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Abstract

Gutman and Wagner [I. Gutman, S. Wagner, The matching energy of a graph,
Discrete Appl. Math. 160 (2012) 2177-2187] defined the matching energy of a
graph and gave some properties of the matching energy, especially in characteriz-
ing the extremal graphs among some classes of graphs. Further, the graphs with
maximum matching energy and given connectivity (resp. chromatic number) were
characterized by Li and Yan. In this paper, the unicyclic graphs with fixed girth
and the graphs with given clique number are characterized in terms of maximum
and minimum matching energy.

1 Introduction

In 2012, Gutman and Wagner [5] defined the matching energy of a graph G, denoted

by ME(G), as

ME(G) =
2

π

∫ ∞

0

1

x2
ln

[∑
k≥0

mk(G)x2k

]
dx. (1)

As pointed out in [5], the matching energy is a quantity of relevance for chemical

applications, which may be supported by the simple relation TRE(G) = E(G)−ME(G),
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where TRE(G) and E(G) stand for the topological resonance energy and energy of G,

respectively. It is also noticed that if the graph G is a forest, its matching energy coincides

with its energy. The energy of a graph was also introduced by the same scholar Gutman

in [6] and has been studied extensively (see [6, 8, 11]).

All graphs under discussion are finite, undirected and simple. A matching in a graph is

a set of pairwise nonadjacent edges, and by mk(G) we denote the number of k-matchings

of a graph G. It is both consistent and convenient to define m0(G) = 1. Matching theory

has been an active and can be found applicable in numerous fields [13]. One of those

concerning matching is the well-known Hosoya index [7], defined as the total number of

matchings, including the empty edges set, of a graph. Another is the matching polynomial

of a graph G of order n, defined as

α(G, x) =
∑
k≥0

(−1)kmk(G)xn−2k, (2)

where the convention that mk(G) = 0 for k < 0 or k > n/2 is adopted. For any graph

G, all the zeros of α(G, x) are real-valued and the theory of matching polynomial is well

elaborated in [1, 2, 4, 3]. Recall the following result in [5].

Theorem 1 ([5]). Let G be a simple graph, and let μ1, μ2, . . . , μn be the zeros of its

matching polynomial. Then

ME(G) =
n∑

i=1

|μi|.

This makes us believe that the matching energy of a graph may have an important

role to play in studying the matching of a graph.

The integral on the right hand side of Eq.(1) is increasing in all the coefficients mk(G).

This means that if two graphs G and G′ satisfy mk(G) ≤ mk(G
′) for all k ≥ 1, then

ME(G) ≤ ME(G′). If, in addition, mk(G) < mk(G
′) for at least one k, then ME(G) <

ME(G′). It then motivates the introduction of a quasi-order �, defined by

G � H ⇐⇒ mk(G) ≥ mk(H), for all nonnegative integers k.

If G � H and there exists some k such that mk(G) > mk(H), then we write G � H.

By this, we have G � H =⇒ ME(G) ≥ ME(H) and G � H =⇒ ME(G) > ME(H).

From this fact, one can readily deduce the extremal graphs for matching energy.
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Given a graph G and an edge uv of G, we denote by G− uv (resp. G− v) the graph

obtained from G by deleting the edge uv (resp. the vertex v and edges incident to it).

Lemma 1 ([1]). If u, v are adjacent vertices of G, then

mk(G) = mk(G− uv) +mk−1(G− u− v)

for all nonnegative integers k.

From the lemma above, it follows that mk(G) can only increase when edges are added

to a graph and the following observation has been obtained in [5].

Theorem 2 ([5]). Let G be a graph and e one of its edges. Let G − e be the subgraph

obtained by deleting from G the edge e, but keeping all the vertices of G . Then

ME(G− e) < ME(G).

Consequently, a series of results concerning the extremal graphs of matching energy

can be obtained by the nice property of matching energy. Denote by Kn and Sn the

complete graph and star on n vertices, respectively.

Corollary 1 ([5]). Among all graph on n vertices, the empty graph En without edges and

the complete graph Kn have, respectively, minimum and maximum matching energy.

Corollary 2 ([5]). The connected graph on n vertices having minimum matching energy

is the star Sn.

Denote by Un the set of all connected unicyclic graphs on n vertices. Let Cn be the

n-vertex cycle, and let S+
n be the graph obtained by adding a new edge to the star Sn.

Theorem 3 ([5]). If G ∈ Un, then

ME(S+
n ) ≤ME(G) ≤ME(Cn)

with equality if and only if G ∼= S+
n and G ∼= Cn, respectively.

Cutman and Wagner also pointed out the following result.
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Lemma 2 ([5]). Suppose that G is a connected graph and T an induced subgraph of G

such that T is a tree and T is connected to the rest of G only by a cut vertex v. If T is

replaced by a star of the same order, centered at v, then the matching energy decreases

(unless T is already such a star). If T is replaced by a path, with one end at v, then the

matching energy increases (unless T is already such a path).

After then, Ji, Li and Shi [9] characterized the graphs with the extremal matching

energy among all bicyclic graphs. Li and Yan [12] characterized the connected graph with

the given connectivity (resp. chromatic number) which has maximum matching energy.

Particularly, the following result concerning chromatic number is listed which will be used

in the sequel. Recall that Turán graph Tχ,n is complete χ-partite graph on n vertices in

which all parts are as equal in size as possible. The chromatic number χ(G) of a graph

G is the minimum number of colors such that G can be colored with these colors in such

a way that no two adjacent vertices have the same color.

Lemma 3 ([12]). Let G be a connected graph of order n with chromatic number χ. Then

ME(G) ≤ME(Tχ,n).

The equality holds if and only if G ∼= Kr, . . . , r︸ ︷︷ ︸
χ−s

,r + 1, . . . , r + 1︸ ︷︷ ︸
s

, where r and s are integers

with n = rχ+ s and 0 ≤ s ≤ χ.

In this paper, we characterize the unicyclic graphs of order n with fixed girth and ex-

tremal (i.e., maximum and minimum) matching energy. Meanwhile, the extremal graphs

among all connected graphs with given order and clique number are characterized.

2 Main results

First recall some notations and a result in [10]. Denote by Ug,n the set of uni-

cyclic graphs with n vertices and a cycle of length g. The sun graph, denoted by

Cg(Pr1+1, . . . , Prg+1), is one obtained from the cycle Cg = v1v2 · · · vgv1 by identifying one

pendant vertex of path Pri+1 with vertex vi for i = 1, . . . , g. Note that Cg(Pn−g+1, P1, . . . , P1)

is also called lollipop graph and denoted by Eg,n, as shown in Figure 1. Similarly,

Cg(Sr1+1, . . . , Srg+1) stands for the uncyclic graph of the cycle Cg = v1v2 · · · vgv1 together
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with ri pendant edges attached at vertex vi for i = 1, . . . , g, where r1, . . . , rg are nonnega-

tive integers. Also, in particular, Cg(Sn−g+1, S1, . . . , S1) is simply denoted by Cg(Sn−g+1),

as given in Figure 1.

��
��

•
•
•......•

�
��

���
�
�
�

Cg

(i) Cg(Sn−g+1) (ii) Eg,n

}
n− g ��

��
• • . . .. . .• •Cg

Fig. 1 The graphs Cg(Sn−g+1) and Eg,n.

Theorem 4 ([10]). Let n, g be any positive integers, n > g ≥ 3. For any G ∈ Ug,n,mk(Eg,n) ≥
mk(G) for all positive integers k.

From Theorem 4, it follows immediately that Eg,n � G for any G ∈ Ug,n, and so

ME(Eg,n) ≥ ME(G). To show the uniqueness of Eg,n as maximum graph, it suffices to

prove that Eg,n � G for any G ∈ Ug,n\{Eg,n}, which is solved in the following.

Theorem 5. Let n, g be positive integers, n > g ≥ 3. For any connected graph G ∈ Ug,n,

we have

ME(Eg,n) ≥ME(G)

with equality if and only if G ∼= Eg,n.

Proof. From Theorem 4, it suffices to show that for any G ∈ Ug,n\{Eg,n}, mk(Eg,n) >

mk(G) for some k. Now we show that this holds at least for the case of k = 2.

Any graph G ∈ Ug,n can be viewed as obtained from a cycle Cg together with some

trees rooted on the cycle vertices. By Lemma 2, when any rooted tree is replaced by a

path with one end at the cycle vertex, the matching energy increases unless the rooted

tree is already such a path. After replacing all rooted trees of G with paths, the resulting

graph is of the form sun graph. Therefore, to prove that ME(Eg,n) > ME(G) for any

G ∈ Ug,n\{Eg,n}, it suffices to prove that the matching energy of all sun graphs with girth

g and order n which is not a lollipop graph is always less than that of Eg,n.

Next we shall show that for any sun graph Cg(Pr1+1, Pr2+1, . . . , Prg+1) which is not a

lollipop graph, m2(Eg,n) > m2(Cg(Pr1+1, Pr2+1, . . . , Prg+1)). Let t = |{i|ri > 0}|. Because
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Cg(Pr1+1, Pr2+1, . . . , Prg+1) is not a lollipop graph, t ≥ 2 and say r1, r2 > 0, without loss

of generality. Recall a formula used in [5], that is

m2(G) =

(
m

2

)
−

n∑
i=1

(
di
2

)
,

where m denotes the number of edges in G and di the degree of the i-th vertex for

i = 1, . . . , n. We have

m2(Cg(Pr1+r2+1, P1, Pr3+1, . . . , Prg+1))−m2(Cg(Pr1+1, Pr2+1, . . . , Prg+1))

=−
[(

2

2

)
+

(
2

2

)]
+

[(
3

2

)
+

(
1

2

)]
=1.

Continuing the process above, we ultimately come to

m2(Eg,n)−m2(Cg(Pr1+1, Pr2+1, . . . , Prg+1)) = t− 1.

Since t ≥ 2, m2(Eg,n)−m2(Cg(Pr1+1, Pr2+1, . . . , Prg+1)) > 0 and so we are done.

Theorem 6. Let n, g be positive integers, n > g ≥ 3. For any graph G ∈ Ug,n, we have

ME(Cg(Sn−g+1)) ≤ME(G)

with equality if and only if G ∼= Cg(Sn−g+1).

Proof. By Lemma 2, for any graph G ∈ Ug,n, its matching energy decreases when any tree

rooted at cycle vertex is replaced with a star centered at the cycle vertex. Thus it suffices

to prove that the assertion holds for any such graph G of the form Cg(Sr1+1, . . . , Srg+1).

Let G = Cg(Sr1+1, . . . , Srg+1), with the unique cycle Cg = u1u2 · · · ugu1 and ri pendant

edges attached at vertex ui for i = 1, . . . , g. We proceed by induction on t, where t =∑g
i=1 ri, i.e., the number of pendant edges of G. Clearly t ≥ 1 as n > g. If t = 1, then

G = Cn−1(S2) and there is nothing to prove. Now suppose that t > 1 and the result is

valid for the graphs with less than t pendant edges. Without loss of generality, suppose

that r1 > 0 and u1v1 is a pendent edge at the vertex u1 lying on the cycle of G. By

Lemma 1, we have

mk(G) =mk(G− u1v1) +mk−1(G− u1 − v1)

=mk(Cg(Sr1 , Sr2+1, . . . , Srg+1))

+mk−1(Cg(S1, Sr2+1, . . . , Srg+1)− u1),
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and

mk(Cg(Sn−g+1)) =mk(Cg(Sn−g)) +mk−1(Pg−1) .

Since Cg(Sr1 , Sr2+1, . . . , Srg+1) has less than t pendant edges, by the induction hypothesis,

mk(Cg(Sr1 , Sr2+1, . . . , Srg+1)) ≥ mk(Cg(Sn−g)).

Meanwhile, note that Pg−1 is a proper subgraph of graph Cg(S1, Sr2+1, . . . , Srg+1)−u1, so

the number of k-matchings of the former is always not more than that of the latter. In

particular, m1(Pg−1) < m1(Cg(S1, Sr2+1, . . . , Srg+1)− u1). So we conclude that

mk(Cg(Sr1+1, Sr2+1, . . . , Srg+1)) ≥ mk(Cg(Sn−g+1)),

holds for all k and the inequality is strict at least for k = 2. So Cg(Sr1+1, Sr2+1, . . . , Srg+1) �
Cg(Sn−g+1).

We can now conclude that G � Cg(Sn−g+1) for any graph G ∈ Ug,n \ {Cg(Sn−g+1)}.
The proof of the theorem is complete.

A complete graph is a simple graph in which any two vertices are adjacent. A complete

subgraph of G is called a clique of G and that the maximum size of a clique of a graph G

is called the clique number of G. Next we shall investigate the extremal graphs with fixed

clique number in terms of matching energy. Among all graphs with clique number l and

order n, it is easily to verify that the graph Kl ∪En−l, where En−l is the empty graph on

n − l vertices, uniquely attains minimum matching energy. So we only need to consider

the connected ones.

We denote by ωn,l the set of connected graphs with clique number l and n vertices.

Denote by Kl(Sr1+1, Sr2+1, . . . , Srl+1) the connected graphs which consist of the clique

Kl with V (Kl) = {v1, v2, . . . , vl} and ri pendant edges attached at vertex vi for i =

1, . . . , l, where r1, . . . , rg are nonnegative integers. Kl(Sn−l+1, S1, . . . , S1) is simply written

as Kl(Sn−l+1), and K5(Sn−4) is, for example, given in Figure 2.
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Fig. 2 The graph K5(Sn−4).
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Theorem 7. For any graph G ∈ ωn,l, we have

ME(G) ≥ME(Kl(Sn−l+1))

with equality if and only if G ∼= Kl(Sn−l+1).

Proof. Any graph G ∈ ωn,l has an induced subgraph Kl and let the vertices of the clique

be labelled as v1, v2, . . . , vl. Suppose that G has the minimum matching energy in ωn,l.

By Theorem 2, G must have as the least number of edges in ωn,l as possible. Then G can

be thought of as obtained from Kl by attaching some trees rooted at some vertices of Kl.

From Lemma 2, replacing any such rooted tree with a star centered at the ver-

tex of the clique decreases its matching energy. Therefore we can assume that G is

already of the form Kl(Sr1+1, Sr2+1, . . . , Srl+1). Next we shall show that for any k,

mk(Kl(Sr1+1, Sr2+1, . . . , Srl+1)) ≥ mk(Kl(Sn−l+1)). We proceed by induction on t, where

t =
∑l

i=1 ri, i.e., the number of pendant edges of G. If t = 1, there is nothing to prove.

So suppose that t > 1 and the result is valid with less than t pendant edges. Without

loss of generality, suppose that r1 > 0 and v1u1 is a pendant edge at the vertex v1 lying

on the clique of G. By Lemma 1, we have

mk(Kl(Sr1+1, Sr2+1, . . . , Srl+1))

= mk(Kl(Sr1+1, Sr2+1, . . . , Srl+1)− v1u1)

+mk−1(Kl(Sr1+1, Sr2+1, . . . , Srl+1)− v1 − u1)

= mk(Kl(Sr1 , Sr2+1, . . . , Srl+1)) +mk−1(Kl−1(Sr2+1, . . . , Srl+1)),

and

mk(Kl(Sn−l+1)) = mk(Kl(Sn−l)) +mk−1(Kl−1).

Since Kl(Sr1 , Sr2+1, . . . , Srl+1) has less than t pendant edges, by the induction hypothesis,

mk(Kl(Sr1 , Sr2+1, . . . , Srl+1)) ≥ mk(Kl(Sn−l)).

In the meantime, Kl−1 is a proper subgraph of Kl−1(Sr2+1, . . . , Srl+1), which implies

that for all k the number of k-matchings of the former is always not more than that

of the latter. Particularly, m1(Kl−1(Sr2+1, . . . , Srl+1)) > m1(Kl−1). This follows that
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mk(Kl(Sr1+1, Sr2+1, . . . , Srl+1)) ≥ mk(Kl(Sn−l+1)) for all k and the inequality is strict for

k = 2. Consequently, ME(Kl(Sn−l+1)) < ME(G) provided G ∈ ωn,l \ {Kl(Sn−l+1)}.

Theorem 8. For any graph G ∈ ωn,l, we have

ME(G) ≤ME(Tl,n),

with equality if and only if G ∼= Tl,n.

Proof. Suppose that G ∈ ωn,l has the maximum matching energy. Note that first G

has Kl as its subgraph and suppose its vertices are labelled as v1, v2, . . . , vl. Initially, let

Vi := {vi}, for i = 1, . . . , l. In order to obtain graph G from Kl, we need to add the

remaining vertices to subgraph Kl and denote these vertices by v′1, v
′
2, . . . , v

′
n−l.

First, add the vertex v′1 to the subgraph Kl and the resultant graph is denoted by G1.

Considering the clique number of the resultant graph in each step cannot exceed l, the

vertex v′1 is adjacent to at most l − 1 vertices on the clique Kl. On the other hand, v′1

must be adjacent to exactly l− 1 vertices on the clique Kl, because G has the maximum

matching energy in ωn,l and so G (hence G1) has as many edges as possible. Thus v′1 is

not adjacent to exactly one vertex, say v1. Then set V1 := {v1, v′1} in G1, while other Vi’s

remain unchanged.

Now add vertex v′2 to G1 and the resultant graph is denoted by G2. If there is always

a vertex in each part Vi (1 ≤ i ≤ l) which is adjacent to v′2, then the clique number of

the resultant graph would surpass l, a contradiction with that G ∈ ωn,l. Thus v′2 can be

adjacent to at most l− 1 parts Vi. Meanwhile, note that v′2 can be adjacent to all vertices

in these l− 1 parts, without causing its clique number to surpass l. Since G2 has as many

edges as possible, v′2 is not adjacent to precisely one part, say V2. Set V2 := V2 ∪ {v′2}.
Continuing the process above, ultimately we come to the resultant graph Gn−l, which

is already G. Obviously G obtained in this way must be complete l-partite graph on n

vertices. So χ(G) = l.

Based on χ(G) = l and Lemma 3, we have ME(G) ≤ Tl,n. Note that Tl,n ∈ ωn,l also,

then the theorem follows immediately.
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