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Abstract

The Wiener index of a connected graph is defined as the sum of distances be-
tween all unordered pairs of its vertices. A vertex of a tree T with degree 3 or
greater is called a branching vertex of T . In this paper, the lower bound and the
upper bound of the Wiener index of an n−vertex tree with given number of branch-
ing vertices are obtained respectively.

1 Introduction

All graphs considered in this paper are simple, connected graphs. Let G be a graph with

vertex set V (G) and edge set E(G). The degree deg(v) of a vertex v in G is the number

of edges of G incident with v. A vertex of a tree T with degree 3 or greater is called

a branching vertex of T . A vertex of degree one is called a pendent vertex. Let Sn and

Pn denote the star and path with n vertices, respectively. The distance of a vertex v,

denoted by dG(v), is the sum of distances between v and all other vertices of G. The

distance between vertices u and v of G is denoted by dG(u, v). For other terminologies and

notations not defined here we refer the readers to [2]. The Wiener index of a connected

graph G is defined as
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W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

The Wiener index belongs among the oldest graph-based structure descriptors (topo-

logical indices) which was first introduced by Wiener [23] and has been extensively studied

in many literatures. Numerous of its chemical applications and mathematical properties

are well studied. For detailed results on this topic, the readers may referred to two sur-

veys by Dobrynin et al. [2] and Gutman et al. [3] and two recent monographs by Gutman

and Furtula [11, 12].

Chemists are often interested in the Wiener index of certain trees which represent

molecular structures. Many researches are devoted to studying the extremal trees that

maximize or minimize the Wiener index within certain classes of trees. For instance, see

[6] for trees with given matching number, [16, 22] for trees with a given diameter, [13,

24] for trees with a given radius and [7, 8, 9, 14, 15, 18, 19, 20, 21, 25, 26] for trees with

some specific degree conditions.

Note that each tree different from the path possesses at least one branching vertices,

in this paper, we will investigate how the number of branching vertices influences the

Wiener index.

Doyle and Graver [5] discovered a result that is suitable for calculation of the Wiener

index of trees with few branching vertices.

Theorem 1 ([5]). Let T be a tree on n vertices. Then

W (T ) =
(
n+1
3

)
−∑

u

∑
1≤i<j<k≤deg(u)

ni(u)nj(u)nk(u),

where the first summation goes over all branching vertices u of T , and n1(u), n2(u), ...,

ndeg(u)(u) are the number of vertices in each of the components of T − u.

Many applications of this formula have been summarized by Dobrynin et al. in Section

5 of [2]. Gutman et al. [10] gave a partial order among the starlike trees, i.e., trees

possessing exactly one branching vertex. By this partial order, one can order some

starlike trees with respect to their Wiener indices, but not all starlike trees. This implies

that the behavior of branching vertices influencing the Wiener index is complicated.

To better understand the relationship between the branching vertices of trees and their

Wiener indices, one possible research direction is to determine the upper bound and lower

bound of the Wiener index of an n−vertex tree T with exactly r branching vertices. For

such a tree T , it is easy to find that r ≤ n
2
−1. Otherwise, if r > n

2
−1, assume that x and y
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are the numbers of vertices of degree 1 and 2 of T respectively, recall that |E(T )| = n−1,

then
∑

v∈V (T )

deg(v) ≥ x+ 2y + 3r = (x+ y + r) + 2r+ y > n+ (n− 2) + y = 2|E(T )|+ y,

a contradiction.
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Fig. 1 Two trees F (n, r) and B(n, r)

Let BTn,r be the set of all n−vertex trees having exactly r branching vertices. Let

F (n, r) and B(n, r) be the trees shown in Figure 1. Clearly, F (n, r) ∈ BTn,r.

The main work of the present paper is as follows.

Theorem 2. Let T ∈ BTn,r, where 1 ≤ r ≤ n
2
− 1, then the following holds.

(a) W (T ) ≤ W (F (n, r)),

with equality if and only if T = F (n, r).

(b) If r = 1, then

W (T ) ≥ W (Sn),

with equality if and only if T = Sn,

if 2 ≤ r ≤ n
2
− 1, then

W (T ) ≥ (n− r)(n− 1) + 3(r − 1)(n− 3),

moreover, if n and r satisfy one of the following conditions:

(b-1) r = 2, n ≥ 6,

(b-2) r = 3, n ≥ 8,

(b-3) 4 ≤ r ≤ n+2
3
,

then the above bound is sharp and B(n, r) is the unique tree realizing this bound.

The rest of this paper is organized as follows. In Section 2, we introduce some known

results on the Wiener index of trees which will help to prove our main result. We close

this paper in Section 3 by proving the Theorem 2.
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2 Preliminaries

The following theorem is useful for computing the Wiener index of a tree.

Theorem 3 ([23]). Let T be a tree and e its edge. Let n1(e) and n2(e) be the numbers

of vertices of two components of T − e. Then

W (T ) =
∑

e∈E(T )

n1(e)n2(e).

If a graph G has vertices v1, v2, ...,vn, then the sequence (deg(v1), deg(v2), ..., deg(vn))

is called a degree sequence of G. It is well known that a sequence (d1, d2, ..., dn) of positive

integers is a degree sequence of an n−vertex tree if and only if
n∑

i=1

dn = 2(n− 1). A tree

T is called a caterpillar if the tree obtained from T by removing all pendent vertices is a

path. Shi [18] obtained the following result.

Theorem 4 ([18]). Let (d1, d2, ..., dn) be a degree sequence with
n∑

i=1

di = 2(n− 1), and

Tmax be the tree with maximal Wiener index among all trees with this prescribed degree

sequence. Then Tmax is a caterpillar.

Recently, Sills and Wang [19] characterized the maximal Wiener index of chemical

trees with prescribed degree sequence by proving the following result, see also [14].

Theorem 5 ([19]). Let (d1, ..., dk, dk+1, ..., dn) be a degree sequence with
n∑

i=1

dn =

2(n − 1) and 4 ≥ d1 ≥ ... ≥ dk > dk+1 = ... = dn = 1. Let Tmax be the tree

with maximal Wiener index among all trees with this prescribed degree sequence. If

(d1, d2, ..., dk)=(as, ..., as︸ ︷︷ ︸
ms

, as−1, ..., as−1︸ ︷︷ ︸
ms−1

, ..., a1, ..., a1︸ ︷︷ ︸
m1

) with as > as−1 > ... > a1 ≥ 2, then

Tmax can be formed by attaching pendent edges to a path P = v1v2...vk such that

(deg(v1), ..., deg(vk))=(as, ..., as︸ ︷︷ ︸
ls

, as−1, ..., as−1︸ ︷︷ ︸
ls−1

, ..., a1, ..., a1︸ ︷︷ ︸
m1

, ..., as−1, ..., as−1︸ ︷︷ ︸
rs−1

, as, ..., as︸ ︷︷ ︸
rs

),

where |li − ri| ≤ 1 and li + ri = mi for i = 2, ..., s.

3 Proof of Theorem 2

Proof. First we will determine the upper bound of W (T ). Let T ∗ be a tree with maximal

Wiener index in BTn,r. Suppose (d1, d2, ..., dn) is the degree sequence of T ∗. Let Td be

the set of all trees with this prescribed degree sequence. Clearly Td is a subclass of BTn,r,

so T ∗ is a tree with maximal Wiener index in Td. By Theorem 4, T ∗ is a caterpillar.
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We can further claim that T ∗ possesses only vertices of degree 1, 2 and 3. Otherwise,

suppose P = y0y1...ylyl+1 is the longest path of T ∗, then there exists a vertex yi (1 ≤ i ≤ l)

such that deg(yi) ≥ 4. Assume that {yi−1, yi+1, u1, u2, ..., ut} is the set of the neighbors of
yi, where u1, u2, ..., ut (t = deg(yi)− 2) are pendent vertices. Let T ′ be the tree obtained

from T ∗ by deleting the edge yiu1 and joining u1 to u2. See Figure 2 for an example.

Clearly, T ′ ∈ BTn,r.

	 		
	
		

	 
 	 	 
 	
 	 	 
 	 	�
�
�
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�
�

u1 u2

y0 y1 y2 y3 y4 y5 y0 y1 y2 y3 y4 y5

u2

u1

=⇒

T ∗ T ′
Fig. 2 Two trees T ∗ and T ′

But now we can get W (T ′)−W (T ∗) = dT ′(u1)− dT ∗(u1) > 0, a contradiction to the

maximality of T ∗.

Consequently, T ∗ is a chemical tree with exactly r branching vertices of degree 3.

Suppose that t1 and t2 are the numbers of the vertices of degree 1 and degree 2 of T ∗

respectively. Note that T ∗ is a caterpillar, thus t1 = r + 2. The relation
∑

v∈V (T ∗)
deg(v) =

2|E(T ∗)| = 2n − 2 gives that t1 + 2t2 + 3r = 2n − 2, and hence t2 = n − 2r − 2. So the

degree sequence of T ∗ is (3, ..., 3︸ ︷︷ ︸
r

, 2, ..., 2︸ ︷︷ ︸
n−2r−2

, 1, ..., 1︸ ︷︷ ︸
r+2

).

Since T ∗ is the tree with maximal Wiener index among all trees with this prescribed

degree sequence and T ∗ is a chemical tree, from Theorem 5, we have T ∗ = F (n, r).

Now we turn to determine the lower bound of W (T ).

If r = 1, the result clearly holds by the well known fact [2] that if T is any n−vertex
tree different from Sn and Pn, then W (Sn) < W (T ) < W (Pn).

If r ≥ 2, assume that T has exactly p pendent edges and q non-pendent edges, say e1,

e2, ..., eq. By Theorem 3,

W (T ) =
∑

e∈E(T )

n1(e)n2(e) =
∑

e is pendent

n1(e)n2(e) +

q∑
i=1

n1(ei)n2(ei). (1)

Let n be fixed and define an auxiliary function f(x) = x(n−x), where 1 ≤ x ≤ n− 1.

Then f ′(x) = n− 2x. So f(x) is increasing strictly in the interval [1, n/2] and decreasing

strictly in the interval [n/2, n− 1]. Thus
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(n− 1) < 2(n− 2) < 3(n− 3) < 4(n− 4) < ... < �n
2
��n

2
�. (2)

Call an edge ej ∈ {e1, e2, ..., eq} is large if either n1(ej) ≥ 3 or n2(ej) ≥ 3. Assume

that q′ is the number of such large edges. Let T ′′ be the tree obtained from T by deleting

vertices of degree 2 in which each is adjacent to a pendent vertex of T and all pendent

vertices of T . See Figure 3 for an example.

� �
� � � � � � � � �

�
� � � � �

�
=⇒

T T ′′

Fig. 3 Two trees T and T ′′

Note that there is a bijection between the set of the large edges of T and the set

of the edges of T ′′ and each branching vertex of T corresponds to a vertex of T ′′, thus

q ≥ q′ = |E(T ′′)| = |V (T ′′)| − 1 ≥ r − 1.

This fact together with the relation (2) result in

q∑
i=1

n1(ei)n2(ei) ≥ q′[3(n− 3)] ≥ 3(r − 1)(n− 3), (3)

with equality if and only if q = r − 1 and for each ei ∈ {e1, e2, ..., eq}, either n1(ei) = 3

or n2(ei) = 3. It should be noted that if q = r − 1, then p (the number of pendent edges

of T ) has the maximal possible value (n − 1) − (r − 1) = n − r. Because the product

n1(e)n2(e) in (1) has the minimal possible value n − 1 if e is a pendent edge, we thus

arrive at

W (T ) ≥ (n− r)(n− 1) + 3(r − 1)(n− 3), (4)

with equality if and only if T satisfies the following conditions:

(c-1) p = n− r, q = r − 1,

(c-2) for each non-pendent edge e of T , either n1(e) = 3 or n2(e) = 3.

It is easily checked that if n and r satisfy one of the conditions (b-1), (b-2) and (b-3)

stated in Theorem 2, then the graph B(n, r) belongs to BTn,r, satisfies the conditions

(c-1), (c-2) and realizes the bound in (4).
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To see that B(n, r) is the unique extremal tree, we may assume that R ∈ BTn,r is

a tree different from B(n, r) which also realizes the bound in (4). Then R satisfies the

conditions (c-1) and (c-2). Let R′ be the r-vertex tree obtained from R by deleting n− r

pendent vertices, then R′ �= Sr. Otherwise if R′ = Sr, by the condition (c-2), one can

deduce that R = B(n, r), a contradiction. Now we can choose an non-pendent edge, say

e′, of the tree R′. Note that each component of R′ − e′ contains at least two vertices,

in which at least one is a branching vertex of R. Therefore, each component of R − e′

contains at least four vertices of R, that is n1(e
′) ≥ 4 and n2(e

′) ≥ 4, a contradiction to

the condition (c-2).

This completes the proof of this theorem. �

Remark 1. Theorem 2 determines the sharp upper bound of the Wiener index of trees

in BTn,r with all possible values r and the sharp lower bound of the Wiener index of trees

in BTn,r when r ∈ [1, n+2
3
]. If r ∈ (n+2

3
, n
2
− 1], we can not obtain the sharp lower bound

of the Wiener index of trees in BTn,r, since the trees satisfying both conditions (c-1) and

(c-2) can not be constructed when r belongs to this interval.

Remark 2. If r = 1, the upper bound of the Wiener index of trees in BTn,r can also be

determined by Theorem 8 of [1] or Theorem 1.1 of [17]. In [1] and [17], an ordering of

trees with the first up to seventeenth greatest Wiener indices was obtained by Deng and

Liu et al. respectively, all these extremal trees possess at most 3 branching vertices. On

the other hand, if r = 2 or r = 3, the lower bound of the Wiener index of trees in BTn,r

can also be determined by Theorem 4.1 of [4]. In [4], an ordering of trees with the first

up to fifteenth smallest Wiener indices was given by Dong and Guo, all these extremal

trees possess at most 4 branching vertices.

Remark 3. Define two auxiliary functions:

fl(n, r)=min{W (T ): T ∈ BTn,r},

fu(n, r)=max{W (T ): T ∈ BTn,r}.

Thus if T ∈ BTn,r, then W (T ) belongs to the interval [fl(n, r), fu(n, r)]. By Theorem

2, fu(n, r) = W (F (n, r)). Let u, u1, u2 be the vertices of F (n, r) depicted in Figure

1. Let F ′ be the tree obtained from F (n, r) by deleting the edge uu1 and joining u1

to u2. It is easily checked that W (F ′) −W (F (n, r)) = dF ′(u1) − dF (n,r)(u1) > 0. Note
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that F ′ ∈ BTn,r−1, where r ≥ 2. By theorem 2, we have W (F (n, r − 1)) ≥ W (F ′). So

W (F (n, r)) < W (F (n, r − 1)), giving

fu(n, r) < fu(n, r − 1) for 2 ≤ r ≤ n

2
− 1. (5)

On the other hand, by Theorem 2, fl(n, 1) = W (Sn) and fl(n, r) = W (B(n, r)) =

(n− r)(n− 1)+3(r− 1)(n− 3) for r ∈ [2, n+2
3
]. Clearly, fl(n, 2) > fl(n, 1). If r ∈ [3, n+2

3
],

thenfl(n, r)− fl(n, r− 1) = [(n− r)(n− 1)+3(r− 1)(n− 3)]− [(n− r+1)(n− 1)+3(r−
2)(n− 3)] = 2n− 8 > 0, so

fl(n, r) > fl(n, r − 1) for 2 ≤ r ≤ n+ 2

3
. (6)

Combining (5) and (6), we can conclude that if r ∈ [1, n+2
3
], then the intervals [fl(n, r),

fu(n, r)] (r=1, 2, ..., �n+2
3
�) satisfy the following nest relation:

[fl(n, 1), fu(n, 1)] ⊃ [fl(n, 2), fu(n, 2)] ⊃ ... ⊃ [fl(n, �n+2
3
�), fu(n, �n+2

3
�)].

In the end of the paper, we leave the following problems which might be worthwhile

to study.

Problem A. Determine the sharp lower bound of the Wiener index of trees in BTn,r,

where r ∈ (n+2
3
, n
2
− 1].

Problem B. Order the trees in BTn,r by the smallest or greatest Wiener indices.
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