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Abstract

In the current chemical literature, a large number of vertex–degree–based topological

indices TI are considered, defined as the sum over all edges of the molecular graph of

some function Ψ(x, y), where x and y are the degrees of the end-vertices of the respective

edge. In order to find the minimal value of TI over benzenoid systems with h hexagons,

we characterize convex benzenoid systems W such that ni(W ) = ni(Sh), where ni is the

number of internal vertices and Sh is the spiral benzenoid system. If such W does exist,

then W has minimal TI-value. Otherwise, the spiral Sh has minimal TI-value.

1 Introduction

In the current chemical literature, a large number of graph–based structure descriptors

(“topological indices”) have been put forward, that all depend only on the degrees

(= number of first neighbors) of the vertices of the underlying molecular graph. Most

of these are equal to the sum over all edges of some conveniently chosen function

Ψ(x, y), where x and y are the degrees of the end-vertices of the respective edge. For
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instance, Ψ(x, y) = x y pertains to the second Zagreb index [4, 17,20], Ψ(x, y) = 1√
x y

to the Randić connectivity index [14, 21, 23], whereas
2
√
x y

x+y
, 1√

x+y
, (x y)3

(x+y−2)3
, and 2

i+j

pertain, respectively, to the recently conceived geometric–arithmetic [5, 25, 28], sum-

connectivity [9,24,30], augmented Zagreb [10,19,26], and harmonic [6,27,29] indices.

More details on vertex–degree–based topological indices and on their comparative

study can be found in [7, 8, 11, 12, 16] and the references cited therein.

Let {Ψij} be a set of real numbers for every 1 ≤ i ≤ j ≤ n − 1. Then a general

expression for vertex–degree–based topological indices is

TI = TI(G) =
∑

1≤i≤j≤n−1

mij Ψij

where G is a (molecular) graph with n vertices and mij is the number of edges of G

connecting a vertex of degree i with a vertex of degree j.

In previous studies [1, 2, 15], we have examined the variation of TI over the set

of benzenoid systems. (For the definition of benzenoid systems and details of their

theory see [13]. Recall that in mathematical literature, benzenoid systems are usually

referred to as “hexagonal systems”.)

We denote by HSh the set of benzenoid systems with h hexagons. Since any

benzenoid system S has only vertices of degree 2 and 3, the general expression for its

vertex–degree–based topological indices reads

TI(S) = m22 Ψ22 +m23 Ψ23 +m33 Ψ33 . (1)

In [22], the number of inlets of a benzenoid system S was introduced as

r(S) = f(S) + B(S) + C(S) + F (S)

where f(S), B(S), C(S), and F (S) are the number of fissures, bays, coves and fjords

in S, respectively [3, 13], and the following relations were shown for a benzenoid

system S with n vertices and h hexagons

m22 = n− 2h− r + 2

m23 = 2r

m33 = 3h− r − 3

⎫⎪⎬⎪⎭ . (2)

If ni is the number of internal vertices of a benzenoid system, then from (2) and the

well-known relation

n = 4h+ 2− ni
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we deduce from (1) that for every S, U ∈ HSh

TI (S)− TI (U) = q [r (S)− r (U)] + Ψ22 [ni (U)− ni (S)] (3)

where q = 2Ψ23−Ψ22−Ψ33 . Furthermore, it was shown in [2] that for every benzenoid

system S

r (S) = 2 (h− 1)− b (S)− ni (S)

where b (S) is the number of bay regions of S. It follows from (3) that

TI (S)− TI(U) = q [b(U)− b(S)] + [Ψ22 + q] [ni(U)− ni(S)] (4)

for every S, U ∈ HSh .

On the other hand, Harary and Harborth [18] showed that for every S ∈ HSh

0 ≤ ni (S) ≤ 2h+ 1−
⌈√

12h− 3
⌉

(5)

where the upper bound is attained in the spiral benzenoid system Sh (see Fig. 1).

Fig. 1. A spiral benzenoid system

Consequently, if W is a convex benzenoid system (i.e., b(W ) = 0, see [2]), such

that

ni (W ) = 2h+ 1−
⌈√

12h− 3
⌉

(6)

then it follows from (4) that for every S ∈ HSh

TI(S)− TI(W ) = q [−b (S)] + [Ψ22 + q]
[(

2h+ 1−
⌈√

12h− 3
⌉)
− ni (S)

]
.
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In particular, if −Ψ22 ≤ q ≤ 0, then we conclude from (5) that

TI(S)− TI(W ) ≥ 0 .

In other words, we deduce the following result [1]:

Theorem 1.1. Let W be a convex benzenoid system with h hexagons which satisfies

Eq. (6). If −Ψ22 ≤ q ≤ 0, then W has minimal TI-value among all benzenoid

systems with h hexagons.

Examples of convex benzenoid systems with h hexagons satisfying Eq. (6) were

given in [2], for several values of h. The idea was to transform a spiral benzenoid

system into a convex benzenoid system with equal number of internal vertices. Mis-

takenly it was inferred in [2] that this method works for every positive integer h.

We will now show that this is not true. More precisely, in Theorem 2.1 we deter-

mine necessary and sufficient conditions for the existence of convex benzenoid systems

with maximal number of internal vertices. As a byproduct, in Theorem 2.2 we show

that given a positive integer h, the existence of convex benzenoid systems with max-

imal number of internal vertices imply the existence of a solution to the Diophantine

equation

21x2 + 3y2 + z2 = 28

[⌈√
12h− 3

⌉2
− (12h− 3)

]
. (7)

In Example 2.3, we find values of h for which equation (7) has no solution, conclud-

ing in this way that it is not always possible to construct convex benzenoid systems

with h hexagons that satisfy the condition (6). However, for these values of h, we

later show in Theorem 3.1 that the spiral benzenoid system Sh has minimal TI-value

among all benzenoid systems with h hexagons, provided the condition −Ψ22

2
≤ q ≤ 0

is satisfied. By direct checking we demonstrate that this condition on q is obeyed by

most of the well-known degree–based topological indices.
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2 Convex benzenoid systems with maximal

number of internal vertices

The structure of a convex benzenoid system W can be specified as

W = H (a1, a2, a3, a4, a5, a6)

for positive integers a1, a2, a3, a4, a5, a6 (cf. Fig. 2).

Fig. 2. A convex benzenoid system

It has been demonstrated [2] that W is completely determined by the parameters

a1, a2, a3, a4, since it must be

a5 = a1 + a2 − a4 and a6 = a3 + a4 − a1 . (8)

Theorem 2.1. Let h be a positive integer. The following conditions are equivalent:

1. There exists a convex benzenoid system W with h hexagons satisfying Eq. (6).
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2. There exist a set of positive integers a1, a2, a3, a4 which are solutions of the

system of equations

h = a1 a3 + a1 a4 + a2 a3 + a2 a4 − a2 − a3

− 1
2
a1 (a1 + 1)− 1

2
a4 (a4 + 1) + 1⌈√

12h− 3
⌉

= a1 + 2a2 + 2a3 + a4 − 3 .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9)

Proof. 1. ⇒ 2. Assume that W is a convex benzenoid system with h hexagons,

satisfying Eq. (6). Let a1, a2, a3, a4, a5, a6 be positive integers such that W =

H (a1, a2, a3, a4, a5, a6).

We know from [2, Theorem 2] that

h = a1 a3 + a1 a4 + a2 a3 + a2 a4 − a2 − a3

− 1
2
a1 (a1 + 1)− 1

2
a4 (a4 + 1) + 1

ni (W ) = 2 (a1 a3 + a1 a4 + a2 a3 + a2a4)− a1 (a1 + 2)

− a4 (a4 + 2)− 4 (a2 + a3) + 6 .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(10)

Substituting these expressions for h and ni(W ) back into Eq. (6) yields⌈√
12h− 3

⌉
= a1 + 2a2 + 2a3 + a4 − 3 .

2. ⇒ 1. Conversely, if the set of positive integers a1, a2, a3, a4 is a solution of the

system of equations (9), consider the convex benzenoid Z = H (a1, a2, a3, a4, a5, a6),

where a5 and a6 are given by Eqs. (8). Again, by [2, Theorem 2], we have expressions

for h and ni(Z) as in (10). Consequently,

2h+ 1− ni(Z) = a1 + 2a2 + 2a3 + a4 − 3 =
⌈√

12h− 3
⌉

.

Solving for ni(Z) in this relation, we deduce that

ni(Z) = 2h+ 1−
⌈√

12h− 3
⌉

.

We now show that not for every positive integer h there is a solution for the system

of equations (9). This is a consequence of our next result.
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Theorem 2.2. Let h be a positive integer. If the set of positive integers {a1, a2, a3, a4}
is a solution of the system of equations (9), then there exists a solution to the Dio-

phantine equation

21x2 + 3y2 + z2 = 28H (11)

where H =
⌈√

12h− 3
⌉2 − (12h− 3).

Proof. Substituting

a2 =
1

2

⌈√
12h− 3

⌉
− a3 −

1

2
a4 −

1

2
a1 +

3

2
(12)

in the first equation of (9), we obtain

h =
3

2
a3 +

3

2
a4 −

1

2

⌈√
12h− 3

⌉
− 1

2
a21 − a23 − a24 +

1

2
a1 a3 +

1

2
a1 a4 −

3

2
a3 a4

+
1

2
a3

⌈√
12h− 3

⌉
+

1

2
a4

⌈√
12h− 3

⌉
− 1

2
.

Next, by solving for a4 in this equation, it follows that

a4 =
1

4
a1 −

3

4
a3 +

1

4

⌈√
12h− 3

⌉
+

3

4
± 1

4

√
P (a1, a3) (13)

where

P (a1, a3) = −7a21 + 2a1 a3 + 2a1

⌈√
12h− 3

⌉
+ 6a1 − 7a23 + 2a3

⌈√
12h− 3

⌉
+ 6a3 +

⌈√
12h− 3

⌉2
− 2
⌈√

12h− 3
⌉
− 16h+ 1 .

Since
√

P (a1, a3) ∈ Z, we may assume that P (a1, a3) = x2 for some x ∈ N. Solving

for a1 we get

a1 =
1

7
a3 +

1

7

⌈√
12h− 3

⌉
+

3

7
± 1

7

√
Q (a3) (14)

where

Q (a3) = −7x2 − 48a23 + 16a3

⌈√
12h− 3

⌉
+ 48a3 + 8

⌈√
12h− 3

⌉2
− 8

⌈√
12h− 3

⌉
− 112h+ 16 .

Since
√
Q (a3) ∈ Z, there exists an integer y ∈ N such that Q (a3) = y2. Now we

solve for a3 to obtain

a3 =
1

6

⌈√
12h− 3

⌉
+

1

2
± 1

12

√
R (15)
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where

R = −21x2 − 3y2 + 28

(⌈√
12h− 3

⌉2
− (12h− 3)

)
. (16)

Similarly
√
R ∈ Z and so R = z2 for z ∈ N. Hence

z2 = −21x2 − 3y2 + 28

(⌈√
12h− 3

⌉2
− (12h− 3)

)
and we are done.

Theorem 2.2 gives a method to find values of h for which there are no convex

benzenoid systems which satisfy Eq. (6).

Example 2.3. Let h be a positive integer and H as in the hypothesis of Theorem

2.2. If 28H − 21x2 − 3y2 is not the square of an integer for every (x, y) ∈ N × N

satisfying

0 ≤ x ≤
√

28H

21
and 0 ≤ y ≤

√
28H − 21x2

3

then there are no convex benzenoid systems with h hexagons satisfying Eq. (6). Using

a computer is easy to check that the first values of h are the following:

121 163 211 235 265 292 325 355 391 424
463 499 541 580 625 667 706 715 760 802
811 859 904 913 955 964 1012 1021 1066 1075
1126 1135 1183 1192 1246 1255 1306 1315 1372 1381

(17)

On the other hand, for those values of h where the Diophantine equation (11) has

a solution, we were able to find convex benzenoid systems with maximal number of

vertices, using the proof of Theorem 2.2 as follows: starting from a solution x, y, z of

Eq. (11), we compute R, a3 , a1 , a4 , and a2, in that order, from relations (16), (15),

(14), (13), and (12), respectively. Then a5 and a6 are computed using Eq. (8). It

turns out that W = H (a1, a2, a3, a4, a5, a6) is a convex benzenoid system satisfying

Eq. (6). For instance,

for h = 120 we get H(7, 6, 8, 6, 7, 7)

for h = 5306 we get H(39, 43, 42, 47, 35, 50)

for h = 10000 we get H(63, 60, 54, 59, 64, 50) .
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3 Benzenoid systems with minimal TI-value

We now return to the study of vertex–degree–based topological indices of benzenoid

systems. If the system of equations (9) has a solution for a positive integer h, then

there exists a convex benzenoid system W such that Eq. (6) holds, which by Theorem

1.1 implies that W has a minimal TI-value when −Ψ22 ≤ q ≤ 0. So a question arises

naturally: if Eq. (9) has no solution for certain h, which is the minimal TI-value in

the set of all benzenoid systems with h hexagons?

Answer to this question is provided by the following:

Theorem 3.1. Let h be a positive integer and assume that the system of equations (9)

has no solution. If −Ψ22

2
≤ q ≤ 0, then the spiral benzenoid system Sh has minimal

TI-value over the set of all benzenoid systems with h hexagons.

Proof. Since Eq. (9) has no solution, b(Sh) = 1. Let S be a benzenoid system with h

hexagons. From (4),

TI(S)− TI(Sh) = q [1− b(S)] + [Ψ22 + q] [ni(Sh)− ni(S)] . (18)

We consider two cases. If b(S) = 0, then ni(Sh)−ni(S) ≥ 1 since (9) has no solution.

Consequently from (18) and the fact that −Ψ22

2
≤ q ≤ 0 we deduce

TI(S)− TI(Sh) = q + [Ψ22 + q] [ni(Sh)− ni(S)]

≥ q + [Ψ22 + q] = 2q +Ψ22 ≥ 0 .

Otherwise b(S) ≥ 1, which implies 1 − b(S) ≤ 0. Since ni (Sh) − ni (S) ≥ 0 by (5)

then again by (18) and −Ψ22

2
≤ q ≤ 0 it follows that

TI (S)− TI(Sh) = q [1− b(S)] + [Ψ22 + q] [ni(Sh)− ni(S)] ≥ 0 .

Thus Sh has minimal TI-value among all benzenoid systems with h hexagons.

Example 3.2. For every value of h given listed (17) in in Example 2.3, the spiral

benzenoid system Sh has minimal TI-value over HSh .
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Remark 3.3.

1◦. The condition −Ψ22

2
≤ q ≤ 0 holds for most of the well-known topological indices,

as can be seen from the following table:

ij 1√
ij

2
√
ij

i+j
2

i+j
1√
i+j

(ij)3

(i+j−2)3

q -1 -.0168 -.0404 -.0333 -.0138 -3.3906

−Ψ22

2
-2 -.25 -.5 -.25 -.25 -4

2◦. Theorems 2.1 and 3.1 from Ref. [1] hold only if h is a solution of the system of

equations (9).
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[30] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009)

1252–1270.

-136-


