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Abstract

The classical theorem discovered by Wiener in 1947, shows how the Wiener index of a

tree is decomposed into (easily calculable) edge–contributions. We now deduce an analo-

gous formula, based on vertex–contributions. This result, which can be straightforwardly

extended to general graphs, happens to be previously known in the theory of social net-

works.

1 Introduction

In his seminal paper [13] Harold Wiener not only introduced the concept of what

nowadays is known as the Wiener index (W ), but also showed how in the case of

acyclic systems, W can be easily calculated from edge–contributions. In [13], this

result was stated without mentioning distance, graphs, and trees, and without proof.

It was then completely overseen, and was first time formulated in graph–theoretical

terms and supplied by a proof almost 30 years later [11]. In what follow, we refer to

this result as to the Wiener theorem.

In order to state the Wiener theorem, and then formulate its vertex–version, we

need to introduce a convenient notation.
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Let F be a forest (= acyclic, not necessarily connected graph), possessing n(F )

vertices. In the general case, F consists of p components, p ≥ 1, each being a tree.

We shall write this as:

F = T1 ∪ T2 ∪ · · · ∪ Tp .

Denote by N2(F ) the sum over all pairs of components, of the product of the

number of vertices of two components of F , i.e.,

N2(F ) =
∑

1≤i<j≤p

n(Ti)n(Tj) .

If p = 1, i.e., if F is connected, then N2(F ) = 0. If p = 2, p = 3, and p = 4, then

N2(F ) = n(T1) · n(T2) (1)

N2(F ) = n(T1) · n(T2) + n(T1) · n(T3) + n(T2) · n(T3) (2)

and

N2(F ) = n(T1) · n(T2) + n(T1) · n(T3) + n(T1) · n(T4)

+ n(T2) · n(T3) + n(T2) · n(T4) + n(T3) · n(T4) (3)

respectively, etc.

2 The Wiener theorem

If G is a connected graph, then its Wiener index, W (G), is – by definition – equal

to the sum of distances between all pairs of vertices of G. Details on this graph

invariant, and on its chemical applications, can be found in some of the many surveys

[4, 5, 7, 11, 12].

Let T be a tree (= acyclic connected graph), and let E(T ) be its edge set. Then

the Wiener theorem can be stated as follows:

Theorem 1. [13]

W (T ) =
∑

e∈E(T )

N2(T − e) . (4)

Proof. N2(T−e) counts how many times the edge e lies on a shortest path connecting

two vertices of T . Since the distance between two vertices is equal to the number of

edges in the respective shortest path, the sum on the right–hand side of Eq. (4) is

just the sum of distances between all pairs of vertices.
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One should note that any subgraph T − e in Eq. (4) consists of exactly two

components, and therefore relation (1) is always applicable.

3 The vertex Wiener theorem

Let, as before, T be a tree, and let V (T ) be its vertex set. In analogy to the classical

Theorem 1, we have its following vertex version:

Theorem 2. Let T be a tree on n vertices. Then,

W (T ) =
∑

v∈V (T )

N2(T − v) +

(
n

2

)
. (5)

Proof. N2(T−v) counts how many times v is a non-terminal vertex of a shortest path

connecting two vertices of T . Since the distance between two vertices is by one greater

than the number of non-terminal vertices in the respective shortest path, the sum on

the right–hand side of Eq. (5), plus a unity for each vertex pair , is just the sum of

distances between all pairs of vertices. Of course, T has
(
n
2

)
pairs of vertices.

One should note that a subgraph T − v in Eq. (5) may consist of several compo-

nents (whose number is equal to the degree of the vertex v), and therefore relations

(1), (2), (3), etc. are to be used. Besides, if v is a pendent vertex, then N2(T−v) = 0.

This fact makes the application of formula (5) significantly more complicated than

that of (4).

Formula (5) describes a decomposition of theWiener index into vertex–contributions.

It’s practical applicability for calculation of W (T ) is much less convenient that of Eq.

(4), which may be the reason why this simple modification of original Wiener’s the-

orem was hardly ever mentioned in mathematical chemistry (see, however, [2]).

On the other hand, formula (5) can be extended to general (cycle–containing

graphs) as it is stated in Theorem 4. This extended version of Theorem 2 seems to

have been first mentioned in Silvia Gago’s Ph.D. thesis [9] (see also [3,10]) as identity

B(G) =
(n− 1)(�(G)− 1)

2
. (6)

where B(G) is the average betweenness (defined later) of a vertex and �(G) is the

average distance in a graph G.
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4 The Doyle–Graver formula

In connection with Theorem 2, a formula discovered by Doyle and Graver [6] deserves

to be mentioned.

Using the same notation as in Introduction, denote by N3(F ) the sum over all

triplets of components, of the product of the number of vertices of three components

of F , i.e.,

N3(F ) =
∑

1≤i<j<k≤p

n(Ti)n(Tj)n(Tk) .

If p = 1 or p = 2, then N3(F ) = 0. If p = 3 and p = 4, then

N3(F ) = n(T1) · n(T2) · n(T3)

and

N3(F ) = n(T1) · n(T2) · n(T3) + n(T1) · n(T2) · n(T4)

+ n(T1) · n(T3) · n(T4) + n(T2) · n(T3) · n(T4)

respectively, etc.

Theorem 3. [6] Let T be a tree on n vertices. Then,

W (T ) =

(
n+ 1

3

)
−
∑

v∈V (T )

N3(T − v) .

5 Vertex Wiener theorem for general graphs

In order to extend Theorem 2 to general (connected) graphs, one needs to take into

account that such graphs may possess several shortest paths connecting the same pair

of vertices. In addition, G− v needs not be disconnected.

The betweenness centrality B(x) of a vertex x ∈ V (G) is the sum of the fraction

of all-pairs shortest paths that pass through x:

B(x) =
∑

u,v∈V (G)\{x}
u �=v

σu,v(x)

σu,v

where σu,v denotes the total number of shortest (u, v)-paths in G and σu,v(x) repre-

sents the number of shortest (u, v)-paths passing through the vertex x. It is one of
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the most important centrality indices and it was introduced by Anthonisse [1], and

popularized by Freeman [8] (see also [2]).

Now, we state the extension of Theorem 2. Notice before that for a vertex v in a

tree T , it holds B(v) = N2(T − v).

Theorem 4. Let G be a graph on n vertices. Then,

W (G) =
∑

v∈V (G)

B(v) +

(
n

2

)
. (7)

Proof. The proof follows easily by the fact that the contribution of a pair u, v to the

sum of the betweenness of all vertices is precisely d(u, v)− 1. So,∑
x∈V (G)

B(x) =
∑

x∈V (G)

∑
u,v∈V (G)\{x}

u�=v

σu,v(x)

σu,v

=
∑

u,v∈V (G)
u �=v

∑
x∈V (G)\{u,v}

σu,v(x)

σu,v

=
∑

u,v∈V (G)
u�=v

[
d(u, v)− 1

]
= W (G)−

(
n

2

)

which establishes the equality.

For a graph G on n vertices,

B(G) =
1

n

∑
v∈V (G)

B(v) and �(G) =
1(
n
2

)W (G)

which implies that equations (6) and (7) are equivalent.

Acknowledgement. The first author is partially supported by the Slovenian ARRS

Program P1-00383 and Creative Core - FISNM - 3330-13-500033.

References

[1] J. M. Anthonisse, The rush in a directed graph, Technical Report BN 9/71 ,

Stiching Math. Centrum, Amsterdam, October 1971.
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