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Abstract

The Wiener index of a connected graph is defined as the sum of distances be-
tween all pairs of its vertices. In this paper, we characterize the trees which minimize
and maximize the Wiener index among all trees with given number of vertices of
even degree respectively.

1 Introduction

All graphs considered in this paper are simple, connected graphs. Let G be a graph with

vertex set V (G) and edge set E(G). A vertex of degree one is called a pendent vertex.

Let Sn and Pn denote the star and path with n vertices, respectively. The distance of

a vertex v, denoted by dG(v), is the sum of distances between v and all other vertices

of G. The distance between vertices u and v of G is denoted by dG(u, v). For other

terminologies and notations not defined here we refer the readers to [2]. The Wiener

index of a connected graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) .

The Wiener index belongs among the oldest graph-based structure descriptors (topo-

logical indices) which was first introduced by Wiener [16] and has been extensively studied
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in many literatures. Numerous of its chemical applications and mathematical properties

are well studied. For detailed results on this topic, the readers may referred to two sur-

veys by Dobrynin et al. [2] and Gutman et al. [3] and two recent monographs by Gutman

and Furtula [8, 9].

Chemists are often interested in the Wiener index of certain trees which represent

molecular structures. Since every atom has a certain valency, chemists are also in par-

ticular interested in trees with some degree restrictions and having maximal or minimal

Wiener index. Many researches is devoted to this topics and can be roughly divided into

the following groups.

� Trees with fixed maximum degree, see [5, 14].

Fischermann et al. [5] characterized the trees which minimize the Wiener index among

all trees with the maximum degree Δ. On the other hand, Stevanović [14] determine the

trees which maximize the Wiener index among all graphs with the maximum degree Δ.

� Trees with given number of pendent vertices, see [1, 4, 12].

The upper bound of the Wiener index of an n−vertex tree with exactly k pendent

vertices was obtained by Shi [12] and Entringer [4] independently. The lower bound was

obtained by Burns and Entringer [1], see also Section 12 of [2].

Let S(n,m) be an n−tree obtained from m disjoint paths (each has �n−1
m
� or �n−1

m
�

vertices) by attaching one endvertex of each path to a new vertex a. The vertex a is

called the center of S(n,m). Note that S(n, 2) = Pn and S(n, n − 1) = Sn. The main

result of [1] is as follows.

Theorem 1 ([1]). Let T be a tree on n vertices with k pendent vertices, then

W (T ) ≥ W (S(n, k)) ,

with equality if and only if T = S(n, k) .

� Trees with given degree sequence, see [10, 12, 13, 15, 17, 18].

The degree deg(v) of a vertex v in G is the number of edges of G incident with v.

If a graph G has vertices v1, v2, ...,vn, then the sequence (deg(v1), deg(v2), ..., deg(vn)) is

called a degree sequence of G. It is well known that a sequence (d1, d2, ..., dn) of positive

integers is a degree sequence of an n−vertex tree if and only if
n∑

i=1

dn = 2(n− 1). A tree

T is called a caterpillar if the tree obtained from T by removing all pendent vertices is a

path. Shi [12] obtained the following result.
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Theorem 2 ([12]). Let (d1, d2, ..., dn) be a degree sequence with
n∑

i=1

dn = 2(n− 1), and

Tmax be the tree with maximal Wiener index among all trees with this prescribed degree

sequence. Then Tmax is a caterpillar.

Wang [15] and Zhang et al. [17] independently determined the tree that minimizes the

Wiener index among trees of given degree sequence through different approaches. But

the problem that which tree maximizes the Wiener index among trees of given degree

sequence is still open [10, 18]. Very recently, Sills and Wang [13] characterized the

maximal Wiener index of chemical trees with prescribed degree sequence by proving the

following result, see also [10].

Theorem 3 ([13]). Let (d1, ..., dk, dk+1, ..., dn) be a degree sequence with
n∑

i=1

dn =

2(n − 1) and 4 ≥ d1 ≥ ... ≥ dk > dk+1 = ... = dn = 1. Let Tmax be the tree

with maximal Wiener index among all trees with this prescribed degree sequence. If

(d1, d2, ..., dk)=(as, ..., as︸ ︷︷ ︸
ms

, as−1, ..., as−1︸ ︷︷ ︸
ms−1

, ..., a1, ..., a1︸ ︷︷ ︸
m1

) with as > as−1 > ... > a1 ≥ 2, then

Tmax can be formed by attaching pendent edges to a path P = v1v2...vk such that

(deg(v1), ..., deg(vk))=(as, ..., as︸ ︷︷ ︸
ls

, as−1, ..., as−1︸ ︷︷ ︸
ls−1

, ..., a1, ..., a1︸ ︷︷ ︸
m1

, ..., as−1, ..., as−1︸ ︷︷ ︸
rs−1

, as, ..., as︸ ︷︷ ︸
rs

).

where |li − ri| ≤ 1 and li + ri = mi for i = 2, ..., s.

� Trees with all degrees odd, see [6, 7, 11].

Note that the set of all trees T can be partitioned into

T = OT ∪ ET ,

where OT is the set of trees with all degrees odd and ET is the set of trees possess

some vertices of even degree. In [11], the present author characterized the trees which

maximize and minimize the Wiener index among trees of given order in the class OT

respectively. An ordering of trees by their smallest Wiener indices in this category was

obtained by Furtula, Gutman and Lin [6]. In [7], Furtula further determined the trees

with the second up to seventeenth greatest Wiener indices in this category and obtained

some interesting recurrence equations for Wiener index of some trees. Above researches

focused on the determination the extremal Wiener index of trees in the class OT. It is

natural to consider the similar extremal problems within the class ET.

To fill this gap, it is worthwhile to investigate the extremal Wiener index of trees

within the class ET with some specific restrictions. A general restriction is to require all
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n−vertex trees in ET possessing the same number of vertices of even degree. This leads

us to consider the set of all n−vertex trees with exactly r(≥ 1) vertices of even degree,

which will be denoted by ETn,r. Since the relation
∑

v∈V (G)

deg(v) = 2|E(G)| holds for any

graph G, it implies that n and r have the same parity. Different trees in the class ETn,r

may have different numbers of pendent vertices. See Figure 1 for an example.
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S(10, 6)

6 pendent vertices

S(10, 5)

5 pendent vertices

T

4 pendent vertices

Fig. 1 Trees in ET10,4 with different numbers of pendent vertices.

Note that the vertex set of the tree S(n,m) consists of m pendent vertices, a center

of degree m and n − m − 1 vertices of degree two. So if two integers n and r have

the same parity, then the degree of the center of the tree S(n, n − r) will be even, and

hence S(n, n − r) ∈ ETn,r. Let E(n, r) be the n−vertex tree shown in Figure 2, clearly

E(n, r) ∈ ETn,r.

� � � � � �
� � � � � � � �� � � �... .. ..

... ... ...1 2 l1 1 2 r 1 2 l2

E(n, r)

n ≡ r (mod 2), l1 + l2 =
n−r−2

2
, |l1 − l2| ≤ 1

Fig. 2 The tree E(n, r)

The main work of the present paper (Theorem 4 stated below) is to find, by virtue

of Theorem 1, Theorem 2 and Theorem 3, the upper and lower bounds of Wiener index

of trees in the class ETn,r respectively. Clearly the path Pn is the unique element in

ETn,n−2. So in the following we only consider the class ETn,r with r < n− 2.
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Theorem 4. Let T ∈ ETn,r, where 1 ≤ r < n− 2 and n ≡ r (mod 2). Then

W (S(n, n− r)) ≤ W (T ) ≤ W (E(n, r)) ,

with left equality if and only if T = S(n, n − r) and with right equality if and only if

T = E(n, r).

The rest of this paper is organized as follows. In Section 2, we provide some useful

results which will help to prove our main result. We close this paper in Section 3 by

proving Theorem 4 and proposing some new problems for research.

2 Preliminaries

First we will prove the following result on comparing the Wiener index of trees S(n,m)

with different value m.

Lemma 1. W (S(n, 2)) > W (S(n, 3)) > ... > W (S(n, n− 2)) > W (S(n, n− 1)).

Proof. It suffices to prove that if r ≤ n− 2, then W (S(n, r)) > W (S(n, r + 1)).

Assume that the center of S(n, r) is a. Since r ≤ n − 2, therefore S(n, r) �= Sn, and

hence we can choose a pendent vertex, say v of S(n, r) such that dS(n,r)(a, v) ≥ 2. Let

u be the unique neighbor of v. Now by deleting the edge uv and joining v to a, we can

get another n−vertex tree T ′ with exactly r + 1 pendent vertices. See Figure 3 for an

example.
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u
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v

v

S(11, 3) T ′

Fig. 3 Two trees S(11, 3) and T ′.
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It is easily checked that

W (S(n, r))−W (T ′) = dS(n,r)(v)− dT ′(v)

= [|V (S(n, r))| − dS(n,r)(a, v)][dS(n,r)(a, v)− 1]− [dS(n,r)(a, v)− 1]

= [|V (S(n, r))| − dS(n,r)(a, v)− 1][dS(n,r)(a, v)− 1]

≥ |V (S(n, r))| − dS(n,r)(a, v)− 1 (Since dS(n,r)(a, v) ≥ 2.) ≥ 1 .

On the other hand, since T ′ has r + 1 pendent vertices, from Theorem 1 it follows

that W (T ′) ≥ W (S(n, r + 1)). Therefore W (S(n, r)) > W (S(n, r + 1)), as required. �

For a graph G and a vertex v ∈ V (G), the set of the neighbors of v is denoted by

NG(v). The following result is contained in the proof of Theorem 3 of [11].

Lemma 2. Let T be a caterpillar with the longest path P = y0y1...ylyl+1. If there

exists a vertex yi (1 ≤ i ≤ l) such that NT (yi) = {yi−1, yi+1, u1, u2, ..., u2t+1}, where t ≥ 1,

suppose T ′ is the tree obtained from T by deleting the pendent vertex u2t+1 and the edges

yiu1, yiu2,..., yiu2t, splitting yi into two adjacent vertices y′i and y′′i , joining u1, u2,... ,

u2t−1 to y′i and joining u2t to y′′i , then W (T ′) > W (T ).

� � � � � � � � � � �
� � � � �
�
�
�
�

�
�
�
�

y0 y1 y2 y3 y4 y0 y1 y′2 y′′2 y3 y4

u1 u2 u3 u1 u2

=⇒

α−operation

T T ′

Fig. 4 Two trees T and T ′.

For convenience of the subsequent discussion, such a transfer operation introduced in

Lemma 2 will be called a α−operation. It is easy to see that if a caterpillar T ∈ ETn,r

contains a vertex of degree 2t+ 1 ≥ 5, where t ≥ 2, then by a α−operation, one can get

another caterpillar T ′ ∈ ETn,r with W (T ′) > W (T ), see Figure 4 for an example.

Lemma 3. Let T be a caterpillar with the longest path P = y0y1...ylyl+1. If there exists

a vertex yi (1 ≤ i ≤ l) such that NT (yi) = {yi−1, yi+1, u1, u2, ..., u2t}, where t ≥ 1, suppose

T ′ is the tree obtained from T by deleting the edges yiu1, yiu2,..., yiu2t and joining u1,

u2,... , u2t to y0, then W (T ′) > W (T ).
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β−operation
=⇒

T T ′

Fig. 5 Two trees T and T ′.

Proof. Let Tu1 be the tree obtained from T by deleting the vertices u2, ..., u2t and let

T ′
u1

be the tree obtained from T ′ by deleting the vertices u2, ..., u2t.

It is easily verified that W (T ′)−W (T ) = 2t[dT ′
u1
(u1)− dTu1

(u1)] > 0. �

For convenience of the subsequent discussion, such a transfer operation introduced in

Lemma 3 will be called a β−operation. It is easy to see that if a caterpillar T ∈ ETn,r

contains a vertex of degree 2t ≥ 4, where t ≥ 2, then by a β−operation, one can get

another caterpillar T ′ ∈ ETn,r with W (T ′) > W (T ), see Figure 5 for an example.

3 Proof of Theorem 4

Proof. Assume that T has exactly t pendent vertices, since T ∈ ETn,r, t ≤ n − r. We

distinguish two cases.

Case 1. t < n− r.

By Theorem 1, we have

W (T ) ≥ W (S(n, t)) ,

with equality if and only if T = S(n, t).

On the other hand, since t < n− r, by Lemma 1 we have

W (S(n, t)) > W (S(n, t+ 1)) > ... > W (S(n, n− r)) .

So in this case, W (T ) > W (S(n, n− r)) .

Case 2. t = n− r .

If so, directly by Theorem 1, we can get

W (T ) ≥ W (S(n, n− r)) ,

with equality if and only if T = S(n, n− r).
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So we conclude that W (T ) ≥ W (S(n, n−r)) with equality if and only if T = S(n, n−
r) .

Now we turn to determine the upper bound of W (T ). Let T ∗ be a tree with maximal

Wiener index in ETn,r. Suppose (d1, d2, ..., dn) is the degree sequence of T
∗. Let Td be the

set of all trees with this degree sequence (d1, d2, ..., dn). Clearly Td is a subclass of ETn,r,

so T ∗ also is a tree with maximal Wiener index in Td. By Theorem 2, T ∗ is a caterpillar.

We can further claim that T ∗ possesses only vertices of degree 1, 2 and 3.

Otherwise, if T ∗ contains a vertex v of degree p ≥ 4, according to Lemma 2 and

Lemma 3, by using a α−operation if p is odd or a β−operation if p is even, we can get

another tree T ′ ∈ ETn,r with W (T ′) > W (T ∗), but this contradicts to the choice of T ∗.

Consequently, T ∗ is a chemical tree with exactly r vertices of degree 2, now from the

relation
∑

v∈V (T ∗)
deg(v) = 2|E(T ∗)| = 2n− 2, one can find that the degree sequence of T ∗

is (3, ..., 3︸ ︷︷ ︸
n−r−2

2

, 2, ..., 2︸ ︷︷ ︸
r

, 1, ..., 1︸ ︷︷ ︸
n−r+2

2

).

Since T ∗ is the tree with maximal Wiener index among all trees with this prescribed

degree sequence, from Theorem 3 it follows that T ∗ = E(n, r). This completes the proof

of this theorem. �

Let EGn,r be the set of all n−vertex graphs with exactly r(≥ 1) vertices of even

degree, where n ≡ r (mod 2). In the end of the paper, we leave the following problems

which might be worthwhile to study.

� Order the trees in ETn,r with the smallest or greatest Wiener indices.

� Characterize the graphs with maximal and minimal Wiener index in EGn,r, respectively.

� � � � � �
� � � � � � � � � � � � � � � ��

��

�
��

�
��

�
��

R E(11, 1)

Fig. 6 Two graphs R and E(11, 1).

Although ETn,r ⊂ EGn,r and E(n, r) is the unique tree with maximal Wiener index

in ETn,r, we remark that E(n, r) may not be the graph with maximal Wiener index in
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EGn,r. For an example, let R be the graph shown in Figure 6, then R ∈ EG11,1. A

straightforward calculation gives that W (R) = 174 > W (E(11, 1)) = 168.
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