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Abstract

Let G be a graph with n vertices and m edges. Let λ1, λ2, . . . , λn be the eigenvalues
of G. The energy of graph G is defined as E(G) =

∑n
i=1 |λi|. In this note, we give

improvements of two inequalities that relate to E(G).

1 Introduction and preliminaries

Let G be a graph with n vertices and m edges. Denote with |λ1| ≥ |λ2| ≥ · · · ≥ |λn|
absolute eigenvalues of G arranged in non-increasing order, respectively. The energy of

graph G is computed as [4]:

E(G) =
n∑

i=1

|λi|

The energy of a given molecular graph is of interest since it can be related to the total

π-electron energy of molecule represented that graph (see for example [5–7]).

The following inequalities were proved in [3] for the energy of G:

E(G) ≥
√
2mn− n2

4
(|λ1| − |λn|)2 (1)

and

E(G) ≥ 2
√
2mn

√
|λ1||λn|

|λ1|+ |λn|
. (2)

In this paper we are going to prove sharper inequalities for E(G) than (1) and (2).
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2 Main result

Theorem 1 Let G be a graph with n vertices and m edges. Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn|
be a non-increasing arrangement of eigenvalues of G. Then, the following inequality is

valid

E(G) ≥
√
2mn− α(n)(|λ1| − |λn|)2 (3)

where α(n) = n
[
n
2

] (
1− 1

n

[
n
2

])
, while [x] denotes integer part of a real number x.

Equality in (3) holds if and only if G ∼= K̄n, or G or C4.

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers for which there exist real

constants a, b, A and B, so that for each i, i = 1, 2, . . . , n, a ≤ ai ≤ A and b ≤ bi ≤ B.

Then the following inequality is valid (see [1])∣∣∣∣∣n
n∑

i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n)(A− a)(B − b), (4)

where α(n) = n
[
n
2

] (
1− 1

n

[
n
2

])
. Equality in (4) holds if and only if a1 = a2 = · · · = an

and b1 = b2 = · · · = bn.

For ai := |λi|, bi := |λi|, a = b := |λn| and A = B := |λ1|, i = 1, 2, . . . , n, inequality

(4) becomes ∣∣∣∣∣∣n
n∑

i=1

|λi|2 −
(

n∑
i=1

|λi|
)2
∣∣∣∣∣∣ ≤ α(n)(|λ1| − |λn|)2.

Since E(G) =
∑n

i=1 |λi|,
∑n

i=1 |λi|2 =
∑n

i=1 λ
2
i = 2m and E(G) ≤

√
2mn (see [8]), the

above inequality becomes

2mn− E(G)2 ≤ α(n)(|λ1| − |λn|)2,

wherefrom the statement of Theorem 1 follows. Since equality in (4) holds if and only

if a1 = a2 = · · · = an and b1 = b2 = · · · = bn, equality in (3) holds if and only if

|λ1| = |λ2| = · · · = |λn|.
�

Corollary 1 Since

α(n) = n
[n
2

](
1− 1

n

[n
2

])
≤ n2

4

then according to (3) we have that

E(G) ≥
√
2mn− α(n)(|λ1| − |λn|)2 ≥

√
2mn− n2

4
(|λ1| − |λn|)2.

This means that inequality (3) is stronger of inequality (1).
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Theorem 2 Let G be a graph with n vertices and m edges. Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn| >
0 be a non-increasing arrangement of eigenvalues of G. Then, the following inequality is

valid

E(G) ≥ |λ1||λn|n+ 2m

|λ1|+ |λn|
. (5)

Equality in (5) holds if and only if G ∼= K̄n.

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers for which there exist real

constants r and R so that for each i, i = 1, 2, . . . , n holds rai ≤ bi ≤ Rai. Then the

following inequality is valid (see [2])

n∑
i=1

b2i + rR

n∑
i=1

a2i ≤ (r +R)
n∑

i=1

aibi. (6)

Equality in (6) holds if and only if, for et least one i, 1 ≤ i ≤ n holds rai = bi = Rai.

For bi := |λi|, ai := 1, r := |λn| and R := |λ1|, i = 1, 2, . . . , n inequality (6) becomes

n∑
i=1

|λi|2 + |λ1||λn|
n∑

i=1

1 ≤ (|λ1|+ |λn|)
n∑

i=1

|λi|.

Since
∑n

i=1 |λi|2 =
∑n

i=1 λ
2
i = 2m ,

∑n
i=1 1 = n and

∑n
i=1 |λi| = E(G), from the above

inequality directly follows the assertion of Theorem 2, i.e. inequality (5).

If for some i holds that rai = bi = Rai, then for the same i also holds bi = r = R.

This means that for each j, j �= i holds |λi| ≤ |λj| ≤ |λi|. Therefore equality in (6) holds

if and only if |λ1| = |λ2| = · · · = |λn|.

�

Corollary 2 Using inequality between arithmetic and geometric means, according to the

inequality (5) we have that

E(G) ≥ |λ1||λn|n+ 2m

|λ1|+ |λn|
≥ 2

√
2mn

√
|λ1||λin|

|λ1|+ |λn|
.

This means that inequality (5) is stronger then inequality (2).
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