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Abstract

For a simple graph G, the common neighborhood graph con(G) is the graph
with the same vertex set as G, with two vertices adjacent in con(G) if they have
a common neighbor in G. We describe here constructions of counterexamples to a
conjecture of Knor et al. [MATCH Commun. Math. Comput. Chem. 72 (2014),
000–000] that there exists an absolute constant C such that for every graph G it
holds that W (con(G)) ≤ C ·W (G), where W (G) denotes the Wiener index of G.

1 Introduction

Let G = (V,E) be a simple graph. For u, v ∈ V , the distance d(u, v |G) between the

vertices u and v in G is defined as the length of the shortest path between u and v in G,
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provided that u and v belong to the same connected component of G. If G is connected,

the Wiener index W (G) is defined as

W (G) =
∑

{u,v}∈(V2)

d(u, v |G),

where
(
V
2

)
denotes the set of unordered pairs of elements of V , while if G is disconnected

with the connected components G1, . . . , Gc, c ≥ 2, the Wiener index W (G) is defined as

W (G) = W (G1) + · · ·+W (Gc).

The common neighborhood graph of G is the graph con(G) = (V, F ) on the same

vertex set as G such that two vertices u, v are adjacent in con(G) if and only if they have

a common neighbor in G. Knor et al. [1] study the relations between Wiener indices of

G and con(G), and conclude with

Conjecture 1 ([1]). There is an absolute constant C such that for every graph G it holds

that

W (con(G)) ≤ C ·W (G).

Our goal here is to provide counterexamples to this conjecture. Inspiration for the

construction of counterexamples came from observing that the smallest examples of graphs

for which W (G) < W (con(G)), which are depicted in Fig. 1, all have the same structure:

a bipartite graph with an odd cycle attached to one (or two) of its vertices.

Figure 1: Smallest examples of graphs for which W (G) < W (con(G)).
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Note that in a connected graph G with a structure of this type, con(G) is necessarily

connected due to the presence of the odd cycle. Moreover, the shortest path between

vertices of different parts of the underlying bipartite graph goes along the odd cycle,

implying that the distance between such vertices is bounded from below by the size of

the odd cycle. Hence, if the odd cycle is long enough (not too long!) and the sizes of the

parts of the bipartite graph are both linear in n, then one can obtain a counterexample

to Conjecture 1 for an arbitrary constant C. We illustrate this with two infinite families

of counterexamples given in following sections.

2 A family of counterexamples

The first family of counterexamples is based upon complete bipartite graphs. Let Qn,k

be obtained from the disjoint union of the complete bipartite graph Kn,n and the odd

cycle C2k+1 by adding an edge between a vertex of Kn,n and a vertex of C2k+1. Let (X, Y )

be a bipartition of Kn,n and denote by ab, a ∈ X, b ∈ C2k+1, the edge of Qn,k between

Kn,n and C2k+1. Denote the remaining vertices along C2k+1 by c1, . . . , c2k. An example of

Qn,k is shown in Fig. 2.

X

Y

a

b

c1

c2 c2k−1

c2k

Figure 2: The graph Q4,3.

Direct calculation yields Wiener indices of the building blocks of Qn,k:

W (Kn,n) = 2

(
n

2

)
· 2 + n2 · 1 = 3n2 − 2n,

W (C2k+1) = (2k + 1)(1 + 2 + · · ·+ k) =
k(k + 1)(2k + 1)

2
.

Note that for our goal it will suffice to provide appropriate bounds on the Wiener indices

of Qn,k and con(Qn,k), instead of their explicit values.

-335-



Proposition 2. W (Qn,k) ≤ 3n2 + 2n(2k2 + 7k + 2) +
k(k + 1)(2k + 1)

2
.

Proof Clearly,

W (Qn,k) = W (Kn,n) +W (C2k+1) +
∑

u∈Kn,n

∑
v∈C2k+1

d(u, v |Qn,k).

Next, the largest distance between a vertex u of Kn,n and a vertex v of C2k+1 is at

most k + 3: the distance between u and a is at most two, while the distance between b

and v is at most k. Hence,

W (Qn,k) ≤ W (Kn,n) +W (C2k+1) + (n+ n) · (2k + 1) · (k + 3)

= 3n2 + 2n(2k2 + 7k + 2) +
k(k + 1)(2k + 1)

2
.

Proposition 3. W (con(Qn,k)) ≥ (k + 2)n2.

Proof The graph con(Qn,k) consists of two cliques corresponding to parts X and Y

of Kn,n, the odd cycle corresponding to vertices of C2k+1, and the edges between Kn,n

and C2k+1:

• two edges joining a to the two neighbors of b in C2k+1, and

• n edges joining b to the n vertices of Y .

The shortest path in con(Qn,k) between an arbitrary vertex y ∈ Y and an arbitrary vertex

x ∈ X then consists of an edge yb, k edges bc2, c2c4, . . . , c2k−2c2k, edge c2ka, and provided

that x �= a, an edge ax. Therefore, d(y, x | con(Qn,k)) ≥ k+2 and since there is a total of

n2 pairs (y, x) with y ∈ Y , x ∈ X, it follows that

W (con(Qn,k)) ≥ (k + 2)n2.

Theorem 4. For each constant C > 0 and each k > 3C − 2, there exists n0 ∈ N such

that for all n ≥ n0

W (con(Qn,k)) > C ·W (Qn,k).

Proof Since

W (con(Qn,k))

W (Qn,k)
≥ (k + 2)n2

3n2 + 2n(2k2 + 7k + 2) + k(k+1)(2k+1)
2
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we have that for a fixed value of k (such that k > 3C − 2)

lim
n→∞

W (con(Qn,k))

W (Qn,k)
=

k + 2

3
> C.

Therefore, for ε = 1
2

(
k+2
3
− C

)
there exists n0 ∈ N such that for all n ≥ n0

W (con(Qn,k))

W (Qn,k)
>

k + 2

3
− ε > C.

3 Counterexamples with maximum vertex degree 3

Although the graphs Qn,k from previous section provide a family of counterexamples to

Conjecture 1, their maximum vertex degree is equal to n + 1. Here we present another

family of counterexamples, whose maximum vertex degree is equal to three.

Let Th denote the complete binary tree of height h, and let T ′
h denote the tree obtained

from Th by subdividing all of its edges. Let Rh,k be obtained from the disjoint union of T ′
h

and C2k+1 by adding an edge between the root of T ′
h and a vertex of C2k+1. An example

of Rh,k is shown in Fig. 3.

Figure 3: The graphs R3,5 (left) and con(R3,5) (right).

Proposition 5. W (Rh,k) ≤ h 4h+2 + k
(
2k+1
2

)
+ (2h+ k + 1)

(
2h+2 − 3

)
(2k + 1).

Proof The upper bound on W (Rh,k) follows from the observation that in Rh,k:
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• the distance between any two of 2h+2 − 3 vertices of T ′
h is at most 2h;

• the distance between any two of 2k + 1 vertices of C2k+1 is at most k;

• the distance between any vertex of T ′
h and any vertex of C2k+1 is at most 2h+k+1,

and the inequality 2
(
2h+2−3

2

)
< 4h+2.

Proposition 6. W (con(Rh,k)) ≥ (k + 2h+ 1)4h.

Proof Let X be the set of all 2h leaves of T ′
h, and let Y be the set of 2h vertices that

have a neighbor in X (i.e., Y is the set of vertices at distance 2h− 1 from the root of T ′
h).

The shortest path in con(Rh,k) between an arbitrary vertex x ∈ X and an arbitrary vertex

y ∈ Y consists of:

• h edges from x to the root of T ′
h via black vertices of T ′

h (see Fig. 3),

• k + 1 edges from the root of T ′
h to its neighbor on C2k+1 via vertices of C2k+1 and

• h edges to y via white vertices of T ′
h.

Therefore, since x ∈ X and y ∈ Y are chosen arbitrarily,

W (con(Rh,k)) ≥ 2h · 2h · (k + 2h+ 1).

Theorem 7. For each constant C > 0, there exists h0 ∈ N such that for all h ≥ h0

W (con(Rh,h2)) > C ·W (Rh,h2).

Proof Since

W (con(Rh,k))

W (Rh,k)
≥ (k + 2h+ 1)4h

h 4h+2 + k
(
2k+1
2

)
+ (2h+ k + 1) (2h+2 − 3) (2k + 1)

,

it follows that for k = h2

lim
h→∞

W (con(Rh,h2))

W (Rh,h2)
=∞.

Therefore, there exists h0 such that for all h ≥ h0,

W (con(Rh,h2))

W (Rh,h2)
> C.
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