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Abstract

A real symmetric matrix G with zero entries on its diagonal is an adjacency

matrix associated with a graph G (with weighted edges and no loops) if and only if

the non–zero entries correspond to edges of G. An adjacency matrix G belongs to a

generalized–nut graph G if every entry in a vector in the nullspace of G is non–zero.

A graph G is termed NSSD if it corresponds to a non–singular adjacency matrix G

with a singular deck {G− v}, where G− v is the submatrix obtained from G by

deleting the vth row and column. An NSSD G whose deck consists of generalized–

nut graphs with respect to G is referred to as a G–nutful graph. We prove that a

G–nutful NSSD is equivalent to having a NSSD withG−1 as the adjacency matrix of

the complete graph. If the entries of G for a G–nutful graph are restricted to 0 or 1,

then the graph is known as nuciferous, a concept that has arisen in the context of the

quantum mechanical theory of the conductivity of non–singular Carbon molecules

according to the SSP model. We characterize nuciferous graphs by their inverse

and the nullities of their one– and two–vertex deleted subgraphs. We show that a

G–nutful graph is a NSSD which is either K2 or has no pendant edges. Moreover,

we reconstruct a labelled NSSD either from the nullspace generators of the ordered

one–vertex deleted subgraphs or from the determinants of the ordered two–vertex

deleted subgraphs.
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1 Introduction

The discovery of fullerenes triggered fast developments in carbon physics and chemistry.

Different directions of research have focused on individual molecules. In this paper we

discuss the structural and algebraic constraints on molecular graphs that act as conductors

or else as insulators independent of the connectivity of the circuit wires to the atoms.

Because of the difficulty in connecting a wire to a particular atom in a molecule, it would

be practical and experimentally convenient if the structure of the molecule is such that

any two single atom contacts enable conduction through the molecule or else if every

pair bars conduction. The former molecules are termed distinct omni–conductors and

the latter distinct omni–insulators. If the ends of the two semi–infinite wires connecting

the molecule in a circuit are in contact with one atom only, instead of with two distinct

atoms, the connection is said to be ipso.

In a molecular graph G(VG, EG) of order n, the vertices in the vertex set VG =

{1, 2, . . . , n} represent the arbitrarily labelled Carbon atoms in the Π–electron system

of the molecule and the edges in the edge set EG consist of the sigma bonds in the system.

The structure of a graph G, up to isomorphism, will be encoded in this paper by the

n × n real and symmetric edge–weighted adjacency matrices {G} of G with zero entries

on the diagonal. Any real symmetric matrix G with zero diagonal is associated with the

loopless graph G, denoted also by Γ(G), in which {i, j} is a non–edge if and only if the ijth

entry of G is 0. In the case where the edge weights are all one, G will be denoted by A. A

graph G with an adjacency matrix G is a generalized–nut graph if every entry in a vector

in the null–space of G is non–zero. If a graph G corresponds to a non–singular adjacency

matrix G having singular one–vertex deleted submatrices {G− v} (where G− v is the

submatrix obtained from G by deleting the vth row and column), then we say that the

graph G belongs to the class of NSSDs (introduced in [1] and defined here in Definition

2.2). These graphs turn out to be such that both G and G−1 have zero diagonal. This sets

up a duality between G and G−1, and any of the two can take the principal role. We use

the term plain NSSD to refer to a graph which is either K2 or an NSSD with no pendant

edges. If a NSSD G happens to have all one–vertex deleted subgraphs consisting entirely

of generalized–nut graphs with respect to G, then we say that the graph is G–nutful.

The graphs considered in the study of conductivity are chemical graphs, that is, con-

nected molecular graphs with maximum vertex degree at most three. This is motivated
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by Hückel theory, whereby graphs associated with Π molecular systems must have degree

less than four. However, in this paper, we consider molecular graphs with no restriction

on the maximum vertex degree.

In the SSP (Source–and–Sink Potential) model for ballistic conduction in nano–materials,

any wave of electron flow through a molecule is set up by the incoming, reflected and trans-

mitted waves. At a particular molecular energy λ of a specific molecule, the transmission

of electrons through a specific Carbon molecular framework depends sensitively on the

single atom contacts. The SSP theory predicts that conductivity at the Fermi energy level

(λ = 0) through non–singular chemical graphs occurs for distinct contacts i and j if and

only if the ijth entry of the inverse A−1 of the 0–1 adjacency matrix A with zero diagonal

is non–zero [11]. Therefore, the zero and non–zero pattern of the entries in A−1 deter-

mines the vertex contacts for insulation and conduction respectively. Thus, for a distinct

omni–conductor which happens to be also an ipso omni–insulator, the inverse was proved

(in [11]) to belong to the complete graph Kn with no loops at any vertex. In [11], the

SSP model is shown to relate Kn = Γ(G−1) with a nuciferous graph G (Definition 3.1).

In this paper, we extend the results of [11] to any real symmetric adjacency matrix G

of G with zero diagonal. One of our main results is Theorem 3.8, stating that a NSSD G

is G–nutful if and only if Γ(G−1) = Kn. In the proofs leading to Theorem 3.8, invariants

of the adjacency matrix of G were used that will enable the reconstruction of a NSSD.

The paper is organised as follows. In Section 2, terminology related to graphs and

their submatrices is presented formally. In Section 3, we prove Theorem 3.8 and show

that a G–nutful graph is a plain NSSD. The methods we develop in these proofs shed

light on the interplay between the combinatorial properties of the one– and two–vertex

deleted subgraphs relative to the matrix G associated with the parent NSSD G = Γ(G)

and the related submatrices of G. In Section 4 we show how a NSSD can be constructed

from these graph invariants.

2 Preliminaries

The set of eigenvalues {λ} of G (also called the spectrum of G) and the associated eigen-

vectors x are determined by Gx = λx, where x �= 0. It is noted that different labellings

of the vertices of G yield similar matrices and thus an invariant spectrum.

We recall that for any square n× n matrix M, the characteristic polynomial φ(M, λ)
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(over a field F ) is det(λI−M), denoted also by |λI−M|, which is a polynomial in λ of

degree n whose roots (in the algebraic closure of F ) are the eigenvalues of M. The nullity

of a n× n matrix M, denoted by η(M), is the dimension of the nullspace ker(M) of M,

that is the number of linearly independent non–zero vectors x, called kernel eigenvectors

of M, such that Mx = 0.

For a graph G = Γ(G), the vertices can be partitioned into G–core and G–core-

forbidden vertices for G. A vertex of G corresponding to a non–zero entry in some

kernel eigenvector x is said to be a G–core vertex (G–CV) for the adjacency matrix G

associated with G. A G–core-forbidden vertex (G–CFV), for the matrix G associated

with G, corresponds to a zero entry in every kernel eigenvector of G. The nature of the

vertex is the key to determine the effect on the nullity of G when the vertex is deleted.

We denote by G− v the (n − 1) × (n − 1) principal submatrix obtained from G by

deleting the vth row and column. By Cauchy’s Inequalities for Hermitian matrices (also

referred to as the Interlacing Theorem) [4], deletion of a vertex changes the nullity of a

graph by at most one. On deleting a G–core vertex in a singular graph Γ(G), one of

the vectors in a basis for the nullspace of G is destroyed. Together with the Interlacing

Theorem, this leads to the next result, which we shall make use of, sometimes implicitly.

Lemma 2.1. [7] Let G be a graph with adjacency matrix G of nullity η. Then

(i) v is a G–core vertex for G if and only if the nullity of G− v is η − 1;

(ii) v is a G–core–forbidden vertex if and only if the nullity of G− v is either η or η+1.

Our focus will be a subclass of the class of graphs termed NSSDs, introduced in [1].

For a graph to be a NSSD, it must have the following characteristics:

Definition 2.2. [1] A graph G = Γ(G) is said to be a NSSD if G is a non–singular, real

and symmetric matrix with each entry of the diagonal equal to zero, and such that all the

(n− 1)× (n− 1) principal submatrices of G are singular.

Definition 2.3. A NSSD is said to be plain if it is either K2 or has no pendant edge.

The next result is a direct consequence of the Interlacing Theorem.

Lemma 2.4. For a NSSD G, the nullity of G− v is equal to one for all v ∈ VG.
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In [1], it was shown that NSSDs are closed under the inverse operation.

Theorem 2.5. [1] For a NSSD G with associated adjacency matrix G, the graph Γ(G−1)

is also a NSSD.

Following [1], we shall let the last two vertices of a labelled NSSD G be x and y and

write

G =

⎛⎝ Pxy Rx Ry

Rt
x 0 βxy

Rt
y βxy 0

⎞⎠ , with Pxy square (1)

and

G−1 =

⎛⎝ Lxy Sx Sy

St
x 0 αxy

St
y αxy 0

⎞⎠ , with Lxy square. (2)

In the following definition, we introduce another class {N} of graphs with N singular

which we shall refer to in the sequel.

Definition 2.6. A graph N having adjacency matrix N with each entry of the diagonal

equal to zero is said to be a generalized–nut graph if no entry in any kernel eigenvector

of N is zero.

As an aside, we note that no generalized–nut graphs exist on 2, 3 or 4 vertices. For 5

or more vertices, the problem of their existence is still open.

It follows immediately that the nullity of the matrix N associated with a generalized–

nut graph N is one. In the literature (see for example [5, 8, 12]), a nut graph refers to the

particular case when the entries of the adjacency matrix A are restricted to 0 and 1. Nut

graphs turn out to be connected, of order at least seven, to be non–bipartite and to have

neither vertices of degree one nor A–core–forbidden vertices [12, 6]. Other studies on nut

graphs can be found in [5]. For weighted adjacency matrices, see [10].

By association with the word nut, we define the class of G–nutful graphs, which is a

subclass of NSSDs. We shall show its relation to generalized–nut graphs in Corollary 3.6.

Definition 2.7. A G–nutful graph G is either K2 or a NSSD on at least three vertices

having all two vertex–deleted subgraphs of the same nullity.

In the sequel we shall denote the (n− 2)× (n− 2) principal submatrix obtained from

G by deleting the vth and the wth rows and columns by G− v −w.
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In [1], it is shown that it is impossible that for a NSSD G, the nullity of G− v −w

takes the value of one for any two distinct vertices v and w of G. We shall determine, in

Lemma 3.5, the common value of the nullity of G− v − w for any two distinct vertices v

and w of a G–nutful graph G.

3 The Inverse of a Complete NSSD

Relative to the 0–1 adjacency matrix A, the class of nuciferous graphs was introduced

in [11] as that of the molecular graphs that are distinct omni–conductors and also ipso

omni–insulators.

Definition 3.1. [11] Let A be the 0–1 adjacency matrix of a graph G. If A is non-singular,

the diagonal entries of A−1 are zero and the off-diagonal entries of A−1 are non–zero and

real, then the graph G is said to be a nuciferous graph.

The graph Γ(A−1) associated with a nuciferous graph with adjacency matrix A is thus

the complete graph Kn with weighted edges and no loops. One such candidate is K2, in

which case A−1 = A, so that K2 is both a complete graph and a nuciferous graph. To

date we know of no other nuciferous graphs [2, 11].

¿From Theorem 2.5, a key result in [1], it follows that the complete graphKn = Γ(A−1),

determined by the inverse of the 0–1 adjacency matrix A of a nuciferous graph G, is a

NSSD.

Motivated by the algebraic properties of a nuciferous graphG, we generalize the relation

of G with G−1 for a NSSD associated with a real and symmetric matrix. We explore the

properties of the inverse of an adjacency matrix associated with the complete graph Kn

when this belongs to the class of NSSDs.

3.1 Nutful Graphs

In this section we justify the use of the terms nut graphs, generalized–nut graphs, nucif-

erous and nutful graphs. We consider an adjacency matrix H belonging to a complete

graph Kn so that Γ(H) is a NSSD, henceforth referred to as the complete NSSD Kn. Note

that H−1 need not be associated with a nuciferous graph since the adjacency matrix H

is not necessarily the inverse of a 0–1 symmetric matrix.
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Lemma 3.2. Let the complete NSSD Kn have adjacency matrix H. Then the graph

Γ(H−1−y) is a generalized–nut graph for all y ∈ VKn.

Proof. Let a complete NSSD (with weighted edges) Kn have adjacency matrix H. Since

Γ(H) = Kn is a NSSD, by Theorem 2.5, Γ(H−1) is also a NSSD, and thus H−1−y has

all diagonal entries equal to zero. In [1, Proposition 4.4], it was proved that the one–

dimensional nullspace of H−1−y is generated by the eigenvector

(
Ry

βxy

)
for all x, y ∈ VKn .

Since Γ(H) = Kn, the entries of Ry and βxy are all non–zero, and hence all the entries of

the eigenvector

(
Ry

βxy

)
are non–zero. By Definition 2.6, Γ(H−1−y) is a generalized–nut

graph.

The result [11, Theorem 7.9], stating that G − v is a nut graph if G is nuciferous of

order at least 3, is a special case of Lemma 3.2.

Proposition 3.3. Let the complete NSSD Kn have adjacency matrix H. Then the graph

Γ(H−1) is (H−1)–nutful.

Proof. Since Kn is a NSSD, then H−1 exists and by Theorem 2.5, Γ(H−1) is also a

NSSD. By Lemma 3.2, Γ(H−1−y) is a generalized–nut graph for all y ∈ VKn , and thus

it has no zero entry in any vector in the nullspace of its adjacency matrix H−1−y. It

follows that all the vertices x ∈ VKn−y are (H−1−y)–core–vertices, and by Lemma 2.1,

η(H−1−x− y) = 0 for all vertices x and y.

Now we consider the reverse process. Given a G–nutful graph G, what are the possible

graphs associated with G−1? To answer this question we need to establish some more

results on nutful graphs.

Using the techniques applied in [7], we prove the following general result.

Proposition 3.4. Given a non–singular matrix G associated with a NSSD G, G−1 can be

obtained from the ordered kernel eigenvectors of {G− i} for i ∈ VG.

Proof. Let the order of a NSSD G be n. For n ≤ 2, the only non–singular graph is K2,

having each vertex–deleted subgraph isomorphic to the singular graph K1, with kernel

eigenvector (ζ1), ζ1 �= 0.

If n > 2, then, for each vertex i ∈ VG, i = 1, . . . , n, let the adjacency matrix

G− i of G − i have kernel eigenvector ζ(i) such that (G− i)ζ(i) = 0, where ζ(i) =(
ζ
(i)
1 · · · ζ

(i)
i−1 ζ

(i)
i+1 · · · ζ

(i)
n

)T
�= 0.

Let z(i) be obtained from ζ(i) by inserting a zero entry at position i in ζ(i). Let cTi

be the ith row in the adjacency matrix G of G (with zero in the ith position), and let
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Z =
(
z(1) z(2) . . . z(n)

)
. Then

GZ =

⎛⎜⎜⎜⎝
cT1
cT2
...

cTn

⎞⎟⎟⎟⎠(z(1) z(2) . . . z(n)
)
=

⎛⎜⎜⎜⎝
cT1
cT2
...

cTn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0 ζ
(2)
1 . . . ζ

(n)
1

ζ
(1)
2 0 . . . ζ

(n)
2

...
...

. . .
...

ζ
(1)
n ζ

(2)
n . . . 0

⎞⎟⎟⎟⎟⎠ . (3)

For i �= j, the ijth entry cTi z
(j) = 0, since ζ(j) is an eigenvector of G− j. If for some i,

cTi z
(i) = 0, then Gz(i) = 0, contradicting that G is non–singular. Hence the only non–zero

elements of the product GZ in (3) are the diagonal elements cTi z
(i). Thus

G−1 =

(
z(1)

cT1 z
(1)

z(2)

cT2 z
(2)

. . .
z(n)

cTnz
(n)

)
= ZDiag

(
1

cT1 z
(1)

,
1

cT2 z
(2)

, . . . ,
1

cTnz
(n)

)
and

G = Diag
(
cT1 z

(1), cT2 z
(2), . . . , cTnz

(n)
)
Z−1,

where Diag
(
α1, α2, . . . , αn

)
is a diagonal matrix with diagonal entries αi, i = 1, . . . , n.

The values of cTi z
(i) need not be known to construct the edges of G because the k�th

entry of Z−1 is non–zero if and only if {k, �} is an edge.

The reconstruction is thus complete.

The proof of Proposition 3.3 shows that if H belongs to Kn, then for the H−1–nutful

graph, the common value of the nullity of H−1−x− y for all vertices x and y is zero.

Indeed, this value of the nullity will be shown to be a characterization of G–nutful graphs.

Lemma 3.5. For a G–nutful graph G, the nullity of G− x− y is equal to zero for all

x, y ∈ VG.

Proof. We consider a G–nutful graph G. From Lemma 2.4 and as a consequence of the

Interlacing Theorem, for a pair of vertices x and y in G, η(G− x− y) is equal to either

zero, one or two.

For all y ∈ VG, η(G− y) = 1 and, by definition of a G–nutful graph, G− y has a

kernel eigenvector whose entries are all non–zero. Each vertex x of G−y corresponds to a

(G− y)–core vertex. By Lemma 2.1, deleting a core vertex decreases the nullity by one,

and hence η(G− x− y) is equal to zero. Thus, at least one vertex pair x, y is such that

η(G− x− y) = 0. However, by Definition 2.7, η(G− x− y) is a constant, and hence

must be the same for all pairs of vertices x, y in G.

We have thus justified the relation between G–nutful graphs and generalized–nut

graphs.
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Corollary 3.6. Each vertex–deleted subgraph of a G–nutful graph G is a generalized–nut

graph.

There are certain orders, k, of graphs for which generalized–nut graphs do not exist,

and thus by Corollary 3.6, there would not be any nutful graphs on k + 1 vertices.

We can now prove the converse of Proposition 3.3.

Proposition 3.7. Let G be the adjacency matrix of a G–nutful graph G. Then the graph

associated with the matrix G−1 is Kn.

Proof. We consider a G–nutful graph G. Since G is a NSSD, then by Theorem 2.5,

Γ(G−1) is also a NSSD. Also, by Lemma 2.4, η(G− y) = 1 for all y ∈ VG, and by Lemma

3.5, η(G− x− y) = 0 for all x, y ∈ VG. Thus, each vertex x in G− y is a (G− y)–core

vertex, and, as a consequence of Lemma 2.1, each entry of any kernel eigenvector ζ(y) of

G− y is non–zero. This holds for all the vertices of G, and following the same line of

proof as in Proposition 3.4, the columns z(y) of G−1 can be obtained from ζ(y) by inserting

a zero entry in the yth position. Thus, all the diagonal entries of G−1 are zero and all the

off–diagonal entries of G−1 are non–zero. Hence Γ(G−1) = Kn.

¿From Propositions 3.3 and 3.7, we deduce:

Theorem 3.8. Let G be a graph with adjacency matrix G. Then G is a G–nutful graph

if and only if Γ(G−1) = Kn.

In [1, Proposition 5.19], it is proven that if y is a terminal vertex adjacent to vertex x

in a NSSD G, then x is a terminal vertex adjacent to y in Γ(G−1). Recall that a plain

NSSD is either K2 or a NSSD with no pendant edge.

Corollary 3.9. A G–nutful graph G is a plain NSSD.

Proof. Suppose y is a terminal vertex adjacent to x in G. Then Γ(G−1) has a pendant

edge by [1, Proposition 5.19], a contradiction to Theorem 3.8 unless Γ(G−1) = K2, in

which case G = K2.

3.2 Nuciferous Graphs

The properties of nuciferous graphs discussed in [11] suggest that these graphs are a

subclass of the class of G–nutful graphs.
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Theorem 3.10. Let G be a nuciferous graph with associated 0–1 adjacency matrix A.

Then G is an A–nutful graph.

Proof. We consider a nuciferous graph G. Note that A is a non–singular, real and sym-

metric matrix with each entry of the diagonal equal to zero. By Definition 3.1, the

diagonal entries of A−1 are zero, and hence the entries on the diagonal of adj(A) are all

zero. Thus, for all vertices v ∈ VG, det(A− v) = 0, implying that η(A− v) ≥ 1. As a

consequence of the Interlacing Theorem, η(A− v) = 1. Hence, G = Γ(A) is a NSSD.

Since the graph associated with Γ(A−1) is Kn, the result follows by applying Proposi-

tion 3.3.

As for the case ofG–nutful graphs, the result that follows justifies the name ‘nuciferous’

chosen for this class of graphs.

Corollary 3.11. Each vertex–deleted subgraph of a nuciferous graph is a nut graph or K1.

Proof. By Theorem 3.10, a nuciferous graph G is a A–nutful graph. If G has at most

two vertices, then the only graph corresponding to a non–singular matrix A is K2, whose

vertex–deleted subgraphs are K1. Each vertex–deleted subgraph of a A–nutful graph G

on at least three vertices is a generalized–nut graph by Corollary 3.6. Thus, each vertex

deleted subgraph of a nuciferous graph is a nut graph.

We have thus shown that, for a nuciferous graph, the nullities of A, A− x, A− y and

A− x− y are equal to 0, 1, 1 and 0, respectively. This is one of the characterizations

of nuciferous graphs given in the following theorem, which is a direct consequence of

Theorems 3.8 and 3.10 and of Corollary 3.11.

Theorem 3.12. The following statements are equivalent for a graph G with associated

0–1 adjacency matrix A:

(i) The graph G is nuciferous.

(ii) The adjacency matrix A is non–singular and each vertex–deleted subgraph of G is a

nut graph.

(iii) The graph Γ(A−1) is the complete graph with weighted edges and no loops.

(iv) The nullities of A, A− x, A− y and A− x− y are equal to 0, 1, 1 and 0, respec-

tively, for all pairs of vertices x and y in VG.
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4 Reconstructions

In the proofs of Propositions 3.4 and 3.7, a NSSD is reconstructed from graph invariants.

Here we propose minimal sets of data that are required to reconstruct a particular NSSD.

Following the terminology for Ulam’s Reconstruction Conjecture, we call the set of one–

vertex deleted subgraphs of G the deck of G. The Polynomial Reconstruction Problem

attempts to recover φ(G, λ) from the polynomial deck {φ(G− v, λ) : v ∈ VG}. Since
φ′(G, λ) =

∑
v∈VG

φ(G− v, λ), then the problem is reduced to obtaining the constant

a0 of the characteristic polynomial φ(G, λ). A singular deck is one consisting entirely of

subgraphs having a singular adjacency matrix {G−v}. If for some v ∈ VG, η(G− v) ≥ 2,

then as a consequence of the Interlacing Theorem, zero is an eigenvalue of G and a0 = 0.

Therefore what remains to be considered for a singular deck is one consisting of subgraphs

G− v each of which has an adjacency matrix of nullity one [7].

A variant of the Reconstruction Conjecture is to reconstruct a non–singular NSSD G

from the ordered kernel eigenvectors of {G− v : v ∈ VG}. This is presented in Theorem

4.1, and its proof follows immediately from Proposition 3.4.

Theorem 4.1. A NSSD G is reconstructible from the ordered kernel eigenvectors of the

adjacency matrices {G− v}.

Each column of the adjugate adj(M) of a n × n matrix M of nullity one lies in the

nullspace ofM. Since the rank ofM is n−1, the determinant of at least one (n−1)×(n−1)
submatrix of M is non–zero. It follows that adj(M) �= 0. Therefore the rank of adj(M)

is one.

For a NSSD G, the entries of an eigenvector of G− y for y ∈ VG, associated with the

zero eigenvalue, are (up to sign) determinants of (n− 2)× (n− 2) submatrices of G. Let

the kth diagonal entry of adj(G− y) for the NSSD G be |Pky|. The matrix adj(G− y)

is real and symmetric since G is real and symmetric. It follows that the k�th entry of

adj(G− y) can be expressed in terms of the kth and �th diagonal entries of adj(G− y)

[9].

Lemma 4.2. The k�th entry of adj(G− y) is ±
√
(|Pyk| |Py�|) where |Pyk| is the deter-

minant of the principal submatrix of G obtained from G by deleting the kth and yth rows

and columns, and similarly for |Py�|.
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Proof. If G is a NSSD, then the rank of adj(G− y) is equal to one. Hence all nonzero

rows of adj(G− y) are real multiples of each other and so are the nonzero columns. Since

G− y is real and symmetric, if

adj(G− y) =

⎛⎜⎜⎜⎝
A11 A12 ... A1 n−1

A21 A22 ... A2 n−1

...
...

. . .
...

An−1 1 An−1 2 ... An−1 n−1

⎞⎟⎟⎟⎠ = (Aij)n−1×n−1

where Aij is the ijth cofactor matrix of G− y, then

A2
k� = AkkA�� = |Pyk| |Py�|

as required.

Note that the yth column of adj(G) is |G|

⎛⎝ Sy

αxy

0

⎞⎠ and is proportional to z(y) (defined

in Proposition 3.4). Also, we can use Jacobi’s Identity [3] to obtain the entries of the

matrix G (up to sign) in terms of the submatrices of G−1 (and similarly for the matrix

G−1) as shown in the following result. Simply stated, Jacobi’s identity is j2 = ut − sv,

where j is the xyth entry of the adjugate of λI − G and s, t, u, v are the characteristic

polynomials in λ of G,G− x,G− y and G− x− y, respectively. We remark that for a

matrix M, ‖M‖ denotes the absolute value of the determinant |M| of M.

Theorem 4.3. Let G be a NSSD with adjacency matrix G. Using the same notation for

G and G−1 as in (1) and (2), then

G =
√
‖G‖

⎛⎜⎜⎜⎜⎜⎝
0 ±

√
‖L12‖ . . . ±

√
‖L1n‖

±
√
‖L21‖ 0 . . . ±

√
‖L2n‖

...
...

. . .
...

±
√
‖Ln−1 1‖ ±

√
‖Ln−1 2‖ . . . ±

√
‖Ln−1 n‖

±
√
‖Ln 1‖ ±

√
‖Ln 2‖ . . . 0

⎞⎟⎟⎟⎟⎟⎠
and

G−1 = 1√
‖G‖

⎛⎜⎜⎜⎜⎜⎝
0 ±

√
‖P12‖ . . . ±

√
‖P1n‖

±
√
‖P21‖ 0 . . . ±

√
‖P2n‖

...
...

. . .
...

±
√
‖Pn−1 1‖ ±

√
‖Pn−1 2‖ . . . ±

√
‖Pn−1 n‖

±
√
‖Pn 1‖ ±

√
‖Pn 2‖ . . . 0

⎞⎟⎟⎟⎟⎟⎠
Proof. Let x and y be two (distinct) vertices of a NSSD G. Using Jacobi’s identity

j2 = ut − sv, and by definition of a NSSD G, u = t = 0 for λ = 0. Now v = |Pxy|
and s = |G|. Also j is the xyth entry of the adjugate of G, which can be obtained from
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G−1. Specifically the xyth entry of G−1 is
j

|G| = ±
√−sv
|G| = ±

√
|G| |Pxy|
|G| = ±

√
‖Pxy‖√
‖G‖

.

Similarly, since G−1 corresponds to a NSSD, the xyth entry of G is ±
√
‖G‖

√
‖Lxy‖.

We remark that Proposition 3.7 could also be deduced from G−1 given in Theorem 4.3

above.

Empirical evidence suggests that the order of NSSDs is even; however, this is still open.

Conjecture 4.4. There are no NSSDs with an odd number of vertices.

5 Conclusion

In the search for ipso omni–insulators among non–singular chemical graphs, the SSP model

points to real symmetric matrices with each entry on the diagonal equal to zero for the

inverse of the 0–1 adjacency matrix. There is a dearth of occurrences of ipso non–singular

omni–insulators. Motivated by this, and by the techniques used in the recognition of a

conducting or insulating distinct vertex pair of circuit terminals from the entries in the

inverse of the adjacency matrix G, we applied the properties of NSSDs developed in [1]

to complete graphs. For an adjacency matrix G belonging to the complete NSSD Kn, the

inverse G−1 turns out to be G–nutful. Conversely, for an adjacency matrix H associated

with a H–nutful graph H of order n belonging to the class of NSSDs, the inverse H−1

relates to Kn. Nuciferous graphs are a subclass of the nutful graphs and according to

the SSP model, they turn out to be distinct omni–conductors which are also ipso omni–

insulators. To date, the only nuciferous graph known is K2. In [2, 11], it is conjectured

that there are no others. Moreover, if in fact others exist, they must be of order at least

eight [12].

References

[1] A. Farrugia, J. B. Gauci, I. Sciriha, On the inverse of the adjacency matrix of a

graph, Special Matrices 1 (2013) 28–51.

[2] P. W. Fowler, B. T. Pickup, T. Z. Todorova, R. de los Reyes, I. Sciriha, Omni–

conducting fullerenes, Chem. Phys. Lett. 568–569 (2013) 33–35.

[3] I. Gutman, O. E. Polansky,Mathematical Concepts in Organic Chemistry , Springer,

Berlin, 1986.

-177-



[4] W. H. Haemers, Interlacing eigenvalues and graphs, Lin. Algebra Appl. 227–228

(1995) 593–616.

[5] I. Sciriha, Coalesced and embedded nut graphs in singular graphs, Ars Math. Con-

temp. 1 (2008) 20–31.

[6] I. Sciriha, Extremal non–bonding orbitals, MATCH Commun. Math. Comput. Chem.

63 (2010) 751–768.

[7] I. Sciriha, Graphs with a common eigenvalue deck, Lin. Algebra Appl. 430 (2009)

78–85.

[8] I. Sciriha, Maximal core size in singular graphs, Ars Math. Contemp. 2 (2009) 217–

229.

[9] I. Sciriha, On the coefficient of λ in the characteristic polynomial of singular graphs,

Util. Math. 52 (1997) 97–111.

[10] I. Sciriha, C. M. da Fonseca, On the rank spread of graphs, Lin. Multilin. Algebra

60 (2012) 73–92.

[11] I. Sciriha, M. Debono, M. Borg, P. Fowler, B. T. Pickup, Interlacing–extremal graphs,

Ars Math. Contemp. 6 (2013) 261–278.

[12] I. Sciriha, I. Gutman, Nut graphs–maximally extending cores, Util. Math. 54 (1998)

257–272.

-178-


