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Abstract. We calculate the number h(BB) of hexagons in a benzenoid system B from the shape of its 
boundary, represented by its “boundary edges code” e(B)  [J. Mol.  Struct. (Theochem) 363 (1996) 237-247], 
which counts the boundary edges of B belonging to consecutive hexagons. We classify hexagons in a 
benzenoid system with regard to two parameters: the number of their adjacent hexagons and the number of 
their entries in the e(B) and present a simple test for finding boundary hexagons of B which have at least two 
entries in e(B). 
 

1. Introduction 
  We assume the reader is familiar with the basic concepts of benzenoid and coronoid 
hydrocarbons (in this paper denoted B and C), as well as with their mathematical model – 
planar polyhexes, composed from finite number of hexagons joined face to face, called 
benzenoid systems and coronoid systems, as explained  e.g. by Gutman and Cyvin [9] .  
“Faces” in polyhexes represent rings of carbon atoms C, while the hydrogen atoms H are 
omitted; likewise, the positions of double bonds between carbon atoms in this simple 
mathematical model are ignored. Thus benzenoid systems (or shortly, benzenoids) are 
planar polyhexes with one component of boundary edges, and coronoid systems (or 
shortly, coronoids) are planar polyhexes with at least two components of boundary edges 
(two boundary edges e1 and ek are in the same component if there are boundary edges 
e2,…,ek-1 such that any two edges ei+1 and ei share a boundary vertex vi).                         

   A benzenoid B  is uniquely determined by the shape of its boundary, represented by the 
boundary edges code (BEC) of Hansen, Lebbateaux and Zheng [10] (it is identical to the 
perimeter code PC-2 of Herndon and Bruce [11]). Also, Knop et al. [13,14] and 
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independently Doroslovački and Tošić [6] characterized a benzenoid system by 
associating to its perimeter a sequence of symbols of six letter alphabet {0,1,2,3,4,5} (see 
also [15]), corresponding to unit vectors in six possible directions of edges in a 
hexagonal net.  

 Remark. General hexagonal patches that are not benzenoids are not uniquely determined 
by their BEC; the first example of 25-hexagon “twins” with the same boundary was found 
by Guo, Hansen and Zheng [8], who proved also that the number of hexagons in such 
twins is the same, and that the boundary uniquely determines hexagonal patches with no 
more than 24 hexagons. Graver [7] shows that polyhexes having twins must cover at least 
one point three or more times when embedded in a plane.  Brinkmann, Delgado-Friedrichs 
and von Nathusius [4]  showed that the boundary encoding uniquely determines the 
number of faces in an (m,k)-patch (i.e. an embedded 2-connected planar graph with at least 
3 vertices, where every bounded face is a k-gon, the vertex degree is m for inner vertices 
and at most k for vertices on the boundary)  if (m,k) is not (6,3), (4,4) or (3,6). 

    This boundary edges code (BEC), denoted by e(BB) = (k1, k2,…, kr), counts the 
numbers ki of edges in consecutive boundary hexagons (we travel around the boundary in 
the clockwise direction, starting at any hexagon, and having the interior of B  always at 
our right). BEC can be defined also for coronoids C. The entries ki in the e(B) may be only 
numbers 1, 2, 3, 4, 5; the only exception to this rule is benzen, represented by a polyhex 
with h(B) = 1, whose BEC is e(B) = (6). However, this code is not unique: even if we 
demand that the code be standard (i.e. the counting of boundary edges starts at the bottom 
left hexagon of a standard drawing of a benzenoid), there are benzenoids B having 12 
different BEC (corresponding to 12 different embeddings of B into a hexagonal net), as 
shown by an example given in the Appendix of the paper [12]. It is shown in Figure 1; the 
reader may find it interesting to determine the other 11 standard codes of it.   

 

Figure 1: A benzenoid with a boundary code e(B) = (4,1,4,2,1,3,3,5,1,1,3,1,1,1,5,2). 

     In [12] it is shown also how the symmetry scheme of a benzenoid B may be found from 

e(B), but only if we know also h(B), the number of hexagons of B; for example, the “face-
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centered” and “vertex-centered” benzenoids with 3-fold symmetry satisfy the relations 

h(BB) ≡ 1 (mod 3) and h(B) ≡ 1 (mod 3), respectively. The 14 possible symmetry schemes 

are just visual representations of  the 14 different symmetry groups of benzenoids, as given 

in the classiffication of Gutman and Cyvin [9]  which takes into account also the point 

groups of benzenoids, and consequently distinguishes between “horizontal” and “vertical” 

reflection lines; likewise it treats the cases in which the eventual center of rotational 

symmetries of B is in the center of a face, or in the center of an edge, or in a vertex of a 

hexagonal net into which B is embedded, as different. Also, an algorithm was proposed in 

[12] for obtaining h(B) from e(B), but it was accompanied with a remark that some 

technical details of it were somewhat complicated and would be given elsewhere. To keep 

this paper reasonably self-contained we repeat here the main idea of that algorithm: 

starting with B = B1 and eliminating (properly chosen) boundary hexagons we produce a 

sequence of benzenoids B1, B2,…, Bh(B). Then the number h(B) may be obtained from the 

recursive formula: h(Bi) = h(Bi+1) + 1, where Bi+1 is a benzenoid system obtained from Bi 

by taking one hexagon away. Thus to obtain h(Bi) it suffices to solve a “smaller” problem: 

to obtain h(Bi+1) from e(Bi+1). For the elimination of boundary hexagons with entries 5, 4 

and 3 in the BEC (see Figure 2) simple formulas may be found for expressing e(Bi+1) in 

terms of e(Bi). Repeating this recursive process we finally get a benzenoid system Bh(B) 

with only one hexagon. Then h(B) = (the number of these recursive steps) + 1. While the 

elimination of hexagons having entries 5 and 4 in the BEC is easy, the elimination of 

hexagons having entries 3 turned out to be a tricky problem: if we carelessly eliminate in 

Bi a hexagon having two entries (3 and 1) in e(Bi), then Bi+1 consists of two components, 

therefore Bi+1  is not a benzenoid system and the algorithm can not be applied to Bi+1  (see 

Figure 2 bottom right)! To explain in detail how this obstacle can be overcame is the 

purpose of this paper.          

 
Figure 2:  Examples of deleting (dark) hexagons with 5, 4, 3 and 3 + 1 boundary edges. 
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2. How to calculate the positions of boundary faces from e(BB) 
 

Since an elimination of a hexagon with entries 3 and 1 in e(Bi) is forbidden, it is clear 

what remains to be done to guarantee that the proposed algoritem would work:   

Step 1) we have to prove that after eliminating hexagons with entries 5 and 4 there is 

always a boundary hexagon having an entry 3 in e(Bi), and  

Step 2) we have to construct a test telling us for each boundary hexagon of Bi whether 

it has at least two entries in the BEC or not.  

If we can do both 1) and 2), then we can also find a hexagon having only 3 consecutive 

edges at the boundary of Bi, since the set of such hexagons is nonempty and finite!  

The key idea in carrying out the above plan is: we can use vectors to express (and 

calculate) positions of boundary vertices, edges and hexagonal »faces« of B. This plan can 

be carried out in various ways. But since the numbers nk in e(B) = (k1,k2,…,kr) correspond 

to boundary faces, the best way to do this is to focus on the vectors f1,…,fr with endpoints 

in the centers of the consecutive boundary hexagons H1,…,Hr. In order to to this well some 

preparations are needed.  

The following lemmas are very easy to prove (therefore we omit the proofs): 

Lemma 1. Let a0 and a1 be any two chosen “base” vectors starting at the center O of the same 

face in the hexagonal net (into which B is embedded) and with the endpoints in an adjacent 

face such that the turn from a0 to a1 is 60˚ in the clockwise direction. Let a2 = a1 – a0, a3 = – 

a0, a4 =  – a1, a5 = a0 – a1. Denote the axes of a coordinate system starting at O and pointing in 

the directions of a0 and a1 by x and y. Then these 6 vectors can be represented as follows: a0 = 

(1,0) , a1 = (0,1), a2 = (–1, 1), a3 = (– 1, 0), a4 = (0, –1), a5 = (1, –1). 

Lemma 2. Any walk through the centers of a chain of adjacent hexagons H1, H2, H3,…,Hr can 

be expressed as a sequence Δ(B) = (Δ1, Δ2, Δ3,…, Δr) of “difference vectors” Δj = fj+1 – fj, 

where fj is the vector starting at the coordinate origin O and ending in the center of Hj, j = 

1,2,…, r. Hence this holds also in the case that H1, H2, H3,…,Hr are consequent boundary 

faces of a benzenoid B with entries k1, k2, k3,…, kr in the boundary code e(B) = (k1, k2,…, kr). 
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Figure 3: (left) the vectors a0 = (1,0) , a1 = (0,1), a2 = (–1, 1), a3 = (– 1, 0), a4 = (0, –1), a5 = (1, –1), 

(right) a walk expressed with difference vectors Δj. 

Lemma 3. Since fj+1 = fj + Δj  = f1 + Δ1 + Δ2 + Δ3 +…  + Δj, such a walk is closed (i.e. f1 = fj) 

if and only if Δ1 + Δ2 + Δ3 +…  + Δj = 0.  

Lemma 4. Consequently, H1 = Hj is a boundary hexagon of BB having at least two entries in 

e(B) = (k1, k2,…, kr) if there is such an j < r for which f1 = fj, hence Δ1 + Δ2 + Δ3 +…  + Δj = 0. 

Since each difference vector Δj = (xj, yj) can be expressed as one of the vectors a0 = (1,0) , a1 

= (0,1), a2 = (–1, 1), a3 = (– 1, 0), a4 = (0, –1), a5 = (1, –1), this is equivalent to the conditions 

x1 + x2 + x3 +…  + xj = 0 and y1 + y2 + y3 +…  + yj = 0, that are very easy to check.  

Lemma 5. So we can write Δj = ad(j),, where d(j) denotes one of the six possible directions 0, 

1, 2, 3, 4, or 5 of difference vectors.  

But we can actually calculate fj and Δj  from e(B)! 

Theorem 1. d(j + 1) = d(j) + kj+1 – 2 (mod 6). 

Proof. The numbers d(j + 1) = d(j) denote the directions of difference vectors  Δj+1  and  Δj.  

It is easy to see that if kj+1 = 2 then d(j + 1) = d(j) (see Figure 4). Likewise: 

if kj+1 = 1 then d(j + 1) = d(j) – 1 (mod 6), 

if kj+1 = 3 then d(j + 1) = d(j) + 1 (mod 6), 

if kj+1 = 4 then d(j + 1) = d(j) + 2 (mod 6), 

if kj+1 = 5 then d(j + 1) = d(j) + 3 (mod 6).  □ 
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Figure 4:  Proof of the formula d(j + 1) = d(j) + kj+1 – 2 (mod 6). 

Theorem 2. Embed BB in the hexagonal net so that f1 = 0 (i.e. the coordinate origin is placed 

in the center of the face H1) and f2 = a0. Then fj may be calculated recursively from e(B) by 

the formulas:   

        f1 = 0,                    d(1) = 0,  

f2 = f1 + ad(1) ,      d(2) = d(1) + k2 – 2 (mod 6) 

….. 

fj+1 = fj + ad(j) ,     d(j+1) = d(j)  + kj+1 – 2 (mod 6)     

….. 

fr = fr-1+ ad(r-1) ,     d(r+1) = d(r)  + k1 – 2 (mod 6). 

f1 = fr + ad(r)          (this is a test if e(B) really defines a benzenoid!). 

Proof. This follows immediately from Theorem 1.□ 

The formulas of Theorem 1 may be better understood if reinterpreted in the context of 

the “turtle geometry” of Abelson and diSessa [1]. In this geometry a “turtle” moves along a 

piecewise linear path. The sum of  its “local turnings” (left or right for an angle αi) is called 

the “total turning”. Hence the formulas of Theorem 1 simply say: 

Theorem 3.  The local turnings d(j + 1) – d(j) of a turtle crawling along the path through 

the centers f1, f2 ,…, fr of boundary faces H1, H2,…, Hr of a benzenoid B can be expressed 

with the entries kj+1 in e(B) = (k1, k2,…, kr) as follows: d(j + 1) – d(j) = kj+1 – 2 (mod 6) . 

Using this geometry it is easy to prove the following deep theorem ([1], p. 24):  

Theorem 4. The total turning t(P) = α1 + … + αr (a turtle makes) along a closed path P is an 

integer multiple of  360º. The path is simple if and only if t(P) = ±360º. 
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Proof. This follows from the “deformation theorem” ([1] , pp. 182-188) which says that the 

total turning along a closed curve is not changed under continuous deformations. Since a 

simple closed curve can be deformed into a square, and since a square path obviously has the 

total turning t(P) = 4 right angles = ±360º , the theorem follows. □ 

Suppose a turtle travels with a constant (scalar value of) velocity along the polygonal line 

P between adjacent boundary faces. Then the difference vectors Δj may be interpreted as 

velocities (vectors!), and the changes in them Δj+1 − Δj as accelerations (expressed with local 

turnings d(j+1) – d(j)). Now the Theorem 4 can be reformulated and applied to benzenoids:  

Definition 1. Let ni denote the number of entries i in e(BB).  

Theorem 5. (k1 – 2) + … + (kr – 2) = 6 + 6n5 for any benzenoid B. 

Proof. Suppose first the closed path through the centers f1, f2 ,…, fr of consecutive boundary 

faces H1, H2,…, Hr of a benzenoid B is simple. Then t(P) = +360º, hence d(1) + … + d(r) = 6. 

If this path is not simple, it can happen only if some kj+1 = 5. But then the parts of this path 

traversed from fj to fj+1 and back to fj contributes another 6 to the t(P). □ 

Theorem 6. If n4 = n5 = n6 = 0, then n3 = n1 + 6, hence n3 ≥ 2.  

Proof. The entries 1,2,3 contribute – 1,0,1, respectively, to the sum (k1 – 2) + … + kr – 2) = 6. 

Remark. This theorem completes the step 1) of our plan. Now we procced to the step 2). The 

test if a boundary hexagon H has at least two entries in e(B) is given in the following theorem: 

Theorem 7. Choose a boundary hexagon H, name it H1, and calculate fj from e(B) = (k1, 

k2,…, kr) by the formulas of  Theorem 2. If there is a j < r such that f1  = fj  then H has at least 

two entries in e(B). 

Remark. Theorem 7 gurantees that the step 2) of our plan can be executed indeed: we just 

have to check which of the hexagons with entries 3 (existence of at least one such hexagon is 

guaranteed by Theorem 6) has only one entry in the e(B), if all the entries of it are 1, 2 or 3.   

Now we just put all the pieces together:  

Theorem 8. To calculate h(B) from e(B) we may use the following procedure: 
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i) embed BB into a hexagonal net so that f1 = 0 and f2 = a0 (as in Theorem 2) and calculate 

f3,…,fr by recursive formulas of Theorem 2;  

ii) produce a sequence of benzenoids B = B1, B2,…, Bh(B), where Bj+1 is obtained from Bj by 

taking one properly chosen boundary hexagon away as follows: 

a) if there is a hexagon Hi in Bj such that ki = 5 in e(Bj) = (…, a, 5, b, … ), then eliminate Hi 

to obtain Bj+1. Then e(Bj+1) = (…, a + b + 1, …); 

b) if all the entries in e(Bj) are less than 5 and if there is a hexagon Hi in Bj such that ki = 4 in 

e(Bj) = (…, a, 4, b, … ), eliminate Hi to obtain Bj+1. Then e(Bj+1) = (…, a + 1, 1 + b, …); 

c) if all the entries in in e(Bj) are less than 4 there is (by Theorems 7 and 8) a hexagon Hi in 

Bj such that ki = 3 and having no other entries in e(Bj) = (…, a, 3, b, … ). Eliminate Hi to 

obtain Bj+1. Then e(Bj+1) = (…, a + 1, 1, 1 + b, …); 

iii) Then the number of hexagons of B is h(B) = (the number of these recursive steps) + 1. 

Proof. To check the formulas for e(Bj+1) see Figure 2. □ 

Definition 2. Let eb(BB) be the number of boundary edges in a benzenoid B.  

Theorem  9. If we delete from Bj a hexagon, having entry 5 in e(Bj), then eb(Bj+1) = eb(Bj+1) – 

4. If we delete from Bj a hexagon, having entry 4 in e(Bj), then eb(Bj+1) = eb(Bj+1) – 2. If we 

delete from Bj a hexagon, having only entry 3 in e(Bj), then eb(Bj+1) = eb(Bj+1) .  

Theorem  10. Each benzenoid B can be constructed by a recursive process, producing a 

sequence of benzenoids B1, B2,…, Bm = B, starting with a single hexagon B1 and adding 

hexagons to Bi having only one entry 5, 4 or 3 in e(Bi+1).  Let a, b, c be the numbers of deleted 

hexagons of type a), b) and c) from Theorem 10. Then h(B) = a + b + c and eb(B) = 6 + 2b + 

4c. If a = 0 then b = eb(B)/2 + 2h(B) – 3 and c = b(B)/2 – h(B) – 3. 

Proof. We just reverse the process of Theorem 10. Obviously h(B) = a + b + c. Since eb(B1) = 

6, and using formulas of Theorem 11, we have eb(B) = 6 + 2b + 4c. The rest are just easy 

calculations. □ 
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3. Summary and generalizations 
We have given the missing details in the algorithm, proposed in [12], for counting the number 

of faces h(BB) in a benzenoid B from its boundary edges code e(B). We can use the same 

method for the counting of faces of planar pentagonal systems, as well as for the »spherical 

pentagonal systems«, obtained from the dodecahedron by deleting some of its faces (studied 

e.g. in Deza, Fowler, Grishukin [5] ). 

Definition 3. Let P be a planar molecule, composed of regular pentagons connected face to 

face. For pentagonal systems without holes and overlapping faces we define a boundary 

edges code e(P) as follows: the entries ki of e(P) = (k1, k2,…, kr) count the numbers ki of 

edges in consecutive boundary pentagons (we travel around the boundary in the clockwise 

direction, starting at any pentagon, and having the interior of P  always at our right). The 

entries ki in the e(P) may be only numbers 1, 2, 3, 4; the only exception to this rule is a single 

pentagon, whose boundary edges code is e(P) = (5). 

 

Figure 5: A pentagonal system P with a boundary edges code e(P) = (4,2,4,3,1). 

Theorem 11. Let P be a planar pentagonal system without holes and overlapping faces. To 

calculate the number of faces f(P) from e(P) we may use the following procedure:  

Produce a sequence of pentagonal systems P = P1, P2,…, Pf(P), where Pj+1 is obtained from Pj 

by taking one properly chosen boundary pentagon away as follows: 

i) if there is a hexagon Pi in Pj such that ki = 4 in e(Pj) = (…, a, 4, b, … ), then eliminate Hi to 

obtain Pj+1. Then e(Pj+1) = (…, a, b + 1, …); 

ii) if all the entries in e(Pj) are less than 4 and if there is a pentagon Pi in Pj such that ki = 3 in 

e(Bj) = (…, a, 3, b, … ), eliminate Pi to obtain Pj+1. Then e(Pj+1) = (…, a, 1, 1 + b, …); 

iii) if all the entries in e(Pj) are 1 or 2, eliminate a pentagon Pi in Pj having only the entry ki = 

2 in e(Bj) = (…, a, 2, b, … ), to obtain Pj+1. Then e(Pj+1) = (…, a + 1, 1, 1 + b, …). 
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Then the number of hexagons of PP is h(P) = (the number of these recursive steps) + 1. 

Proof. To check the formulas for e(Pj+1) in the planar case see Figure 6. In steps ii) and iii) 

we obtain a structure, that is no longer face-to face connected; nevertheless, a boundary 

edges code can be defined also for such structures (just as in Definition 3)! 

 

Figure 6: Eliminations (…,a,4,b,…) → (…,a,1+b,…) and (…, a,3,b,…) → (…,a,1,1+b,…) 

and (…,a,2,b,…) → (…,a+1, 1, 1+b,…) and a chain of pentagons with entries 2 and 1. 

To see that the steps i), ii) and iii) suffice to eliminate all pentagons except the last one, 

suppose there are only entries 1 and 2 in e(Pj), and that all the boundary pentagons have both 

entries 2 and 1 in e(Pj) (it is obviously not possible that all the entries were 1). But this leads 

into a contradiction, since in that case Pj would have two components of boundary edges (this 

is true for each pentagon, consequently the »left« boundary would never meet the »right« one 

– see Figure 8), therefore Pj  would have holes; but since P1 is without holes, then all the Pj 

are without holes, too, since the steps i) and ii) can not produce them.  

In the case of »dodecahedral pentagonal system without holes« P, the transformation 

formulas e(Bj)  → e(Bj+1) of the steps i), ii) and iii) are the same, but in the steps ii) and iii) 

we do not have a situation of the boundary intersecting itself as in the planar case.□ 

Appendix: Types of faces in benzenoids and coronoids 

Balaban and Nenitezcu [2,3]  classified the types of faces in benzenoids B and coronoids C 

by the number of of their adjacent hexagons. In fact, they forgot the third one of the four-

contact cases (see Table 1). We can refine that classification as follows: 
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Theorem 12. There are 11 types of boundary faces of BB or C. They may have 1, 2 or 3 

entries in the BEC. The type of any boundary hexagon H in B can be deduced from e(B).  

Proof.  Different types of boundary hexagons all have different sets of entries in e(B) except 

the two 1+1 types (see Table 1), which can be distinguished using the information hidden in 

e(B) as follows:  let H1 = Hj be a (1 + 1)-type hexagon. Then d(j) = − d(1) or d(j) = d(1) − 

2(mod 6). And we know from Theorem 2 that d(1),…, d(r) can be calculated from e(B). □ 

 0 1 2 3 

One-
contact 

 5     

Two-
contact 

 
4  

3+1     2+2  1+1+1 

Three-
contact 

 

3    2+1   

 

Four-
contact 

 

2  1+1   1+1  

 

Five-
contact 

 

1  

  

Six-
contact 

 

   

Table 1: Classification of hexagons by the number of their contacts (1, 2, 3, 4, 5 or 6) with other 

hexagons and by the number of components (0, 1, 2 or 3) of their edges at the boundary. 
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