′

i
)| = 4i(p+1)

and |V (G′
S′
i
)| = 4(p+ 1)(q + 1)− 4i(p+ 1).

By the symmetry of T 2[2p, 2q], we consider only the case when p > q. For i = 1,

1 ≤ j ≤ q−1, the removal of Sj
i leaves T

2[2p, 2q] into two components GSj
i
and G′

Sj
i

where

|V (GSj
i
)| = 2j2 and |V (G′

Sj
i

)| = 4(p+1)(q+1)−2j2. For i = 1, 0 ≤ j ≤ p−q, the removal

of Sj′
i leaves T 2[2p, 2q] into two components G

Sj′
i

and G′
Sj′
i

where |V (G
Sj′
i

)| = 2q2 + 2jq

and |V (G′
Sj′
i

)| = 4(p+ 1)(q + 1)− (2q2 + 2jq). Similar results hold good when i = 2.

Hence the edge cuts {Si : 1 ≤ i ≤ p}, {S ′
i : 1 ≤ i ≤ q}, {Sj

i : 1 ≤ i ≤ 2, 1 ≤ j ≤
p+q+1}, satisfy conditions (i)-(ii) of J-Partition Lemma. Also, for 1 ≤ i ≤ p, |Si| = q+1,

for 1 ≤ i ≤ q, |S ′
i| = p + 1 and for i = 1, 2 and when 1 ≤ j ≤ q − 1, |Sj

i | = 2j and when

0 ≤ j ≤ p− q, |Sj
i | = 2q.

Thus, for each i, 1 ≤ i ≤ p, Cf (Kn, G(Si)) = 16i(q + 1)2((p + 1)(q + 1) − i(q + 1)),

for 1 ≤ i ≤ q, Cf (Kn, G(S ′
i)) = 16i(p + 1)2((p + 1)(q + 1) − i(p + 1)), for i = 1, 2, 1 ≤

j ≤ q − 1, Cf (Kn, G(Sj
i )) = 8j3(2(p + 1)(q + 1) − j2) and for i = 1, 2, 0 ≤ j ≤ p − q,

Cf (Kn, G(Sj′
i )) = 8q(q2 + jq)[2(p+ 1)(q + 1)− (q2 + jq)]. Hence
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Figure 4: The edge cut of T 2[6, 8]

Szv(T
2[2p, 2q]) = 16

p∑
i=1

i(q + 1)2((p+ 1)(q + 1)− i(q + 1))

+ 16

q∑
i=1

i(p+ 1)2((p+ 1)(q + 1)− i(p+ 1))

+ 32

q−1∑
j=1

j3(2(p+ 1)(q + 1)− j2)

+ 16q

p−q∑
j=0

(q2 + jq)[2(p+ 1)(q + 1)− (q2 + jq)]

=
8

3
(p+ 1)(q + 1)[p(p+ 2)(q + 1)2 + q(q + 2)(p+ 1)2]

+
8

3
q2[(q − 1)2(−2q2 + 6pq + 8q + 6p+ 7) + (p− q + 1)

(4p2q + 6p2 + 11pq + 6p+ 4pq2 + 6p− 2q3 + 7q2)] .

From Szeged Index Algorithm B, we have the following result.

Theorem 3.2. The Szeged index of the nanosheet T 2[2p, 2q] is given by

Szv(T
2[2p, 2q]) =

8

3
(p+ 1)(q + 1)[p(p+ 2)(q + 1)2 + q(q + 2)(p+ 1)2]

+
8

3
q2[(q − 1)2(−2q2 + 6pq + 8q + 6p+ 7) + (p− q + 1)

(4p2q + 6p2 + 11pq + 6p+ 4pq2 + 6p− 2q3 + 7q2)] .
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3.2 H -Naphtalenic Nanosheet(2n, 2m)

Carbon nanotubes (CNTs) are peri-condensed Benzenoids, which are ordered in graphite-

like, hexagonal pattern. They may be derived from graphite by rolling up the rectangular

sheets along certain vectors. All benzenoids, including graphite and CNTs are aromatic

structures [21].

A H -Naphtalenic Nanosheet(2n, 2m) is made by alternating hexagons C6, squares C4

and octagons C8. See Figure 5. The number of vertices in H -Naphtalenic Nanosheet(2n, 2m)

is 10nm [21].

In this section, we compute the vertex Szeged index ofH -Naphtalenic Nanosheet(2n, 2m),

where n,m ≥ 1.

Szeged Index Algorithm C

Input : The H -Naphtalenic Nanosheet(2n, 2m), n,m ≥ 1.

Output : Szeged index of the H -Naphtalenic Nanosheet(2n, 2m), n,m ≥ 1.

Proof of correctness : We use vertical, horizontal and diagonal cuts, that yield an

J-Partition of the edge set of G.

Now let {Si : 1 ≤ i ≤ n−1}, {S ′
i : 1 ≤ i ≤ 2m−1}, {Sj

i : 1 ≤ i ≤ 2, 1 ≤ j ≤ n+m+3}
be the vertical, horizontal and diagonal cuts in G respectively. We observe that {Si : 1 ≤
i ≤ n − 1}, {S ′

i : 1 ≤ i ≤ 2m − 1} and {Sj
i : 1 ≤ i ≤ 2, 1 ≤ j ≤ n + m + 3} form an

J-Partition of E(G).

For 1 ≤ i ≤ n − 1, the removal of Si leaves G into two components GSi
and G′

Si

where |V (GSi
)| = 10mi and |V (G′

Si
)| = 10nm − 10mi. For 1 ≤ i ≤ 2m − 1, the removal

of S ′
i leaves G into two components GS′

i
and G′

Si
where |V (GSi

)| = 5ni and |V (G′
Si
)| =

10nm− 5ni.

For i = 1, 1 ≤ j ≤ m, the removal of Sj
i leaves G into two components GSj

i
and G′

Sj
i

where |V (GSj
i
)| =

j∑
k=1

[(4k − 1) + 2�k−1
2
�] and |V (G′

Sj
i

)| = 10nm−
j∑

k=1

[(4k − 1) + 2�k−1
2
�].

Similar results hold good when i = 2.

For i = 1, 1 ≤ j ≤ 2n− (m+ 1), the diagonal cuts are categorized as follows.

-349-



1 2 n

1

2

m

Figure 5: H -Naphtalenic Nanosheet(2n, 2m)

Case 1 (m even): The removal of Sj′
i leaves G into two components G

Sj′
i

and G′
Sj′
i

where

|V (G
Sj′
i

)| =
m∑
k=1

[(4k − 1) + 2

⌊
k − 1

2

⌋
] + j

{
4m+ 2 + 2

⌊
m− 1

2

⌋}
and

|V (G′
Sj
i

)| = 10mn−
[

m∑
k=1

[(4k − 1) + 2

⌊
k − 1

2

⌋
] + j

{
4m+ 2 + 2

⌊
m− 1

2

⌋}]
.

Case 2 (m odd):

Subcase 1 (j odd): The removal of Sj′
i leaves G into two components G

Sj′
i

and G′
Sj′
i

where |V (G
Sj′
i

)| =
m∑
k=1

[(4k − 1) + 2�k−1
2
�] + j{4m + 2�m−1

2
�} + j − 1 and |V (G′

Sj
i

)| =

10mn− [
m∑
k=1

[(4k − 1) + 2�k−1
2
�] + j{4m+ 2�m−1

2
�}+ j − 1].

Subcase 1 (j even): The removal of Sj′
i leaves G into two components G

Sj′
i

and G′
Sj′
i

where |V (G
Sj′
i

)| =
m∑
k=1

[(4k − 1) + 2�k−1
2
�] + j{4m + 2 + 2�m−1

2
�} − j and |V (G′

Sj
i

)| =

10mn− [
m∑
k=1

[(4k − 1) + 2�k−1
2
�] + j{4m+ 2 + 2�m−1

2
�} − j].

Hence the edge cuts {Si : 1 ≤ i ≤ n − 1}, {S ′
i : 1 ≤ i ≤ 2m − 1}, {Sj

i : 1 ≤ i ≤ 2, 1 ≤
j ≤ n+m+ 3}, satisfy conditions (i)-(ii) of J-Partition Lemma. Also, for 1 ≤ i ≤ n− 1,

|Si| = 2m for 1 ≤ i ≤ 2m − 1, |S ′
i| = 2n or 3n with respect to i is even or odd. And for

i = 1, 2 and when 1 ≤ j ≤ m, |Sj
i | = 2j and when 1 ≤ j ≤ 2n− (m+ 1), |Sj

i | = 2m.

The proof of the following result is an easy consequence of Szeged Index Algorithm C.
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Theorem 3.3. Let G be the H-Naphtalenic Nanosheet(2n, 2m), n,m ≥ 1. Then the

Szeged index of G is given by

1. If m is even,

Szv(G) =
25

3
nm(14m2n2 − 4m2 − n2) + 8

m∑
j=1

j(

j∑
k=1

((4k − 1)

+2�k − 1

2
�))(10nm−

j∑
i=1

((4k − 1) + 2�k − 1

2
�))

+4m
2n−m−1∑

j=1

(
m∑
k=1

((4k − 1) + 2�k − 1

2
�) + j(4m+ 2 + 2�m− 1

2
�))

(10nm− (
m∑
k=1

((4k − 1) + 2�k − 1

2
�) + j(4m+ 2 + 2�m− 1

2
�)))

2. If m is odd,

Szv(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

25
3
nm(14m2n2 − 4m2 − n2) + 8

m∑
j=1

j(
j∑

k=1

((4k − 1)

+2�k−1
2
�))(10nm−

j∑
i=1

((4k − 1) + 2�k−1
2
�))

+4m
2n−m−1∑

j=1

(
m∑
k=1

((4k − 1) + 2�k−1
2
�) + j(4m+ 2�m−1

2
�) + j − 1)

(10nm− (
m∑
k=1

((4k − 1) + 2�k−1
2
�) + j(4m+ 2�m−1

2
�) + j − 1)), if j odd;

25
3
nm(14m2n2 − 4m2 − n2) + 8

m∑
j=1

j(
j∑

k=1

((4k − 1) + 2�k−1
2
�))

(10nm−
j∑

i=1

((4k − 1) + 2�k−1
2
�))

+4m
2n−m−1∑

j=1

(
m∑
k=1

((4k − 1) + 2�k−1
2
�) + j(4m+ 1 + 2�m−1

2
�))

(10nm− (
m∑
k=1

((4k − 1) + 2�k−1
2
�) + j(4m+ 1 + 2�m−1

2
�))), if j even;

4 Concluding Remarks

In this paper, we compute the vertex Szeged index of certain chemical graphs such as

C4C8(S) Nanosheet and H -Naphtalenic Nanosheet. Finding tools to compute the edge

Szeged index for the chemical graphs considered in this paper are under investigation.

The application of the kJ-Partition Lemma to compute the Szeged index of certain other

chemical structures are also under investigation.
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