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Abstract 

Closed-form, general formulas for the Zhang-Zhang (ZZ) polynomials for two important 

classes of benzenoid structures, chevrons  and generalized chevrons 

, are formally derived. The derivations rely on a new and important theorem, 

which states that the ZZ polynomial of two fused parallelograms can be represented as the 

product of the ZZ polynomials of the two separated fragments. This theoretical result seems to 

play an important role in the theory of pericondensed benzenoids and may prove useful for the 

process of discovering closed-form formulas of Zhang-Zhang polynomials of for a wide class 

of benzenoid structures. 
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1. Introduction 

Zhang–Zhang (ZZ) polynomial [1-6] is an important combinatorial tool for enumerating 

and classifying conceivable Clar covers that can be written for a given benzenoid structure. [7] 

Clar covers [1-4] can be thought as a generalization of Kekulé structures used by organic 

chemists to analyze and predict stability and reactivity of various polycyclic compounds. [2, 

8-12] In contrast to Kekulé structures, [13] which use single and double bonds to ensure the 

tetravalent character of each carbon atom, Clar covers employ in addition also the concept of 

so-called aromatic sextet [14], which can be considered as a linear combination of two Kekulé 

structures that can be written for a single benzene ring. A single aromatic sextet located in a 

given benzene ring—usually visualized in the form of a circle—ensures the tetravalent 

character of all six carbon atoms constituting this ring. A trivial consequence of this fact is 

that two aromatic sextets cannot occupy two neighboring hexagonal rings; such an 

arrangement would necessarily invoke pentavalent character of two carbon atoms shared 

between the two rings. The maximal number of aromatic sextets that can be written inside a 

given benzenoid system is called the Clar numer . Needless to say, such an arrangement of 

aromatic sextets can be considered valid, only if the remaining part of the benzenoid structure 

not covered by the aromatic sextets can be made tetravalent by a feasible arrangement of 

single and double bonds.  

The enumeration of Kekulé structures is in principle not an easy task. A representative 

account of the enormous amount of work of a few generations of chemists and graph theorists 

devoted to this problem is probably best reflected in the monumental work of Cyvin and 

Gutman [7, 13]. The enumeration of Clar covers turns out to be even a more complex task. 

The introduction of Clar covering polynomials [1] by Zhang and Zhang, which are known 

better as ZZ polynomials [5] was a great step forward in the enumeration process of Clar 

covers owing to the inviting recursive properties of the ZZ polynomials. (For details, see the 

next Section.) The ZZ polynomial structure for a given benzenoid  is very simple and can be 

given by the following formula 
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where  is the number of conceivable Clar structures of order , i.e., containing exactly  

aromatic sextets. The variable  is an auxiliary variable used only to distinguish between Clar 

covers of different order. From the definition of the ZZ polynomial it is immediately clear that 

the coefficient  is equal to the number of possible Kekulé structures. The ZZ polynomials 

for the simplest benzenoid structures have been determined by Zhang and Zhang. [1-3] The 

recursive properties of the ZZ polynomials could be used for finding closed form formulas for 

various families of catacondensed benzenoids. [1-6, 15-18] The techniques developed for this 

purpose can be considered general and applicable to any family of catacondensed structures. 

The situation for the pericondensed benzenoids is much more complex; closed-form formula 

has been found only for two families of pericondensed structures, parallelograms [17] and 

prolate rectangles [3, 18]. The situation was slightly improved with the introduction of an 

efficient computer program, [6] which is applicable for determination of the ZZ polynomials 

for pericondensed benzenoid structures containing up to 500 carbon atoms using the 

decomposition properties of the ZZ polynomials in an automatized recursive fashion. The 

application of this program allowed us to find closed-form formulas for various subfamilies of 

pericondensed benzenoid structures. Formally, the discovered formulas were conjectures 

deduced from an analysis of a finite number of members of each subfamily. Analogous, 

though more theoretically sound, interpolation approaches were used to derive other 

topological indices. [19, 20] The development of an interactive graphical computer tool 

(ZZDecomposer), described in the preceding paper, [21] allowed us to prove these 

conjectures using formal decomposition techniques for many classes of benzenoid 

hydrocarbons. [22] The ZZDecomposer program was developed mainly as a proof tool for 

finding and justifying closed forms of the ZZ polynomials for an arbitrary family of 

benzenoid systems. However, it is flexible enough for other purposes, e.g., computing ZZ 

polynomial for small and medium-size benzenoids, studying various decomposition paths that 

can be used for finding optimal decomposition route of a given benzenoid family, [22-24] 

book-keeping of various fragments appearing in a given decomposition route, and finally fast 

and convenient definition of polyhex graphs together with a possibility of saving them using 

graphical format. We believe that the ZZDecomposer program should be in the working 

arsenal of every chemist and graph theorist interested in the properties and determination of 

ZZ polynomials of benzenoid structures. 
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In the current paper, we employ the ZZDecomposer proof environment to find general 

closed-form formulas for the ZZ polynomials of two important families of benzenoid 

structures, chevrons  and generalized chevrons . (For definitions, 

see Figure 8 and/or [13].) In our previous work [18], we have employed an efficient computer 

algorithm (and associated ZZ polynomial calculator program) [6] to determine and analyze 

the ZZ polynomials for two subfamilies of chevron structures,  and . 

Closed-form formulas of the ZZ polynomials for these two subfamilies were quite 

complicated, escaping the possibility of generalizing them to other subfamilies of chevron 

structures and preventing one from discovering general formula for the whole family of the 

 structures. Fortunately, this difficulty could be circumvented using the 

ZZDecomposer proof tool. The formulas discovered here have surprisingly simple form and 

show close connection with the previously developed ZZ polynomials of parallelograms. [17] 

The main theoretical result of this paper (Theorem 7), used to find the ZZ polynomials of 

chevrons and generalized chevrons, has different scope and is probably more important from 

the methodological point of view than the discovered formulas for chevrons. Namely, we are 

able to show that the ZZ polynomial of two fused parallelograms  can be expressed as a 

product of the ZZ polynomials of its constituents: . (For 

the definition of “fusing two parallelograms”, see Theorem 7 and Figure 7.) Moreover, we 

are able to show that the fusion is independent of the actual number of bonds defining the 

fusion. Another way of stating this important result is by saying that a benzenoid structure 

obtained by fusion of two parallelograms is essentially disconnected, which implies that all 

the fusing bonds have single character. We expect that this result will be of importance for 

discovering closed-form formulas also for other families of benzenoid structures. 

The structure of the current paper is a follows. First we review briefly the recursive 

properties of ZZ polynomials and summarize the current state of knowledge about the ZZ 

polynomials for parallelograms ; proper understanding of these two ingredients is 

indispensable for further exposition. Section 4 gives two important general results stated in 

Theorems 6 and 7, which say that: i) ZZ polynomial of a defective parallelogram is 

necessarily equal to 0 and ii) ZZ polynomial of two fused parallelograms is equal to the 

product of the ZZ polynomials of the disconnected parallelograms. The remaining Lemmas 

of Section 4 are very technical and should be skipped in the first reading. Sections 5 and 6 
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give the derivation of the ZZ polynomials for chevrons and generalized chevrons, respectively. 

The conclusions are given in the Section 7. 

2. Basic properties of ZZ polynomials 

The ZZ polynomials have a number of interesting properties, which can make their 

evaluation simple and effective. We state them here without proofs, which can be found 

elsewhere. [1-5] The list of the properties given here is not meant to be complete; we just 

quote facts important in the context of the work presented here. 

Property 1. ZZ polynomial of a structure with no atoms (empty structure) is 1. 

Property 2. ZZ polynomial of a structure with an odd number of atoms is 0. 

Property 3. ZZ polynomial of a disconnected structure, i.e., a structure with two 

fragments not connected by a chemical bond is equal to the product of ZZ polynomials of two 

fragments. 

Property 4. Let  be a benzenoid structure containing a terminal carbon atom , i.e., a 

carbon atom having only one carbon neighbor . Then, the ZZ polynomial of the structure  

is equal to the ZZ polynomial of the structure  with deleted atoms  and . 

Property 5. Let  be a bond in a benzenoid structure  not belonging to any hexagonal 

benzene ring and let the atoms  and  have at least two carbon neighbors each. Then, the ZZ 

polynomial of the structure  can be expressed as a sum of ZZ polynomials of two simpler 

structures,  and , i.e.,  the structure  with the bond  deleted and the 

structure  with the atoms  and  deleted, respectively. 

Property 6. Let  be a bond in a benzenoid structure  belonging to a single hexagonal 

benzene ring . Then, the ZZ polynomial of the structure  can be expressed as a sum of 

, , and , where  and  have 

the same meaning like in Property 5 and  denotes the structure  with the six carbon 

atoms belonging to the ring  deleted. 

-109-



Property 7. Let  be a bond in a benzenoid structure  shared by two adjacent 

hexagonal benzene rings  and . Then, the ZZ polynomial of the structure  can be 

expressed as a sum of , , , and 

, where  and  have the same meaning like in Property 5 and 

 denotes the structure  with the six carbon atoms belonging to the ring  deleted, 

. 

3. ZZ polynomial of a parallelogram  

Consider a hexagon-based parallelogram  with edges of length  and  

respectively (see Figure 1). The ZZ polynomial of this structure was derived by Gutman and 

Borovićanin [17] as 
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Permutational  symmetry invariance of the  ZZ polynomial, clearly 

visible by a rotation of the structure in Figure 1 by 60° anticlockwise and by a subsequent 

mirror reflection—operations obviously not modifying the number of conceivable Clar 

covers—allows one to write this equation in explicitly symmetric form [6] given by 
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which can be expressed in considerably more compact form in the basis as 
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Figure 1. Schematic view of a parallelogram . Here,  and . 
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The most beautiful and compact formula for the ZZ polynomial of this structure is 

probably given in terms of Gauss hypergeometric function and reads 

 � �� � 2 1

,
ZZ , , ; 1

1
m n

M m n x F x
	 	� �

� �� �
� �

  (5) 

Note that this form, despite of its simplicity, clearly reflects the  symmetry 

invariance (as  is symmetric under permutation of its upper indices), finite polynomial 

form (since  reduces to a polynomial for a negative upper index), and the importance of 

the  representation. Note also that the Kekulé number of  is readily extracted as 

 and the total number of Clar covers for  is given by 

. Finally, notice that the hypergeometric representation can be further 

converted to a Jacobi polynomial representation 

 � � � � � �(0, 1) (0, 1)( , ), 1 2 1 2n m n m
n mZZ M m n x P x P x	 	 	 	 	 	� 	 	 � 	 	   (6) 

4. ZZ polynomials of defective parallelograms M(m,n) 

The ZZ polynomial of the parallelogram  is clearly non-vanishing for all choices 

of non-negative indices  and . In the current Section, we show (Theorem 6) that certain 

types of defects introduced in the parallelogram  necessarily invoke vanishing of its 

ZZ polynomial. This result does not seem to be of particular interest per se, but it proves to be 

of great importance for deriving close forms of ZZ polynomials for two important classes of 

pericondensed benzenoids, chevrons and generalized chevrons, as demonstrated in Sections 5 

and 6. The main result of the current Section used to prove these facts is Theorem 7; its 

derivation is preceded by a number of definitions and auxiliary lemmas, which make the proof 

possible. For a reader not interested in technical details of the proof, we suggest to jump 

directly to the Theorems 6 and 7 and equipped with them, proceed to Section 5. 

Before proceeding to the definition of the edge defects considered here, we analyze 

shortly the edge structure of a parallelogram . As shown schematically in Figure 2, a 

periphery of  consists of  (or respectively ) hexagonal rings  
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forming a single polyacene-like zigzag chain of length . Two types of edge vertices can be 

distinguished: i)  located in the first layer and depicted using open circles in 

Figure 2 and ii)  located in the second layer and depicted using solid circles 

in Figure 2. 

The class of defective parallelograms studied here comprises of all structures  

obtained from  by first deleting  vertices , where for 

convenience we assume that , and subsequently deleting  

vertices , where . We further stipulate that the 

vertex  can be deleted only if both the vertices  and  have been previously deleted. A 

careful reader will notice that the class constructed here corresponds precisely to the class of 

defective structures that can be obtained via recursive decomposition of two fused 

parallelograms, when the decomposition process is performed along the sequence of fusing 

edges until the two parallelograms become disconnected. (For more details, see Figure 7) 

Four typical examples of defective structures belonging to the class defined above are shown 

in Figure 3. To demonstrate that the ZZ polynomials of all the structures in the considered 

class vanish identically, let use consider one of them, , in detail. For the convenience 

of demonstration, let us assume without loss of generality that  and that the vertices are 

removed from the longer edge. Note that the most left of the removed vertices is  and that 

the most right of the removed vertices is , i.e., that the ordered list of the removed vertices 

Figure 2. Schematic classification of peripheral vertices in the structure . 

Figure 3. Four examples of defective structures  formed from  after removing the vertices: 
a)  , b) , c)  , and d) . 
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always starts with  and finishes with . 

Lemma 1. If only one vertex has been removed from , the ZZ polynomial of  is 

0.  

Proof: The structure  contains an even number of vertices, so  has an odd 

number of vertices and its ZZ polynomial is identically equal to 0 by Property 2. [5] � 

In the following we can consequently assume that at least two vertices  have been 

removed from  when forming . Thus, . The further reasoning is organized 

in a sequence of Lemmas, which eventually allow us to cover the most general case. 

Lemma 2. If the vertex  has been removed, the ZZ polynomial of  is 0.  

Proof: Removing vertex  results in vertex  having degree one. As shown in Figure 4, 

recursive reduction of the ZZ polynomial of the structure  starting from vertex  imposes a 

global double-single bond pattern with an unavoidable defect in the part of the structure  not 

involving the vertices  located 

inside the rectangular boxes in Figure 4. It is always possible to localize the defect in the 

position . Such a unique defective pattern is explicitly shown in Figure 4 for two 

structures  obtained from : a) with  and b) with . Note that the 

number of removed vertices and their actual distribution—depicted symbolically using a 

rectangular frame in Figure 4—is irrelevant for the flow of arguments presented here. The 

Figure 4. Bond pattern imposed on  by removing the vertices  and  unavoidably results in a 
disconnected vertex (depicted with �) that can be localized at position . Note that the pattern of single 
and double bonds given here is independent of  and of the unspecified sequence of removed 
vertices inside the black frame. 
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specified recursive decomposition of  leads to two disconnected graphs: one involving the 

sole vertex  and one involving the vertices 

 located inside the rectangular frame. Consequently, by Property 3, the ZZ 

polynomial of  can be expressed as a product of two ZZ polynomials with one of them—

—identically equal to zero by Property 2, which proves our proposition. Short 

inspection of Figure 4 clarifies that the arguments used here remain valid for any choice of 

 and for any location of . 

Lemma 3. If  and the first removed vertex is , then 

 � �� � � �� �ZZ , , ZZ 1, ,M m n x M m n x� 	� � � � �� �, , , ,� � � � ��ZZ 1� � � � �� x, , ZZ 1, ,ZZ 1,� � � � ��ZZZZ ��   (7) 

where  is obtained from  by removing the vertices 

 and . 

Proof: Recursive decomposition of the ZZ polynomial of  with respect to the 

most left vertical edge of  (see the arrow in Figure 5) gives [17] 

� �� � � �� � � �� � � �� �ZZ , , ZZ , 1 , ZZ 1, , ZZ 1, 1 ,M m n x M m n x M m n x x M m n x� 	 � 	 � 
 	 	� � � � �� � � �� � � �� �, , , , , , , ,� � � � �� � � �� � � ��ZZ 1 ZZ 1 ZZ 1 1� � � � �� � � �� � � �� x, , ZZ , 1 , ZZ 1, , ZZ 1, 1 ,, , ZZ , 1 , ZZ 1, , ZZ 1,� � � � �� � � �� � � ��ZZ , 1 , ZZ 1, , ZZ 1,,� �� � � �� � ��   (8) 

as shown schematically for a structure  in Figure 5. However, the structures 

 and  can be treated as defective structures  and 

, respectively, with the vertex   removed. Therefore, by Lemma 2, their 

ZZ polynomials vanish, which proves our proposition. � 

Lemma 4. If  and the first removed vertex  has an index , then 

� �� � � �� � � �� � � �� �ZZ , , ZZ , 1 , ZZ 1, , ZZ 1, 1 ,M m n x M m n x M m n x x M m n x� 	 � 	 � 
 	 	� � � � �� � � �� � � �� �, , , , , , , ,� � � � �� � � �� � � ��ZZ 1 ZZ 1 ZZ 1 1� � � � �� � � �� � � �� x, , ZZ , 1 , ZZ 1, , ZZ 1, 1 ,, , ZZ , 1 , ZZ 1, , ZZ 1,� � � � �� � � �� � � ��ZZ , 1 , ZZ 1, , ZZ 1,, 1 , ZZ 1 ZZ 1,ZZ , 1 , ZZ 1 ZZ 1,� �� � � �� � ��   (9) 

where  is obtained from  by removing the vertices 

 and , and  and  are obtained 

from  and , respectively, by removing the vertices 

 and and . In other words, it is possible to 
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reduce the problem of finding the ZZ polynomial of a defective structure  to the 

problem of finding the ZZ polynomials of three analogous structures with smaller dimensions 

 and/or . 

Proof: Standard recursive decomposition of the ZZ polynomial of  with respect to 

the most left vertical edge of  (see the arrow in Figure 6) gives [17] 

� �� � � �� � � �� � � �� �ZZ , , ZZ , 1 , ZZ 1, , ZZ 1, 1 ,M m n x M m n x M m n x x M m n x� 	 � 	 � 
 	 	� � � � �� � � �� � � �� �, , , , , , , ,� � � � �� � � �� � � ��ZZ 1 ZZ 1 ZZ 1 1� � � � �� � � �� � � �� x, , ZZ , 1 , ZZ 1, , ZZ 1, 1 ,, ZZ , 1 , ZZ 1 ZZ 1,� � � � �� � � �� � � ��ZZ , 1 , ZZ 1, , ZZ 1,, 1 , ZZ 1, , ZZ 1,ZZ , 1 , ZZ 1, , ZZ 1,� �� � � �� � ��   (10) 

as shown schematically for a structure  in Figure 6. Again, as far as , the 

decomposition is independent of the unspecified sequence of removed vertices inside the 

black frame. Note that for the new structures  and  with  

columns, the indices of the removed vertices are shifted left by one, which proves our 

proposition.  � 

Lemmas 3 and 4 show how to express the ZZ polynomial of a structure  with 

 in terms of ZZ polynomials of defective parallelograms with a smaller number of rows 

and/or columns. These Lemmas can be used repeatedly to express the ZZ polynomial of any 

defective parallelogram  as a sum of ZZ polynomials (possibly multiplied by certain 

polynomials in the variable ) of defective parallelograms  with  or defective 

parallelograms  with ,  and with the vertex  removed. The second class 

of defective parallelograms vanish by Lemma 2. Next Lemma shows that defective 

Figure 5. Recursive decomposition of a defective parallelogram  with  and  
effectively results in reducing the number of rows by one. 
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parallelogram of height one (i.e., with ), have their ZZ polynomials necessarily equal to 

0. 

Lemma 5. The ZZ polynomial of a defective structure  is equal to 0.  

Proof: If , then the proposition is true by Lemma 1. If , any defective 

structure  can be represented schematically by three segments. The two terminal 

segments have a well-defined polyacene structure of length  and , respectively. 

(Note that a polyacene of length 0 can be interpreted as an ethylene molecule.) The central 

segment consists of a defected polyacene of length ; the number of removed 

vertices creating the defects and their distribution is irrelevant to the flow of the current proof 

and is represented in a form of a rectangular frame in the equations below.  Recursive 

decomposition of the ZZ polynomial of  with respect to the bond marked with an 

arrow gives by Property 5  

Figure 6.  Recursive decomposition of a defective parallelogram  with 
 and  results in reducing the number of rows by one. 
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   (11) 

which proves our proposition. Note that the decompositions discussed here are independent of 

the unspecified sequence of removed vertices inside the black frame.  � 

We are sufficiently equipped now to prove the two main results of the current Section. 

Theorem 6. The ZZ polynomial of a defective structure  is equal to 0.  

Proof: If , then the proposition is true by Lemma 1. If , then the proposition 

is true by Lemma 2. If , then the proposition is true by Lemma 5. If , , 

and , then the ZZ polynomial of any defective structure  can be reduced by 

repeated application of Lemmas 3 and 4 to a sum of ZZ polynomials (possibly multiplied by 

certain polynomials in the variable ) of defective parallelograms  with  and/or 

defective parallelograms  with ,  and with the vertex  removed, 

which vanish by Lemma 5, and Lemma 2, respectively. Consequently the sum of such 

vanishing contributions equals to zero, giving . � 

Theorem 7. Let the structure  be obtained from two aligned 

parallelograms  and  by drawing a certain number  of new edges 

connecting pairs of vertically aligned vertices . (Two possible ways of fusing the 

structures  and   are illustrated in Figure 7.) Then, the ZZ polynomial of the 

fused structure  is equal to the product of the ZZ polynomials of its 

original components 

 � � � �� � � �� � � �� �ZZ , || ', ' , ZZ , , ZZ ', ' ,M m n M m n x M m n x M m n x� 
   (12) 

Proof: Recursive decomposition of the structure  using the 

Properties 5 and 6 with respect to the edges fusing both parallelograms results after at most  

steps in expressing  as a sum of terms in the form 

 or , possibly 

multiplied by certain powers of the variable . This is easily seen by the following argument. 
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At every step of the recursive decomposition, one of the following operations is performed on 

: i) the edge between the vertices  and  is deleted, leaving both 

vertices intact, or ii) the vertices  and  are deleted, or iii) the vertices  and 

are deleted; the last operation is permissible only when both edges,  and 

, are present in . After  steps of recursive decomposition, 

where  denotes the number of times of choosing the operation iii, the structure 

 becomes disconnected and consists of two fragments,  and 

 (or  and , if the operation i has been selected all the times). From 

the general properties of the ZZ polynomials, [1, 5, 6, 21] we know that the contribution from 

this particular decomposition path to the ZZ polynomial of  can be 

expressed as ; the total ZZ polynomial of 

 can be computed as a sum of such terms over all possible decomposition 

paths. Now, it is clear that choosing operation ii or iii in a given decomposition path results in 

introducing a defect in  and in  of exactly the same type as discussed earlier 

in this Section. Therefore, every time when the operations ii or iii have been chosen during 

the decomposition of , the resulting parallelogram structures  and 

 are defective. Consequently, by Theorem 6 their ZZ polynomials vanish, giving no 

contribution to . The only non-vanishing contribution to the ZZ 

polynomial of  is given by a path always following the operation i in each 

step of the decomposition process. Since the operation i does not introduce any defects and 

the operation iii is never selected, the contribution from this path is equal to 

, proving the proposition. 

5. ZZ polynomial of a chevron  

In the next two Sections, we show that the general result given in Theorem 7 can be used 

for very convenient and concise evaluation of the ZZ polynomials for two important classes 

of benzenoid structures: chevrons and generalized chevrons. Graphical definition of this type 

of structures is given in Figure 8. 

The determination of the ZZ polynomial for a chevron structure  can be 

conveniently performed in the way shown in Figure 9. The first step of the recursive 
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decomposition of the  structure using Property 6 with respect to the edge marked 

with a dot in Figure 9 yields the ZZ polynomial of  as a sum of ZZ polynomials 

of three simpler structures. One of them is immediately identified as the chevron 

 and the remaining two structures are clearly equal to fused parallelogram 

structures  and  Application of 

Theorem 7 yields a recursive formula for computing the ZZ polynomial of the chevron 

structure   

� �� � � �� � � �� � � �� �
� �� � � �� �

ZZ , , , ZZ , , 1 , ZZ 1, , ZZ 1, ,

ZZ 1, 1 , ZZ 1, 1 ,

Ch k m n x Ch k m n x M k n x M m n x

x M k n x M m n x

� 	 � 	 
 	

� 
 	 	 
 	 	
  (13) 

This equation can be treated as a first-order non-homogeneous recurrence relation in 

variable  with the initial condition  given by 

 � � � � � �ZZ ( , ,1), 1 ZZ ( 1,1), ZZ ( 1,1),Ch k m x x M k x M m x� � � 	 
 	   (14) 

Solution to this recurrence relation is immediate and yields the following closed-form 

expression for the ZZ polynomial of  

 
� �� � � � � �� � � �� �

� �� � � �� �

1

0

ZZ , , , 1 ZZ 1, , ZZ 1, ,

ZZ 1, , ZZ 1, ,

n

i

Ch k m n x x M k i x M m i x

M k n x M m n x

	

�

� � 
 	 
 	

� 	 
 	

�   (15) 

This formula becomes slightly more transparent in hypergeometric representation 

Figure 8. Two important classes of benzenoid structures: a) chevrons  and b) generalized 
chevrons  
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� � �

�
�

�
  (16) 

Numerical experiments show that the last two formulas are correct. 

It is tempting to look for further simplification of this expression. However, such a 

simplification could be difficult to obtain in practice, because closed-form expressions for the 

product of two hypergeometric functions and sums of such products are in general unknown. 

[25] Alternative possible representation in form of Jacobi polynomials seems also of a little 

use for this purpose. 

6. ZZ polynomial of a generalized chevron  

Similar approach can be used for finding the ZZ polynomial of a generalized chevron 

structure . We can assume without loss of generality that . (Indeed, 

the ZZ polynomials of and its rotated mirror-reflection are identical.) The 

first step of recursive decomposition process of the  structure using 

Property 6 with respect to the edge marked with a dot in Figure 10 gives the following 

recursive relation for the ZZ polynomial of  

Figure 9. The following graph decomposition of  produces a recurrence relation, which can 
be readily solved to yield a closed-form formula for . For details, see text. 
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with the following initialization formula for the base case  
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Solution of this first-order recursion quite readily yields a closed-form formula for the ZZ 

polynomial of the  structure given by 
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Again, the following representation of this formula in terms of hypergeometric functions 

can be more suitable for computational purposes and for attempts of its further simplification 
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Finally, it is useful to lift the assumption  performed during the derivation of this 

formula and to arrive at the most general formula for the ZZ polynomial of a generalized 

chevron  given by 
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Again, numerical experiments show that the formulas in this Section are correct. 

7. Conclusion  

We present a formal derivation of the ZZ polynomials for two important classes of 

pericondensed benzenoids structures, chevrons and generalized chevrons. The final formulas 

(Eqs. (16) and (21)) are surprisingly simple, especially taking into account the complexity of 

previously presented formulas of the ZZ polynomials for some subfamilies of the chevron 

structures with prespecified values of some of the indices. [18], [new paper 2] The simplicity 

of the final formulas presented here is obtained owing to the important result for defective 

parallelogram structures, for which we give a proof that a certain class of defects introduced 

in the perimeter necessarily invokes vanishing of the ZZ polynomials of such defective 

structures. We expect that this important result can be used for finding closed form formulas 

of the ZZ polynomial for other important classes of benzenoids structures. [23, 24]  

Acknowledgment: National Science Council of Taiwan (grant NSC  99-2113-M-009-011-MY3 
and 102-2113-M-009-015-MY3) and Ministry of Education (MOE-ATU project) are 
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Figure 10. The following graph decomposition of  produces a recurrence relation, 
which can be readily solved to yield a closed-form formula for . For details, see 
text. 
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