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Abstract

The incidence energy of a graph is defined as the sum of singular values of its
incidence matrix. In this paper, we establish some new bounds on the incidence
energy of connected graphs.

1 Introduction

Let G be a simple connected graph with n and m edges. Let V (G) = {v1, v2, . . . , vn} be

the vertex set of G. For vi ∈ V (G), the degree of the vertex vi, denoted by di, is the

number of vertices adjacent to vi. Let Δ and δ be the maximum and the minimum vertex

degree of G, respectively.

Let A (G) be the (0, 1)-adjacency matrix of G and λ1, λ2, . . . , λn be its eigenvalues.

The eigenvalues of A (G) are said to be [3] the eigenvalues of G and to form its spectrum.

Then the energy of the graph G is defined as [12]

E = E (G) =
n∑

i=1

|λi| .

An extensive work has been done on graph energy in the literature. For more details, see

[13, 22] and the references cited therein.

Nikiforov [28] extended the concept of graph energy to any matrix defining it as the

sum of singular values of this matrix. Recall that the singular values of a (real) matrix M
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are equal to the square roots of the eigenvalues of MMT , where MT denotes the transpose

of M . In particular, for a graph G, E (G) = E (A (G)) .

Let I (G) be the vertex-edge incidence matrix of the graph G. For a graph G with

vertex set V (G) = {v1, v2, . . . , vn} and edge set E (G) = {e1, e2, . . . , em}, the (i, j)-entry

of I (G) is 1 if the vertex vi is incident with the edge ej, and is 0 otherwise. Motivating the

idea in [28], Jooyandeh et al. defined the energy of the incidence matrix I (G), namely,

the incidence energy as [19]

IE = IE (G) =
n∑

i=1

σi

where σ1, σ2, . . . , σn are the singular values of I (G). Various properties and bounds for

the incidence energy were recently established in [1, 15, 16, 19, 25, 29, 31, 33, 34].

Let D (G) be the diagonal matrix of vertex degrees of the graph G. Then Laplacian

matrix of G is defined as L (G) = D (G) − A (G). The eigenvalues of L (G) are said to

be the Laplacian eigenvalues of G. Let μ1 ≥ μ2 ≥ · · · ≥ μn be the Laplacian eigenvalues

of G. It is well known that μn = 0 and the multiplicity of zero is equal to the number

of connected components of G [10]. For more information on Laplacian eigenvalues, see

[26, 27].

The signless Laplacian matrix of the graph G is defined as Q (G) = D (G) + A (G).

Let q1 ≥ q2 ≥ · · · ≥ qn be the eigenvalues of Q (G). These eigenvalues are non-negative

real numbers and called signless Laplacian eigenvalues of G. For more information on

signless Laplacian eigenvalues, see [4, 5, 6, 7]. As well known in graph theory, Q (G) =

I (G) I (G)T . Then

IE = IE (G) =
n∑

i=1

√
qi

which was discovered in [15].

Short time ago, Liu and Liu introduced the quantity LEL defined by [24]

LEL = LEL (G) =
n−1∑
i=1

√
μi

and called it Laplacian-energy like invariant of the graph G. It was first considered [24]

that LEL has properties similar to the Laplacian energy [17]. But later, it was discovered

[18] that it is much more similar to the ordinary graph energy [12, 13, 22]. For survey

and more details on LEL, see the review [23] and the recent papers [9, 14, 24]. Note that

the Laplacian and signless Laplacian eigenvalues of bipartite graphs coincide [4, 26, 27].

Therefore, for bipartite graphs, LEL is equal to the incidence energy IE [15].
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In this paper, we establish some new bounds on the incidence energy of connected

graphs considering the idea in [9].

2 Lemmas

Let t = t (G) be the number of spanning trees of a graph G. Let G denotes the complement

of the graph G and let G1 × G2 denotes the Cartesian product of the graphs G1 and G2

[3]. We now introduce the following auxiliary quantities for a graph G as

t1 = t1 (G) =
2t (G×K2)

t (G)
and T = T (G) =

1

2

[
Δ+ δ +

√
(Δ− δ)2 + 4Δ

]
(1)

where Δ and δ are the maximum and the minimum vertex degree of G, respectively.

Lemma 2.1. [4, 26, 27]The spectra of L (G) and Q (G) coincide if and only if the graph

G is bipartite.

Lemma 2.2. [6] If G is a connected bipartite graph of order n, then
∏n−1

i=1 qi =
∏n−1

i=1 μi =

nt (G). If G is a connected non-bipartite graph of order n, then
∏n

i=1 qi = t1 (G) .

Lemma 2.3. [2, 32] Let G be a connected graph with n ≥ 3 vertices and Δ be the

maximum vertex degree of G. Then

q1 ≥ T ≥ Δ+ 1

with either equalities if and only if G is a star graph K1,n−1.

Lemma 2.4. [30] Let G be a simple connected graph with n vertices. Then ρ1 ≤ 2Δ, with

equality if and only if G is a regular graph.

Lemma 2.5. [4] Let G be a connected graph with diameter d (G). If G has exactly k

distinct signless Laplacian eigenvalues, then d (G) + 1 ≤ k.

Lemma 2.6. [26] Let G be a graph with n vertices. Then μ1 ≤ n, with equality if and

only if G is disconnected.

Lemma 2.7. [8] Let G be a connected graph with n vertices. Then μ1 = μ2 = · · · = μn−1

if and only if G ∼= Kn.

Lemma 2.8. [8] Let G be a connected graph with n ≥ 3 vertices. Then μ2 = μ3 = · · · =
μn−1 if and only if G ∼= Kn or G ∼= K1,n−1 or G ∼= KΔ,Δ.
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Lemma 2.9. [21] Let x1, x2, . . . , xN be non-negative numbers and let

α =
1

N

N∑
i=1

xi and γ =

(
N∏
i=1

xi

)1/N

be their arithmetic and geometric means, respectively. Then

1

N (N − 1)

∑
i<j

(√
xi −

√
xj

)2 ≤ α− γ ≤ 1

N

∑
i<j

(√
xi −

√
xj

)2
. (2)

Moreover, equality in (2) holds if and only if x1 = x2 = · · · = xN .

Lemma 2.10. [11] For a1, a2, . . . , an ≥ 0 and p1, p2, . . . , pn ≥ 0 such that
∑n

i=1 pi = 1

n∑
i=1

piai −
n∏

i=1

apii ≥ nλ

(
1

n

n∑
i=1

ai −
n∏

i=1

a
1/n
i

)
(3)

where λ = min {p1, p2, . . . , pn}. Moreover, equality in (3) holds if and only if a1 = a2 =

· · · = an.

Lemma 2.11. [20] For a, b ≥ 0 and ν ∈ [0, 1] ,

(1− v) a+ vb ≥ a1−vbv + r
(√

a−
√
b
)2

where r = min {ν, 1− ν}.

3 Main Results

In this section, we present some results on the incidence energy of connected bipartite

graphs which improve the results obtained in [9]. We also consider the connected non-

bipartite graphs and obtain some new bounds on the incidence energy of these graphs.

Theorem 3.1. Let G be a connected graph with n ≥ 3 vertices, m edges, maximum degree

Δ and t spanning trees and let t1and T be given by (1).

(i) If G is bipartite, then

LEL (G) = IE (G) ≤
√
n+

√
(n− 3) (2m− T ) + (n− 2)

(
nt

T

)1/(n−2)

(4)

and

LEL (G) = IE (G) ≥
√
T +

√
2m− n+ (n− 2) (n− 3) t1/(n−2). (5)

Moreover, equalities in (4) and (5) hold if and only if G ∼= K1,n−1.
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(ii) If G is non-bipartite, then

IE (G) <
√
2Δ +

√
(n− 2) (2m− T ) + (n− 1)

(
t1
T

)1/(n−1)

(6)

and

IE (G) >
√
T +

√
2m− 2Δ + (n− 1) (n− 2)

(
t1
2Δ

)1/(n−1)

. (7)

Proof. Considering Lemmas 2.1–2.3,2.6,2.8 and 2.9 the proof of (i) can be easily given

similar to the proof of Theorem 2.5. in [9]. Here, we only prove (ii).

Taking N = n − 1 and xi = ρi, i = 2, . . . , n in Lemma 2.9 and using Lemma 2.2, we

obtain∑
2≤i<j≤n

(√
ρi −√ρj

)2
(n− 1) (n− 2)

≤ 2m− ρ1
n− 1

−
(
t1
ρ1

)1/(n−1)

≤
∑

2≤i<j≤n

(√
ρi −√ρj

)2
n− 1

.

Since
∑n

i=1 ρi = 2m, we have∑
2≤i<j≤n

(√
ρi −

√
ρj
)2

= (n− 2)
n∑

i=2

ρi − 2
∑

2≤i<j≤n

√
ρiρj

= (n− 2) (2m− ρ1)−
(

n∑
i=2

√
ρi

)2

+
n∑

i=2

ρi

= (n− 1) (2m− ρ1)− (IE −√ρ1)
2 .

Therefore

(n− 1) (2m− ρ1)−
(
IE −√ρ1

)2
(n− 1) (n− 2)

≤ 2m− ρ1
n− 1

−
(
t1
ρ1

)1/(n−1)

≤ (n− 1) (2m− ρ1)−
(
IE −√ρ1

)2
n− 1

.

This implies that

IE ≤ √ρ1 +

√
(n− 2) (2m− ρ1) + (n− 1)

(
t1
ρ1

)1/(n−1)

(8)

and

IE ≥ √ρ1 +

√
2m− ρ1 + (n− 1) (n− 2)

(
t1
ρ1

)1/(n−1)

. (9)

Consider the function

f (x) =

√
(n− 2) (2m− x) + (n− 1)

(
t1
x

)1/(n−1)

.
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It can be easliy seen that f (x) is decreasing for x ≥ Δ + 1. By Lemma 2.3, we have

ρ1 ≥ T ≥ Δ+ 1. Therefore we obtain

f (x) ≤ f (T ) =

√
(n− 2) (2m− T ) + (n− 1)

(
t1
T

)1/(n−1)

.

Considering this, Eq. (8) and Lemma,2.4, we get

IE (G) ≤ √
ρ1 +

√
(n− 2) (2m− T ) + (n− 1)

(
t1
T

)1/(n−1)

≤
√
2Δ +

√
(n− 2) (2m− T ) + (n− 1)

(
t1
T

)1/(n−1)

.

Hence the inequality (6) holds. Similar to the above manner, let us consider the function

g (x) =

√
2m− x+ (n− 1) (n− 2)

(
t1
x

)1/(n−1)

.

It can be easliy seen that g (x) is decreasing for x ≤ 2Δ. Therefore

g (x) ≥ g (2Δ) =

√
2m− 2Δ + (n− 1) (n− 2)

(
t1
2Δ

)1/(n−1)

.

Considering this, Eq. (9) and Lemma 2.3, we get

IE ≥ √
ρ1 +

√
2m− 2Δ + (n− 1) (n− 2)

(
t1
2Δ

)1/(n−1)

≥
√
T +

√
2m− 2Δ + (n− 1) (n− 2)

(
t1
2Δ

)1/(n−1)

.

Hence the inequality (7) holds. Either equality in (6) and (7) holds if and only if ρ1 = T,

ρ2 = ρ3 = · · · = ρn and ρ1 = 2Δ. From the conditions ρ1 = 2Δ and ρ2 = ρ3 = · · · = ρn,

we conclude that G ∼= Kn. However ρ1 (Kn) = 2 (n− 1) which differs from T (Kn) =

n− 1 +
√
n− 1. Thus, (6) and (7) cannot become an equality.

Remark 3.2. From Lemmas 2.1 and 2.3, we have μ1 = ρ1 ≥ T ≥ Δ + 1 for bipartite

graphs. Then by the proof of Theorem 2.5 in [9], one may conclude that the bounds (4)

and (5) improve the bounds of Theorem 2.5 in [9] for bipartite graphs.

Theorem 3.3. Let G be a connected graph with n ≥ 3 vertices and t spanning trees and

let t1and T be given by (1).

(i) If G is bipartite, then

LEL (G) = IE (G) >
√
T + (n− 2) (nt)1/[2(n−1)]

(
2 (nt)1/[4(n−1)(n−2)]

T 1/[4(n−2)]
− 1

)
. (10)
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(ii) If G is non-bipartite, then

IE (G) >
√
T + (n− 1) (t1)

1/(2n)

(
2 (t1)

1/[4n(n−1)]

T 1/[4(n−1)]
− 1

)
. (11)

Proof. Considering Lemmas 2.1–2.3,2.7 and 2.10 one can prove the inequality (10) similar

to proof of Theorem 2.12 in [9]. Here, we only prove the inequality (11).

Taking ai =
√
ρi, i = 1, 2, . . . , n, p1 =

1
2n
, pi =

2n−1
2n(n−1)

, i = 2, 3, . . . , n in Lemma 2.10,

we obtain
√
ρ1

2n
+

2n− 1

2n(n− 1)

n∑
i=2

√
ρi − ρ

1/(4n)
1 ×

n∏
i=2

ρ
(2n−1)/[4n(n−1)]
i

≥ 1

2n

n∑
i=1

√
ρi −

1

2

n∏
i=1

ρ
1/(2n)
i .

Then by Lemma 2.2, we get
√
ρ1

2n
+

2n− 1

2n(n− 1)
(IE −√ρ1)− ρ

−1/[4(n−1)]
1 × (t1)

(2n−1)/[4n(n−1)]

≥ 1

2n
IE − 1

2
(t1)

1/(2n)

and

IE ≥ 2(n− 1)

[
(t1)

(2n−1)/[4n(n−1)]

ρ
1/[4(n−1)]
1

− 1

2
(t1)

1/(2n) +

√
ρ1

2(n− 1)

]
. (12)

Let us consider the function

f(x) =
(t1)

(2n−1)/[4n(n−1)]

x1/[4(n−1)]
+

√
x

2(n− 1)
.

It can be easily seen that f (x) is increasing for x > (t1)
1/n. By Lemma 2.3, we have

ρ1 ≥ T ≥ Δ+ 1 > Δ ≥ 2m

n
.

Using Arithmetic-Geometric Mean Inequality and Lemma 2.2, we get

2m

n
=

∑n
i=1 ρi
n

≥
(

n∏
i=1

ρi

)1/n

= (t1)
1/n .

Therefore

f (x) ≥ f (T ) =
(t1)

(2n−1)/[4n(n−1)]

T 1/[4(n−1)]
+

√
T

2(n− 1)
.

Combining this with (12), we get the inequality (11). Now we assume that the equality

in (11) holds. Then all inequalities in the above arguments must be equalities. Then,

by Lemmas 2.3 and 2.10, ρ1 = T and ρ1 = ρ2 = · · · = ρn = 2m
n
. Thus, we have

ρ1 =
2m
n
≤ Δ < Δ+1 ≤ T , which is a contradiction. Hence we conclude that (11) cannot

become an equality.
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Remark 3.4. From Lemmas 2.1 and 2.3, we have μ1 = ρ1 ≥ T ≥ Δ + 1 for bipartite

graphs. Then by the proof of Theorem 2.12 in [9], one may conclude that the bound (10)

improves the bound of Theorem 2.12 in [9] for bipartite graphs.

Theorem 3.5. Let G be a connected graph with n ≥ 3 vertices, m edges and t spanning

trees and let t1 be defined by (1).

(İ) If G is bipartite, then

LEL (G) = IE (G) >

√(
n− 1

n− 2

)[
(n− 1)2 (nt)1/(n−1) − 2m

]
. (13)

(ii) If G is non-bipartite, then

IE (G) >

√(
n

n− 1

)[
n2 (t1)

1/n − 2m
]
. (14)

Proof. Inequality (13) has been established by Das et al. [9]. Therefore, its proof will be

omitted. Here, we only prove the inequality (14).

By Arithmetic-Geometric Mean Inequality, we have

n∑
i=1

ρ
(n−1)/(2n)
i ≥ n

(
n∏

i=1

ρi

)(n−1)/(2n2)

(15)

and
n∑

j=1

ρ
(n+1)/(2n)
j ≥ n

(
n∏

j=1

ρj

)(n+1)/(2n2)

. (16)

Taking ν = n+1
2n

, a = ρi, b = ρj and r = n−1
2n

in Lemma 2.11, we get

n− 1

2n
ρi +

n+ 1

2n
ρj ≥ ρ

(n−1)/(2n)
i ρ

(n+1)/(2n)
j +

n− 1

2n

(
ρi + ρj − 2

√
ρiρj
)
.

By summation over i and j yields

n− 1

2n

n∑
i=1

n∑
j=1

ρi +
n+ 1

2n

n∑
i=1

n∑
j=1

ρj

≥
n∑

i=1

ρ
(n−1)/(2n)
i

n∑
j=1

ρ
(n+1)/(2n)
j +

n− 1

2n

n∑
i=1

n∑
j=1

(
ρi + ρj − 2

√
ρiρj
)
.

Then

2nm ≥ n2

(
n∏

i=1

ρi

)(n−1)/(2n2)( n∏
j=1

ρj

)(n+1)/(2n2)

+ 2m(n− 1)−
(
n− 1

n

)
IE2
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by (15) and (16). Considering Lemma 2.2, we get

IE2 ≥
(

n

n− 1

)[
n2 (t1)

1/n − 2m
]
.

Hence the inequality (14) holds. Now, we assume that the equality in (14) holds. Then, by

Arithmetic-Geometric Mean Inequality, it must be ρ1 = ρ2 = · · · = ρn. Thus by Lemma

2.5, d (G) = 0 which is a contradiction, since G is connected. Hence, (14) cannot become

an equality.
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[1] Ş. B. Bozkurt, I. Gutman, Estimating the incidence energy, MATCH Commun. Math.

Comput. Chem. 70 (2013) 143-156.

[2] Y. Chen, L. Wang, Sharp bounds for the largest eigenvalue of the signless Laplacian

of a graph, Lin. Algebra Appl. 433 (2010) 908-913.

[3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs- Theory and Application, Aca-

demic Press, New York, 1980.
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[7] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless

Laplacian, III, Appl. Anal. Discrete Math. 4 (2010) 156-166.

[8] K. C. Das, A sharp upper bound for the number of spanning trees of a graph, Graphs

Combin. 23 (2007) 625-632.
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