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Abstract

Detour index of a connected graph is defined as the sum of the lengths of the
longest paths between all pairs of its vertices. We derive expression for the detour
index of hexagonal chains, the molecular graphs of unbranched catacondensed ben-
zenoids, using which we show that the linear hexagonal chain has the minimum,
while the zig-zag hexagonal chain has the maximum detour index.

1 Introduction

The detour index, defined as the sum of the lengths of the longest paths between all pairs of

vertices of a molecular graph, is a counterpart of the well-known Wiener index, defined as

the sum of the lengths of the shortest paths between all pairs of vertices. The detour index

was first considered by Amić and Trinajstić [1], while its potential for use in quantitative

structure-activity relationship studies has been investigated by Lukovits [6], who showed

that the product of the Wiener and detour indices yields good correlations for selected

size-dependent molecular properties, such as the boiling points of alkanes. Trinajstić et

al. [13] confirmed Lukovits’ finding that the product of the Wiener and detour indices

correlates well with the boiling point on the set of 76 lowest alkanes and cycloalkanes,

and this was further confirmed by Rücker and Rücker [12] on a large combined sample of

acyclic, monocyclic and polycyclic alkanes.

Theoretical properties of the detour index have been much less studied than that of

the Wiener index. While the detour and the Wiener index coincide for trees, in which
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there is a unique path between any two vertices, the situation changes drastically for

cyclic structures. The reason is that the problem of finding a longest path in an arbitrary

graph is NP-hard [4], meaning that there cannot exist a polynomial time algorithm to

calculate its detour index unless P=NP (which is one of the Millenium Prize Problem [3]).

Two of the exponential time algorithms were described by Lukovits and Razinger [7] and

Rücker and Rücker [12]. The detour indices were calculated for a few special classes of

molecular graphs, such as fused bicyclic structures (Lukovits and Rücker [7]), bridge and

chain graphs (Mansour and Schork [8]), nanostar dendrimers (Karbasioun and Ashrafi [5])

and certain nanotubes (Ashrafi et al. [2]). The degeneracy of the detour index was studied

by Randić et al. [11]. The extremal values of the detour index of unicyclic graphs were

studied by Zhou and Cai [14] and by Qi and Zhou [9, 10].

It is interesting that the detour index of molecular graphs having a Hamiltonian cy-

cle that contains all the vertices, in which, therefore, longest paths may have maximum

possible length, has not been studied so far. As prominent examples of such molecular

graphs, we study here the detour index of hexagonal chains, the molecular graphs of

unbranched catacondensed benzenoids. In Section 2 we introduce an auxiliary represen-

tation of hexagonal chains with strings. We describe the structure of longest paths in

hexagonal chains in Section 3 and express the detour index of a hexagonal chain in terms

of its string representation. Based on this expression, we show in Section 4 that the linear

hexagonal chain has the minimum detour index, while the zig-zag hexagonal chain has

the maximum detour index.

The rest of this section contains necessary notation and definitions. The vertex and

the edge sets of a simple graph G are denoted by V (G) and E(G), respectively. Unless

otherwise notes, it is assumed that all graphs are connected. For a set S ⊂ V (G), G− S

represents the graph obtained from G by deleting vertices in S and their incident edges.

The set S ⊂ V (G) is a vertex cut if G− S has more connected components than G. For

vertices u, v ∈ V (G), the detour distance d∗(u, v) is defined as the length of the longest

path between u and v in G if u �= v and as d∗(u, v) = 0 if u = v. The sum

D∗(G) =
∑

u,v∈V (G)

d∗(u, v),

where the summation goes over all pairs of vertices of G, is the detour index of G.
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2 Encoding of hexagonal chains

Definition 1 Let n > 0 be an integer and let {Hi}ni=1 be a set of n mutually dis-

joint hexagons. For i = 1, . . . , n, let ui, vi, wi, ti ∈ V (Hi) be distinct vertices such that

{ui, vi}, {wi, ti} ∈ E(Hi). The graph

H ≡ H({Hi}ni=1; {ui, vi, wi, ti}ni=1),

obtained from the union of H1, . . . , Hn by identifying the vertex wi with the vertex ui+1

and the vertex ti with the vertex vi+1 for i = 1, . . . , n − 1, is called a hexagonal chain of

length n. The set of all hexagonal chains of length n is denoted by HCn.

Figure 1: A hexagonal chain of length 6.

An example of a hexagonal chain of length 6 is given in Fig. 1.

In order to simplify calculation of the detour index of a hexagonal chain H ∈ HCn,

we will represent H by a ternary string of length n in the alphabet {F,R, L}. Connect

the centers of successive hexagons H1, . . . , Hn of H with vectors v2, . . . , vn such that vi

connects the centers of Hi−1 and Hi for i = 2, . . . , n. Then for i = 2, . . . , n− 1, let

si =

⎧⎨⎩
F, if vi+1 and vi are parallel,
R, if vi+1 makes a right turn after vi,
L, if vi+1 makes a left turn after vi.

This way, each hexagon Hi is encoded by the symbol si ∈ {F,R, L}, indicating its relation

with the previous and the next hexagon in the chain. Since this encoding cannot be defined

for the first and the last hexagon in the chain, we let s1 = sn = F by convention.

The process of encoding a hexagonal chain by ternary string is illustrated in Fig. 2.

For expressing the detour index, it will be helpful to use one more representation of H

by a {−1, 0, 1}-sequence (Ii)
n
i=1, defined in the following way:

Ii =

⎧⎨⎩
0, if si = F ,
1, if si = R,

−1, if si = L.
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Figure 2: Encoding of a hexagonal chain by ternary string.

In the sequel we will use both of these encodings to represent a hexagonal chain H. We

also introduce following notation for the vertices of the hexagonal chain H: from left to

right, the vertices of degree three from the upper layer will be denoted as a1, . . . , an−1,

while vertices of degree three from the lower layer will be denoted as b1, . . . , bn−1. We

extend this notation with a0 and b0 to denote the vertices of the edge opposite to a1b1

in H1, and with an and bn to denote the vertices of the edge opposite to an−1bn−1 in Hn.

The remaining two vertices of degree two in each hexagon Hi, 1 ≤ i ≤ n, will be denoted

in the following way:

(i) if Hi is of type F , the degree two vertex from the upper layer will be denoted by ci

and that from the lower layer will be denoted by di;

(ii) if Hi is of type R, the degree two vertices from the upper layer will be denoted by

ci and di (from left to right);

(iii) if Hi is of type L, the degree two vertices from the lower layer will be denoted by ci

and di (from left to right).

The process of labelling the vertices of a hexagonal chain is illustrated in Fig. 3.

Figure 3: Vertex labels in a hexagonal chain.

For 1 ≤ i ≤ j ≤ n, let Hi,j be a subgraph of H induced by the vertex set ∪j
k=iV (Hk).

Two vertices u, v ∈ H form a close pair if there exists i such that u ∈ V (Hi) and

-140-



v ∈ V (Hi). Otherwise, they form a distant pair and we say that u is left of v (denoting

it by u ≺ v) if there are i and j such that u ∈ V (Hi), v ∈ V (Hj) and i < j. In addition,

the close pair {ai, bi}, 0 ≤ i ≤ n, will be called a vertical pair.

Further, we let Vi = {ai, bi, ci, di} for 1 ≤ i ≤ n. Note that Vi ∩ Vj = ∅ for i �= j, and

that V (H) = {a0, b0} ∪ (∪n
i=1Vi).

3 Structure of the longest paths

We describe here structure of the longest paths between pairs of vertices of a hexagonal

chain H, divided into three subsections, corresponding to vertical pairs, close pairs and

distant pairs of vertices. We start off with a simple, but useful result.

Lemma 2 Let G be a connected graph and let P be a simple path in G with u ∈ V (G) as

one endpoint of P . If v ∈ V (G) does not belong to P or if v is the other endpoint of P ,

then all vertices from P \ {u, v} belong to the same component in G− {u, v}.

Proof. All edges from P , except its pendant edges, are present in G−{u, v}. Then, since
P − {u, v} contains a path between any two vertices from P \ {u, v}, we conclude that

they belong to the same component of G−{u, v} they all belong to the same component.

3.1 Detour distance between vertices of vertical pairs

Consider the vertical pair {ai, bi} for some 0 ≤ i ≤ n. The set {ai, bi} is a vertex cut

in H and so by Lemma 2, the longest path between ai and bi belongs either to the left or

to the right component of H − {ai, bi}. Since both of these components are Hamiltonian

with the left one having 4i, and the right one having 4(n− i) vertices, it follows that

d∗(ai, bi) = 1 + 4max(i, n− i). (1)

Note that d∗(ai, bi) does not depend on the structure of H, but only on n and i. If we

denote X(H) =
∑n

i=0 d
∗(ai, bi), then from (1) we have

X(H) = (n+ 1) + 4
n∑

i=0

max(i, n− i)

= n+ 1 + 4

⎛⎝�n/2	∑
i=0

(n− i) +
n∑

i=�n/2	+1

i

⎞⎠
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= 4(n− �n/2�)(�n/2�+ 1) + (2n+ 1)(n+ 1)

= 3n2 + 5n+
3− (−1)n

2
(2)

where we used �n/2� = n
2
− 1−(−1)n

4
.

3.2 Detour distance between vertices of other close pairs

For 0 ≤ i ≤ n, let Y (Hi) denote the sum of detour distances between pairs of vertices

in Hi, not counting its vertical pairs. In order to indicate whether Hi is a middle hexagon

in H, we will use the indicator

Mn
i =

{
1, if n is odd and i = n+1

2
,

0, otherwise.

Theorem 3 For H ∈ HCn and 1 ≤ i ≤ n

Y (Hi) =

{
28n+ 21 + 24max(i− 1, n− i) + 4Mn

i , if Hi is of type R or L,
24n+ 25 + 28max(i− 1, n− i) + 4Mn

i , if Hi is of type F .
(3)

Proof. The proof is divided in cases based on the type of hexagon Hi.

Case I: Hi is of type R. It holds

d∗(ai−1, ci) = d∗(ci, di) = d∗(di, ai) = d∗(bi−1, bi) = 4n+ 1,

since H contains a Hamiltonian path between each of these pairs of vertices. From

Lemma 2 we further get

d∗(ai−1, di) = d∗(ci, ai) = 4n and d∗(ai−1, ai) = 4n− 1.

Let us calculate d∗(bi−1, ai). Since H − {bi−1, ai} consists of two components, from

Lemma 2 follows that the longest path between bi−1 and ai fully belongs to one of these

components. The longest path in the left component has length 4(i−1)+4, while that in

the right component has length 4(n− i) + 2 and, because of factor 4, the detour distance

depends on max(i− 1, n− i). Analogous argument holds for the detour distance between

bi and ai−1, so that

d∗(bi−1, ai) + d∗(ai−1, bi) = 2 · 4max(i− 1, n− i) + 2 + 4

if Hi is not the middle hexagon of H. If Hi is the middle hexagon, the longest path will

be of length 4max(i− 1, n− i) + 3 in both cases, so that we have

d∗(bi−1, ai) + d∗(ai−1, bi) = 8max(i− 1, n− i) + 6 + 2Mn
i .
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The same argument shows that

d∗(bi−1, ci) + d∗(bi, di) = 8max(i− 1, n− i) + 6 + 2Mn
i

and

d∗(bi−1, di) + d∗(bi, ci) = 8max(i− 1, n− i) + 6,

yielding the expression for Y (Hi).

Case II: Hi is of type L. The argument from previous case holds also for a type L

hexagon by symmetry.

Case III: Hi is of type F . Due to the existence of a Hamiltonian path between each

of the following pairs of vertices, we have

d∗(ai−1, ci) = d∗(ci, ai) = d∗(bi−1, di) = d∗(di, bi) = 4n+ 1

and from Lemma 2 we further get

d∗(ai−1, ai) = d∗(bi−1, bi) = 4n.

Similar argument as in Case I shows that

d∗(bi−1, ci) + d∗(bi, ci) = d∗(ai−1, di) + d∗(ai, di) = 8max(i− 1, n− i) + 6 + 2Mn
i ,

d∗(ai−1, bi) + d∗(bi−1, ai) = 8max(i− 1, n− i) + 6,

d∗(ci, di) = 4max(i− 1, n− i) + 3.

The expression for Y (Hi) follows by summing all these detour distances.

Let Y (H) =
∑n

i=1 Y (Hi). The sum X(H) + Y (H) gives the sum of detour distances

between all close vertex pairs in H. Using the fact that I2i = 1 when Hi is of type R and

L and I2i = 0 if Hi is of type F , the expression (3) may be written more compactly as

Y (Hi) = 24n+ 4nIi
2 + 25− 4Ii

2 + 28max(i− 1, n− i)− 4Ii
2 max(i− 1, n− i) + 4Mn

i

= 24n+ 25 + 28max(i− 1, n− i) + 4Ii
2 min(i− 1, n− i) + 4Mn

i .

From this and the fact that
∑n

i=1 4M
n
i = 2(1− (−1)n), we get

Y (H) = 24n2 + 25n+ 28
n∑

i=1

max(i− 1, n− i) + 4
n∑

i=1

Ii
2 min(i− 1, n− i) +

n∑
i=1

4Mn
i

= 38n2 + 11n+ 28�n/2�(n− �n/2�) + 2(1− (−1)n) + 4
n∑

i=1

Ii
2 min(i− 1, n− i)

= 45n2 + 11n− 3− 3(−1)n
2

+ 4
n∑

i=1

Ii
2 min(i− 1, n− i) (4)
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3.3 Detour distance between vertices of distant pairs

Define function p : V (H) \ {a0, b0} → V (H) as follows: if u ∈ Vi for 1 ≤ i ≤ n set

p(u) =

{
ai−1, if u belongs to the lower layer of H,
bi−1, if u belongs to the upper layer of H.

The following theorem describes detour distance between distant pair of vertices in H in

terms of detour distances within smaller hexagonal chains.

Theorem 4 Let u, v ∈ V (H), H ∈ HCn, be a distant pair of vertices such that u ≺ v. If

v ∈ Vi then

d∗H(u, v) = d∗H1,i−1
(u, p(v)) + d∗Hi,n

(p(v), v).

Proof. Without loss of generality, assume that v belongs to the upper layer, so that

p(v) = bi−1. The set {ai−1, bi−1} is a vertex cut in H with u and v in different components

ofH−{ai−1, bi−1}, so that at least one of ai−1 and bi−1 belongs to the longest path between

u and v. Let x be the vertex from {ai−1, bi−1} which appears later on the longest path

from u to v (provided that both ai−1 and bi−1 belong to it), so that

d∗H(u, v) = d∗H1,i−1
(u, x) + d∗Hi,n

(x, v). (5)

We show that it must be x = p(v) = bi−1, for which the conclusion stems directly

from (5), as the choice of x = ai−1 cannot lead to longer longest path between u and v.

Namely, in case x = ai−1 the longest path between ai−1 and v in Hi,n cannot con-

tain bi−1, due to the choice of x, so that d∗Hi,n
(ai−1, v) = dHi,n

(ai−1, v), where dHi,n
(ai−1, v)

denotes the standard distance, i.e., the length of the shortest path between ai−1 and v.

Since p(v) and ai−1 are adjacent and rightmost in H1,i−1, it follows that

d∗H1,i−1
(u, p(v)) ≥ d∗H1,i−1

(u, ai−1)− 1.

Figure 4: Part of the longest path from u to v contained within Hi,n.
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On the other hand, if i < n then dH(ai−1, v) ≤ 3 since both ai−1 and v belong to the

upper layer of Hi, while d∗Hi,n
(p(v), v) > 4(n − i) + 1 ≥ 5 since the longest path from

p(v) to v contains vertices from the last hexagon (see Figure 4). If i = n, then Hi is

of type F and v is either cn or an. In both cases, it is straightforward to check that

d∗Hi,n
(p(v), v) ≥ dH(ai−1, v) + 1. Therefore

d∗H1,i−1
(u, p(v)) + d∗Hi,n

(p(v), v) ≥ d∗H1,i−1
(u, ai−1) + dH(ai−1, v)

showing that x = ai−1 cannot lead to longer longest path between u and v in H. Hence,

p(v) = bi−1 belongs to the longest path between u and v, and it comes after ai−1, in case

that ai−1 also belongs to this longest path.

The value d∗Hi,n
(p(v), v) can be easily calculated using Figure 4 and previous discussion

on close pairs of vertices. Table 1 shows the values d∗Hi,n
(p(v), v) for v ∈ Vi, depending on

the type of the hexagon Hi.

Type of Hi v = ai v = bi v = ci v = di
F 4(n− i) + 3 4(n− i) + 3 4(n− i) + 4 4(n− i) + 4
R 4(n− i) + 2 4(n− i) + 4 4(n− i) + 4 4(n− i) + 3
L 4(n− i) + 4 4(n− i) + 2 4(n− i) + 4 4(n− i) + 3

Table 1: The values of d∗Hi,n
(p(v), v).

For H ∈ HCn and 1 ≤ i ≤ n we introduce the following notation

Da
i =

∑
u∈H1,i, u
=bi

d∗H1,i
(ai, u) and Db

i =
∑

u∈H1,i, u
=ai

d∗H1,i
(bi, u).

The following theorem gives a recurrent formula for Da
i and Db

i .

Theorem 5 For 1 ≤ i ≤ n holds

Da
i =

⎧⎨⎩
28i− 12 +Db

i−1, if Hi is of type F ,
28i− 12 +Da

i−1, if Hi is of type R,
32i− 18 +Db

i−1, if Hi is of type L,

and

Db
i =

⎧⎨⎩
28i− 12 +Da

i−1, if Hi is of type F ,
32i− 18 +Da

i−1, if Hi is of type R,
28i− 12 +Db

i−1, if Hi is of type L,

where Da
0 = Db

0 = 0.
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Proof. For i = 1, the formulas can be easily checked as H1 is a hexagon of type F .

Let us suppose i > 1. From the definition we have

Da
i = d∗H1,i

(ai, ai−1) + d∗H1,i
(ai, bi−1) + d∗H1,i

(ai, ci) + d∗H1,i
(ai, di) +

∑
u∈H1,i, u≺ai

d∗H1,i
(ai, u).

Assume that Hi is a hexagon of type F . From the discussion of close pairs of vertices, it

follows that

d∗H1,i
(ai, ai−1) + d∗H1,i

(ai, bi−1) + d∗H1,i
(ai, ci) + d∗H1,i

(ai, di) = 4i+4i− 1+ 4i+1+ 4i = 16i.

Let u ∈ H be an arbitrary vertex satisfying u ≺ ai. As in the proof of Theorem 4, we

conclude that at least one of vertices ai−1 and bi−1 occurs on the longest path from u

to ai. If ai−1 appears later than bi−1 on the path, then d∗H1,i
(ai, u) = 2 + d∗H1,i−1

(ai−1, u),

otherwise d∗H1,i
(ai, u) = 3 + d∗H1,i−1

(bi−1, u). From |d∗H1,i−1
(ai−1, u)− d∗H1,i−1

(bi−1, u)| ≤ 1 it

follows that it is optimal to choose d∗H1,i
(ai, u) = 3 + d∗H1,i−1

(bi−1, u), so that∑
u∈H1,i, u≺ai

d∗H1,i
(ai, u) =

∑
u∈H1,i, u≺ai

3 +
∑

u∈H1,i−1, u
=ai

d∗H1,i−1
(bi−1, u) = 3 · 4(i− 1) +Db

i−1.

Combining these results we get Da
i = 28i−12+Db

i−1. The cases when Hi is of type R (so

that the longest path goes through ai−1) and when Hi is of type L (so that the longest

path goes through bi−1) are discussed similarly. The recurrent formula for Db
i follows from

that for Da
i by symmetry.

Corollary 6 For 1 ≤ i ≤ n

Da
i +Db

i = Da
i−1 +Db

i−1 + 56i− 24 + (4i− 6)Ii
2 + Ii(D

a
i−1 −Db

i−1) (6)

Da
i −Db

i = (Ii
2 − 1)(Da

i−1 −Db
i−1)− (4i− 6)Ii. (7)

Proof. Follows directly from Theorem 5 using the fact that I2i = 1 when Hi is of type R

or L and I2i = 0 when Hi is of type F .

Further, for u ∈ V (H) denote

d∗H(u) =
∑

v∈H, v≺u

d∗H(u, v),

and for 1 ≤ i ≤ n denote

Z(Hi) =
∑
u∈Vi

d∗H(u).
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Evidently, Z(H) =
∑n

i=1 Z(Hi) represents the sum of detour distances between all distant

pairs of vertices in H. From Theorem 4, Table 1 and the fact that there exists 4(i − 1)

nodes in H left to any u ∈ Hi, we get

Zi(H) =

⎧⎨⎩
4(i− 1)(16(n− i) + 14) + 2Da

i−1 + 2Db
i−1, if Hi is of type F ,

4(i− 1)(16(n− i) + 13) +Da
i−1 + 3Db

i−1, if Hi is of type R,
4(i− 1)(16(n− i) + 13) + 3Da

i−1 +Db
i−1, if Hi is of type L.

This formula can be written more compactly using the indicator sequence Ii:

Zi(H) = 4(i− 1)(16(n− i) + 14− Ii
2) + (2− Ii)D

a
i−1 + (2 + Ii)D

b
i−1

= 4(i− 1)(16(n− i) + 14) + 2(Da
i−1 +Db

i−1)− Ii(D
a
i−1 −Db

i−1)− 4(i− 1)Ii
2.(8)

In order to simplify the expression for Zi(H), we will focus on the term Da
i−1+Db

i−1. Since

Da
0 +Db

0 = 0, from the recurrent formula (6) one easily obtains by induction that

Da
i−1 +Db

i−1 = 56
(i− 1)i

2
− 24(i− 1) +

i−1∑
j=1

(4j − 6)Ij
2 +

i−1∑
j=1

Ij(D
a
j−1 −Db

j−1). (9)

Combining (8) and (9), we obtain

Zi(H) = 8(i− 1)(8n− i+ 1)︸ ︷︷ ︸
Denote this by Z′

i(H)

+ 2
i−1∑
j=1

(4j − 6)Ij
2 − 4(i− 1)Ii

2

︸ ︷︷ ︸
Denote this by Z

′′
i (H)

+ 2
i−1∑
j=1

Ij(D
a
j−1 −Db

j−1)− Ii(D
a
i−1 −Db

i−1)︸ ︷︷ ︸
Denote this by Z

′′′
i (H)

,

so that Z(H) =
∑n

i=1 Z
′
i(H) +

∑n
i=1 Z

′′
i (H) +

∑n
i=1 Z

′′′
i (H). The first sum equals to

n∑
i=1

Z ′
i(H) = 64n

n−1∑
i=1

i− 8
n−1∑
i=1

i2 =
4n(n− 1)(22n+ 1)

3
.

Rearranging the terms, we evaluate the remaining two sums

n∑
i=1

Z
′′
i (H) = 2

n∑
i=1

i−1∑
j=1

(4j − 6)Ij
2 −

n∑
i=1

4(i− 1)Ii
2

= 2
n∑

j=1

n∑
i=j+1

(4j − 6)Ij
2 −

n∑
i=1

4(i− 1)Ii
2
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= 2
n∑

j=1

(n− j)(4j − 6)Ij
2 −

n∑
i=1

4(i− 1)Ii
2

=
n∑

i=1

(2(n− i)(4i− 6)− 4(i− 1))Ii
2,

n∑
i=1

Z
′′′
i (H) =

n∑
i=1

(2(n− i)− 1)Ii(D
a
i−1 −Db

i−1),

which gives

Z(H) =
4n(n− 1)(22n+ 1)

3
+

n∑
i=1

(2(n−i)−1)Ii(D
a
i−1−Db

i−1+(4i−6)Ii)−2
n∑

i=1

Ii
2. (10)

Finally, from D∗(H) = X(H) + Y (H) +Z(H) by combining (2), (4) and (10) and the

fact that I1 = In = 0, we obtain

Theorem 7 The detour index of a hexagonal chain H ∈ HCn is equal to

D∗(H) =
88n3 + 60n2 + 44n

3
+ (−1)n + 2

n−1∑
i=2

Ii
2(2min(i− 1, n− i)− 1) +

n−1∑
i=2

(2(n− i)− 1)Ii(D
a
i−1 −Db

i−1 + (4i− 6)Ii). (11)

Note that this theorem yields a straightforward linear time algorithm for calculating

the detour index ofH, since the values of the indicator sequence Ii stem from the structure

of the hexagonal chain, while the differences Da
i−1−Db

i−1 can be calculated iteratively for

i = 1, . . . , n− 2 from (7).

4 Extremal values of the detour index

We now characterize hexagonal chains in HCn with extremal values of the detour index.

We will rely on the following

Lemma 8 If H ∈ HCn, then for all 2 ≤ i ≤ n holds |Da
i −Db

i | ≤ 4i− 6 with equality if

and only if Hi is of type R or L.

Proof. By induction on i. For i = 2, the statement trivially holds. Supposing that the

statement holds i−1, from the recurrent formula (7) we have that either |Da
i −Db

i | = 4i−6

if Ii = ±1 or |Da
i − Db

i | = |Da
i−1 − Db

i−1| if Ii = 0. In the latter case, by the inductive

hypothesis |Da
i−1 −Db

i−1| ≤ 4(i− 1)− 6 < 4i− 6.
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From the recurent formula (7) and the proof of the Lemma 8 we can obtain explicit

value of Da
i−1 −Db

i−1:

Da
i −Db

i = (−1)i−j+1Ij(4j − 6)

where j is the largest index less than i with Ij �= 0 (if no such j exists, then Da
i −Db

i = 0).

Let 1 < t1 < t2 < . . . < tm < n be the indices of hexagons of types R or L. The

formula (11) can also be rewritten without Da
i and Db

i :

D∗(H) =
88n3 + 60n2 + 44n

3
+ (−1)n +

4
m∑
i=1

(
min(ti − 1, n− ti) + 2tin− 2t2i − 3n+ 2ti

)
+

m∑
i=2

(2(n− i)− 1)(−1)ti−ti−1ItiIti−1(4ti−1 − 6).

Let Hn
F ∈ HCn be the linear chain represented by the string FF . . . F , i.e., with Ii = 0

for all 1 ≤ i ≤ n. The minimum value of the detour index among hexagonal chains is

given in the following theorem.

Theorem 9 Let H ∈ HCn. Then

D∗(H) ≥ 88n3 + 60n2 + 44n

3
+ (−1)n (12)

with equality if and only if H is isomorphic to Hn
F .

Proof. The first part of the formula (11) is equal for all hexagonal chains in HCn.

Next, since 2min(i− 1, n− i)− 1 > 0 for 2 ≤ i ≤ n− 1, we have

2
n−1∑
i=2

Ii
2(2min(i− 1, n− i)− 1) ≥ 0

with equality if and only if Ii = 0 for all 2 ≤ i ≤ n− 1.

In the second sum, for 2 ≤ i ≤ n holds 2(n − i) − 1 > 0. If Ii �= 0 then by Lemma 8

follows

Ii
(
Da

i−1 −Db
i−1 + (4i− 6)Ii

)
= 4i− 6 + Ii(D

a
i−1 −Db

i−1)

≥ 4i− 6− |Da
i−1 −Db

i−1|

≥ 4i− 6− (4(i− 1)− 6) > 0.
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Therefore, for the second sum holds

n−1∑
i=2

(2(n− i)− 1)Ii(D
a
i−1 −Db

i−1 + (4i− 6)Ii) ≥ 0

with equality if and only if Ii = 0 for all 2 ≤ i ≤ n− 1.

In conclusion, inequality (12) holds for every hexagonal chain H, while equality holds

if and only if Ii = 0 for all 2 ≤ i ≤ n− 1, i.e., if and only if H ∼= Hn
F .

Next, let Hn
RL, H

n
RL ∈ HCn be isomorphic hexagonal chains represented by ternary

strings FRLRL . . . F and FLRLR . . . F , respectively. The maximum value of the detour

index among hexagonal chains is given in the following theorem.

Theorem 10 Let H ∈ HCn. Then

D∗(H) ≤ 32n3 + n2 − 64n− 46 +
1 + (−1)n

2

with equality if and only if H is isomorphic to Hn
RL or Hn

LR.

Proof. From the proof of Theorem 9 we know that the sum
∑n−1

i=2 Ii
2(2min(i−1, n−i)−1)

from (11) attains the maximum value if and only if Ii �= 0 for all 2 ≤ i ≤ n− 1.

Since Da
1 −Db

1 = 0, the second sum in (11) can be rewritten as

2(2n− 5) +
n−1∑
i=3

(2(n− i)− 1)Ii(D
a
i−1 −Db

i−1 + (4i− 6)Ii).

For 3 ≤ i ≤ n− 1, we have

Ii(D
a
i−1 −Db

i−1 + (4i− 6)Ii) ≤ |4i− 6 + Ii(D
a
i−1 −Db

i−1)| (13)

≤ 4i− 6 + |Da
i−1 −Db

i−1| (14)

≤ 4i− 6 + 4(i− 1)− 6 = 8(i− 2) (15)

where we used Lemma 8 in (15). We know that Ii(D
a
i−1−Db

i−1 + (4i− 6)Ii) ≥ 0 from the

proof of Theorem 9 and that equality holds in (13) if and only if Ii �= 0. Further, equality

holds in (14) if and only if Ii(D
a
i−1 −Db

i−1) ≥ 0. For Ii �= 0 from (7) we have

Ii(D
a
i−1 −Db

i−1) > 0⇔ −IiIi−1(4(i− 1)− 6) > 0⇔ Ii = −Ii−1.

Finally, equality in (15) holds if and only if Ii �= 0 by Lemma 8.
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Therefore, D∗(H) achieves its maximum value if and only if Ii = (−1)i for all 2 ≤ i ≤ n

or Ii = (−1)i+1 for all 2 ≤ i ≤ n, i.e., if and only if H is isomorphic to either Hn
RL or Hn

LR.

For these two hexagonal chains we have

2
n−1∑
i=2

Ii
2(2min(i− 1, n− i)− 1) = 4(

�n/2	∑
i=2

(i− 1) +
n−1∑

i=�n/2	+1

(n− i))− 2(n− 2)

= n2 − 4n+ 4 +
1− (−1)n

2

and

n−1∑
i=3

(2(n− i)− 1)Ii(D
a
i−1 −Db

i−1 + (4i− 6)Ii) = 8(2n− 5)
n−1∑
i=3

(i− 2)− 16
n−1∑
i=3

(i− 2)2

=
8n3 − 60n2 + 160n− 150

3
.

Substituting these two expressions in (11) we get

D∗(Hn
RL) = 32n3 + n2 − 64n− 46 +

1 + (−1)n
2

.
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