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Abstract 
When partial orders are applied on data matrices in order to perform a ranking then 
incomparabilities may appear, i.e., directed graphs have vertices, which are not connected and 
therefore not in a mutual ranking relation. Consequently, often partial order is not considered 
as a decision support system but rather as an analytical tool to explore data matrices in 
ranking studies. When the data matrix is consisting of quantitative indicators, which allow 
defining a metric, then partial order allows insights into the evaluation without many 
additional assumptions. In this paper two concepts are presented, the first attempting a 
definition of “peculiar data profiles” and the second introducing a quantification of conflicts. 
As working example 12 chloro-containing persistent organic chemicals (POPs) are selected. 
They were investigated previously with respect to three indicators, i.e., persistence, 
bioaccumulation and toxicity (Pers, BioA, Tox), respectively. The main results are the 
identification of objects as “f-peculiar” and of “�- incomparable pairs of objects”. It turns out 
that DDT, DDD, DDE as well as Chlordane are all peculiar chemicals and that the pair DDT 
and Chlordane being the pair of chemicals with the most striking incomparability, realized by 
the indicators persistence and bioaccumulation. Furthermore, the analysis revealed that BioA 
and Tox do not cause any incomparability within the studied set of 12 POPs. 
  

1 Introduction 
Sailaukhanuly et al. [1] published a study about persistent organic chemicals, where they 

applied a multi-indicator system (mis) consisting of quantifications of persistence, 

bioaccumulation and toxicity.  Sailaukhanuly et al. show that in general simple concepts of 

partial order theory can give insights into the possible rankings without the use of arbitrary 

weights, needed in many decision support systems. Beyond this, they apply different simple 

techniques to get linear or weak orders, applying beside others approximation methods such 

as LPOM0, LPOMext and also an algorithm to obtain exact results, based on lattice 
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theoretical methods (see Bruggemann, Carlsen [2] and De Loof et al. [3] as well as 

Bruggemann, Annoni [4]). 

 

A central role plays the Hasse diagram, it shows that several chains (total order for subsets of 

objects) are possible without the need of further assumptions. The Hasse diagram also shows 

many incomparabilites exhibiting that for instance DDT and Aldrin, both being maximal 

elements. The incomparability of DDT with Aldrin indicates that these two chemicals are top-

hazardous, however apparently because of different properties.  

 

Due to the appearance of incomparability, partial order methods are not necessarily 

considered as decision support systems but rather as analytical tools supporting the decision. 

In [1] only the most simple albeit most transparent decision support systems were applied. 

Citing Hajkowicz, Higgins [5] we find: “Recent review papers identify hundreds of MCA 

(multicriteria analysis) techniques for ranking or sorting options, weighting criteria and 

transforming criteria into commensurate units”. A book edited by Figueira et al. [6] 

summarizes the knowledge concerning decision support systems in more than 1000 pages! So 

the appearance of incomparability is certainly of concern. Following [5] even “all dominated 

options should be excluded from the selection set”. This advice would result within the Hasse 

diagram of Sailaukhanuly in a bare antichain, containing only three mutually incomparable 

chemicals (DDT, ALD, CHL). However, as Bartel and Mucha [7] correctly point out: 

incomparability in mis is not a matter of yes/no (incomparable or comparable) but there is a 

degree of incomparabilities caused by the behavior of the different indicators. In a publication 

of Bruggemann and Voigt [8] this “degree of incomparability” was investigated by the 

partitioning of a mis into a set of pairs of indicators. The role of incomparability may further 

be elucidated as follows: Within the conventional machinery of decision support systems, 

such as ELECTRE III (Roy, Bousseaux [9]; Colorni et al. [10], or PROMETHEE (Brans, 

Vincke [11]) the set {DDT, ALD, CHL} would be brought into a linear order by means of a 

series of 12 additional parameters beyond the 9 indicator values needed to characterize the 

three chemicals! It is not claimed that partial order not needing such many additional 

parameters are preferred over highly sophisticated and often used decision support systems; 

nevertheless partial order methods may be seen as analytical tools to get more insight into 

evaluation problems. Therefore, we analyze a) the set of chemicals with respect to the concept 

“peculiarity of data profiles” in order to find out those chemicals whose data profile needs 
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most concern, and then b) we apply a scanning procedure, which shows up how severe 

incomparability is.  

2 Material and Methods 
2.1 Chemicals 
The study by Sailaukhanuly et al. [1] included 12 chloro-containing persistent organic 

pollutants (POPs) all covered by the Stockholm convention [12]. The compounds are all so-

called PBT (persistent, bioaccumulating, toxic) – or vPvB (very persistent, very 

bioaccumulating) compounds as referred to in the European chemicals regulation REACH 

[13]. This group of compounds displays a pretty high diversity in composition and structures 

(Table 1) and constitutes as such an illustrative example in the present context. 
 

Table 1. Chemicals included in the study 
ID CAS No. Trivial name SMILES 

DDT 50-29-3 p,p-DDT Clc1ccc(cc1)C(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 
DDD 72-54-8 p,p-DDD ClC(Cl)C(c1ccc(Cl)cc1)c2ccc(Cl)cc2 
DDE 72-55-9 p,p-DDE Clc1ccc(cc1)\C(=C(/Cl)Cl)c2ccc(Cl)cc2 
MEC 72-43-5 Methoxychlor ClC(Cl)(Cl)C(c1ccc(OC)cc1)c2ccc(OC)cc2 
ALD 309-00-2 Aldrin ClC3=C(Cl)C4(Cl)C2C1CC(C=C1)C2C3(Cl)C4(Cl)Cl 
DIE 60-57-1 Dieldrin ClC4=C(Cl)C5(Cl)C3C1CC(C2OC12)C3C4(Cl)C5(Cl)Cl 
HCL 76-44-8 heptachlor ClC1C=CC2C1C3(Cl)C(=C(Cl)C2(Cl)C3(Cl)Cl)Cl 
CHL 57-74-9 chlordane ClC1CC2C(C1Cl)C3(Cl)C(=C(Cl)C2(Cl)C3(Cl)Cl)Cl 
LIN 58-88-9 lindane (%-HCH) ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl 
HCB 118-74-1 hexachlorbenzene c(c(c(c(c1Cl)Cl)Cl)Cl)(c1Cl)Cl 
PCN 82-68-8 pentachlor nitrobenzene O=N(=O)c(c(c(c(c1Cl)Cl)Cl)Cl)c1Cl 
PCP 87-86-5 pentachlor phenol Clc1c(O)c(Cl)c(Cl)c(Cl)c1Cl 

 
 
2.2 Basic definitions 
Partial order relations can be obtained in many different ways. Even, if the partial order is 

specialized and is to be related to a data matrix (see for e.g. Bruggemann et al. [14]) we can 

define different partial order relations among objects. For example: 

 

Let X be the finite set of objects, and IB the set of indicators qi, (i = 1, … ,|IB|)  

then we define: x, y & X:  x ' y : ( qi(x) ' qi(y) for all qi & IB    (1)  

   

Eqn. 1 represents a partial order P, which we denote as P = (X, IB) to indicate the intricate 

relation between the order relation and the set of indicators. The set X together with the partial 

order structure is called a partially ordered set (poset).  
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Instead of (1) for example the fuzzy concept (Van de Walle et al. [15]; De Loof et al. [16]) 

can serve as a leading idea or one may restrict the data matrix on the maximum and minimum 

of each row (in case the indicators have the same metric scaling level) and analyse an n by 2 

matrix instead of an n by |IB|-matrix. Then other definitions of partial order come into play 

(see for instance Bruggemann, Patil [17]). Many other realizations of partial orders are 

possible, which are not based on eqn. 1, for example division of integers by natural numbers 

defines a partial order. Therefore, often the partial orders based on eqn. 1 are called Hasse 

Diagram Technique (HDT).  

 

A series of notational remarks are needed: 

a) Objects, for which x ' y , or x ) y are called comparable, in sign: x * y. 

b) Objects, for which (1) does not hold, are called incomparable. The fact that  

object x is incomparable with y, is denoted as x || y.   

c) Let Y +  X. Then Y is a downset of (X, IB) if x & Y and z ≤ x implies z & Y.   (2) 

d) Downset (order ideal) generated by x & X: O(x):={y & X: y ' x} 

e) Successor set S(x): S(x): = O(x) - {x} 

f) Let Y +  X. Then Y is a upset of (X, IB) if x & Y and z ) x implies z & Y.  (3) 

g) Upset (order filter) generated by x & X: F(x):={y & X: y ) x} 

h) Predecessor set Pr(x): Pr(x): =F(x)-{x} 

i) The set U(x, P): U(x, P):  = {y & X: y||x in P}     (4) 

j) Priority elements: 

i. Isolated elements Iso(X, P): Iso(X, P) = {x: x & X, there is no  

y&X, such that x > y or x <y}.      (5) 

ii. Maximal elements Max(X,P): Max(X,P): = {x: x & X, 

 there is no y & X, such that y > x}       (6) 

iii. Minimal elements Min(X,P): Min(X,P): ={x: x & X, 

 there is no y & X, such that y < x}                 (7) 

k) Chains: Let C , X, if all x, y & C obey x<y then C is called a chain.  (8) 

l) Antichain (AC): Let AC , X, if for all x, y & AC is valid x || y,  

then AC is called an antichain 

m) Cover relations: Let x, y, z & X, when x < y < z,  

then z “is between” x and y. If x < z without any element & X,  
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which is between x and z then z “covers” x or x is covered by z.  

A cover relation is denoted by x <: z.  

n) Distance: The minimum number of cover-relations from x to y is called a distance. 

 If x || y then the distance is set �. 

o) Level: Equivalence classes of X due to the equivalence relation: same maximal 

distance to at least one of the maximal elements.  

p) An interval I(z,y) is the set of elements x & X such as z ' x ' y. 

q) A weak order is a binary relation which is reflexive, complete, and transitive.  

Because antisymmetry is not required, a sequence of objects may have ties,  

such as the weak ordered set {a, b, c, d} may be represented as a < b - c < d. 

r) Corner of a hypercube: let be m the number of indicators. Then the ordered m-tuples 

composed of 0’s and 1’s are called corners of a hypercube or simply “corners”. 

Formally: The tuples of the corners are elements of {0,1}m. Let H be the set of corners, 

then we define “peculiar corners” PEC, as follows: PEC = H -{(0,0,...,0), (1,1,...,1)}. 

The meaning of this definition becomes clear in section 3.1  

s) Width of a poset: The number of elements in the maximum antichain.  

t) The number of elements in finite subsets A are indicated by |A|. 

 

2.3 The Hasse diagram of the substances 
Table 2 shows the indicator data for the 12 chemicals, where each indicator was normalized to a [0,1]-

scale by qni(x)=(qi(x)-qimin)/(qimax-qimin)), qimax and qimin being the maximum, minimum value 

with respect to the objects. Shorthand notation: -column wise [0,1]-normalized data.  

 
Table 2:  Normalized (columnwise) data matrix (rounded to the 3rd decimal). 

(the original data can be found in [1]) 
 Pers BioA Tox 

DDT 0.084 1.000 1.000 
DDE 0.009 0.856 0.160 
DDD 0.000 0.679 0.171 
MEC 0.027 0.339 0.101 
ALD 0.264 0.852 0.627 
DIE 0.293 0.383 0.041 
HCL 0.428 0.480 0.104 
CHL 1.000 0.751 0.212 
LIN 0.027 0.000 0.000 
HCB 0.057 0.574 0.187 
PCN 0.054 0.180 0.028 
PCP 0.012 0.354 0.010 
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Application of eqn. 1 on the data shown in Table 2 leads to a poset, whose Hasse diagram is shown in 

Fig. 1, which obviously is identical to the original reported by [1]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1: Hasse diagram of 12 PBT-substances. Indicators are  
Persistence, Bioaccumulation and Toxicity, columnwise [0,1]-normalized. 

 
 From Figure 1 a series of observations can be extracted: 

 

. The Hasse diagram shows no isolated element 

. The Hasse diagram has three maximal elements (DDT, ALD and CHL). The appearance of 

three maximal elements indicates clearly that the reason, which these chemicals are of concern 

are different. If a good-bad (g, b) classification were applied, then there are three combinations 

(b, b, g), (b, g, b) and (g, b, b). The triple (b, b, b) would lead to just one maximal element 

called in partial order theory the greatest element. This pattern however is not found. 

. The Hasse diagram shows four minimal elements (DDE, DDD, LIN and PCP). Following the 

drawing conventions of the software PyHasse (Bruggemann et al. [18]), the four minimal 

elements are located in the diagram as high as possible. 

. There are chains, such as LIN < PCN < DIE < HCL < CHL. The appearance of chains 

indicates a linear order among a subset of X, where the indicator values are simultaneously 

weakly increasing.  

. There is a level with the largest number of elements, namely that, consisting of {DDE, DDD, 

HCL, HCB}. As this level is the second one proceeding downwards, the classification into g 

and b would again only yield three combinations according to (b, g, g), (g, b, g) and (g, g, b). 

As there are four chemicals the good-bad classification is not fine enough to explain this level. 
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. There is an interesting structure: There are two subsets X1:= {DDT, ALD, DDE, DDD} and 

X2:={HCL, MEC, DIE, PCN, LIN} where x & X1 and y & X2 / x || y. This kind of subsets is 

called “separated subsets”. Such subsets must have data profiles in common, which lead to 

such a special structure. The analysis of separated subsets is discussed in Bruggemann, Voigt 

[19]. 
 

Sometimes a great help is the use of posetic coordinates (see Myers and Patil [20]). In Table 3 the four 

posetic coordinates of each chemical are shown, consisting number of elements being equivalent with 

the selected one (x) (Equiv), the number of elements in S(x), the number of elements in F(x). 

Furthermore the number of elements in U(x), see eqn. 4. We observe that 
 

. DDE is the element with a maximum number of elements in U(DDE). 

. CHL has the most successors  

. LIN has the most predecessors and that 

. 9 substances out of 12 have U < 6 (i.e. U(x) < U(DIE). Only two other substances have higher 

U-values, namely DDE and DDD.  
 

Although we can draw many useful pieces of information out of the Hasse diagram, for most scientists 

concerned with evaluation and decisions the appearance of incomparabilities is a severe drawback of 

HDT, considered as decision support tool. First of all, the appearance of incomparabilities, say x || y,  

indicate that there are conflicts in data: One indicator of x may indicate a relatively good state, another 

indicator a bad state; whereas the profile of indicator values of y is the other way round. Any decision 

support system mapping the set of indicators into one ranking index will lose this specific information.  

 
Table 3: Posetic coordinates of the PBT-set. 

object Equiv. |S(x)| |F(x)| |U(x)| 
x     

DDT 1 7 0 4 
DDE 1 0 1 10 
DDD 1 0 3 8 
MEC 1 1 5 5 
ALD 1 6 0 5 
DIE 1 3 2 6 
HCL 1 5 1 5 
CHL 1 8 0 3 
LIN 1 0 8 3 
HCB 1 4 3 4 
PCN 1 1 6 4 
PCP 1 0 6 5 

  
Evaluation, as presented here, can be performed even on the basis of indicators of different scaling 

levels. However, when indicators have the same scaling level implying a metric as it is the case in the 
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study discussed here, then it is justified to classify conflicts in indicator values, where the numerical 

data differences are small as non-relevant. In contrast one may search for data profiles which are 

strikingly deviating from the others. 

 
 

3 View into incomparabilities 
With reference to the above we will in the following sections dig some spits deeper to elucidate the 

nature of incomparabilities focusing on two aspects, i.e., a) what we call  “a scanning”, and b) “an 

analysis for peculiarity of data profiles”. We begin with “peculiarity of data profiles”. 

 

3.1 Peculiarity of data profiles 
Pecularity of data profile 

The Hasse diagram in Fig. 1 shows that the partial order is not a complete antichain. Indeed it 

has some pretty long chains. Hence the tuples (here triples) q(x) = (q1(x), q2(x), q3(x)) have 

sufficiently often the property 

qi(x) > qi(y) / qj(x) > qj(y).          (9) 

Thus, a priori the columnwise [0,1]-normalized tuples qn can be considered as points in an 

ellipsoid-like manifold, whose first main axis includes the points (0, 0, ..., 0) and (1, 1, ...,1), 

i.e., most points representing the objects in the m-dimensional space are located around a 

straight line. In the present case m is here 3 (cf. Table 1) thus the line starts in (0, 0, 0) and 

ends in (1, 1, 1). The Hasse diagram in Fig. 1 is neither completely flat (complete antichain) 

nor completely thin (complete chain, i.e., a total order). Therefore, there are deviations from 

the line through (0, 0, 0) and (1, 1, 1) and one may ask are there points in the space which 

should be better characterized by a pattern {0, 1}3, with qn � (0, 0, 0) and qn � (1, 1, 1). In 

other word, we are seeking for tuples qn, which are in the metric space near enough to the 

elements of PEC (see section 2.2, topic r)), for example to (0, 1, 1) or (0, 0, 1) etc. As a priori 

there is no objective quantification of “near enough”, we introduce a factor f. The role of 

factor f is explained in the following. 

 

The maximal squared Euclidian distance Dmax in m-dimensional hypercube is given by 

 

Dmax(H) = d((0,0,...,0),(1,1,...,1)) = (0(0-1)2) , d(x,y), being a distance function.  (10) 
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Thus, Dmax = m. Consequently, there is a scale for the distances from 0 to m. A chemical, 

whose distance d to one of the corners h of PEC is < f•m can be considered as if this specific 

chemical can be represented by the “0, 1-pattern” of h. Let h be one of the corners & PEC and 

x one of the chemicals. Then d(h,x) , the distance between h and the element x, can be 

determined, and if d(h,x) < f•Dmax, i.e.; d(h,x) < f•m then x is “attracted” by h. In that sense the 

quantity f serves to decide, at which distance the data profile of a compound x is similar to 

one of the data profiles of PEC. In a first attempt to elucidate this, we select f=0.05. Selecting 

f=0.05 means that only chemicals with a very close distance to one of the corners of the 

hypercube will be found. “Very close” is to be understood relatively to the maximal distance 

within the hypercube of m. Thus, when m corresponds to 100% then f=0.05 can be interpreted 

as 5% of the maximal distance. Thus, in the present case applying f=0.05, chemicals with a 

distance ≤ 0.15 to h will be regarded as peculiar. Analogously, the limit would be 0.3 is  

f = 0.1 was chosen. 
 

The module incompposet4_1.py of PyHasse finds the “peculiar” chemicals by running a 

double loop. Thus, for each corner h of the hypercube (first loop) all chemicals x are checked 

with respect to their distance d(h,x) = 0(z-qnj(x))2, z being 0 or 1, to the actual selected corner 

h as to how far their distance is less f•m (second loop).  When f is low (e.g. 5% of maximal 

possible distance) then clearly only few chemicals will fulfill the requirement d(h,x) < f•m. 

When f is somewhat relaxed, more and more chemicals may be associated with one or more 

corners. In Tables 6a and 6b the results of the peculiarity study are summarized. 

 
Table 6a: Peculiar objects on the basis of f= 0.05. Distances are based on data of Table 2 
Number of peculiar representants found by incompposet4_1.py: 4; fraction in % 33.333 

 
object: DDT data  : 0.084, 1.0, 1.0,  
    pattern: [0, 1, 1]   with minimal distance 0.007  Pers, Bio , Tox 
____________________________________________________ 
object: DDE data  :0.009, 0.856, 0.16,  
    pattern: [0, 1, 0]   with minimal distance 0.047 
____________________________________________________ 
object: DDD data  :0.0, 0.679, 0.171,  
    pattern: [0, 1, 0]   with minimal distance 0.132 
____________________________________________________ 
object: CHL data  :1.0, 0.751, 0.212,  
    pattern: [1, 1, 0]   with minimal distance 0.107 
____________________________________________________ 
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Figure 2: 3D plot of the normalized indicator values (Table 2) 
 
 
As shown in Table 6a the corner [0, 1, 0] “attracts” two chemicals, namely DDE, and DDD, 

whereas the corners [0, 1, 1] and [1, 1, 0] attract only one chemical. 

 
Table 6b: Distances less than 10% of the maximal distances. I.e. f=0.1: 

Number of peculiar representants  found by incompposet4_1.py: 6; fraction in % 50.0 
 

object: DDT data  :0.084, 1.0, 1.0,  
    pattern: [0, 1, 1]   with minimal distance 0.007 
____________________________________________________ 
object: DDE data  :0.009, 0.856, 0.16,  
    pattern: [0, 1, 0]   with minimal distance 0.047 
____________________________________________________ 
object: DDD data  :0.0, 0.679, 0.171,  
    pattern: [0, 1, 0]   with minimal distance 0.132 
____________________________________________________ 
object: ALD data  :0.264, 0.852, 0.627,  
    pattern: [0, 1, 1]   with minimal distance 0.231 
____________________________________________________ 
object: CHL data  :1.0, 0.751, 0.212,  
    pattern: [1, 1, 0]   with minimal distance 0.107 
____________________________________________________ 
object: HCB data  :0.057, 0.574, 0.187,  
    pattern: [0, 1, 0]   with minimal distance 0.22 
____________________________________________________ 
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Whereas DDT, DDE, DDD and CHL apparently display peculiar data structure (Table 6a) the 

remaining chemicals may be seen as included in the ellipsoid, the main axis being 

characterized as ranging from (0, 0, 0) to (1, 1, 1). The peculiarity of the four elements is 

further elucidate by a simple 3D plot of the data given in Table 2 (Fig. 2) 

The results of a somewhat more relaxed requirement due to f can be seen in Table 6b applying 

f=0.1. 
 

3.2 Scanning 
Up to now the main concern was to consider single objects as to how far they deviate from the 

ellipsoid-like manifold, representing the general development of objects, supposed the 

selection of indicators exhibits some commonality in order to describe a ranking aim. In the 

following the point of view is further extended. Hence, instead of focusing on single objects 

the interest is to find object - and indicator pairs, which show striking conflicts in data. We 

start with the maximal elements DDT, ALD and CHL and apply the method of tripartite 

graphs [19] to find the Antichain-finestructure (AC-finestructure) and generalize the 

investigation to the whole set of 12 PBT-substances in the next and main step. The new 

module of the software PyHasse, by which the complete set X is scanned is called 

scan_incomp4.py. 
 

Antichain-fine-structure 

Let (x, y) be two chemicals for which eqn. 1 cannot be applied, i.e., x || y. Unambiguously the 

question arise which indicator(s) causes that x > y and which that y > x. We call this kind of 

analysis the “Antichain-fine structure” (AC-fine structure).  

 
By application of the module Antichain20_4.py of PyHasse a tripartite graph [19, 21] can be 

obtained (Fig. 3). 

 
Figure 3: Tripartite graph of the subset {DDT, ALD, CHL}. 

 
Although the tripartite graphs are published in [19], some explanation is supplied. The 

indicators are vertically arranged at the left and at the right side. As x||y expresses the same 

fact as y || x (incomparability is a symmetric relation) three pairs can be built from the subset 
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{DDT, ALD, CHL}. A line from the left vertices {Pers, BioA, Tox} to one of the pairs, say 

(x,y) indicate that the corresponding indicator is responsible for x > y. Because x || y there 

must be at least another indicator on the right side, connected with (x,y), expressing that 

 y > x. Thus, in case of (ALD,CHL) indicators BioA and Tox lead to ALD > CHL, whereas 

the indicator Pers leads to CHL > ALD. In Table 4 the nature of incomparability is analyzed 

in more detail. If for indicator qi we find x > y or left object > right object, referring to the pair 

(x,y), then this indicator is denoted by a 1, else by a 0.The second right part of Table 4 is the 

Boolean complement of the first (left) part, nevertheless it is instructive to present both parts 

for the ease of interpretation. In Table 4 the order of the pairs of chemicals is identical to that, 

used in Fig. 3. It should be noted that reversing the order of the chemicals within a given pair 

implies a transfer from 1 to 0 and from 0 to 1.Hence the same table can be written as follows 

(Table 5). 
 

Table 4: Antichain-fine structure of DDT, ALD and CHL 
 

               left object > right object          left object < right object 
   Pers,  BioA,  Tox,   Pers BioA Tox 
ALD,DDT:  1,  0,  0,   0,  1,  1,  
CHL,DDT:  1,  0,  0,   0,  1,  1,  
ALD,CHL:  0,  1,  1,   1,  0,  0,  

  
Table 5: Antichain -fine structure of DDT, ALD and CHL 

after reversing the order of chemicals in two of the three pairs. 
 

                          left object > right object  left object < right object 
   Pers,  BioA,  Tox,   Pers BioA Tox 
DDT,ALD:  0,  1,  1,   1,  0,  0,  
DDT,CHL:  0,  1,  1,   1,  0,  0,  
ALD,CHL:  0,  1,  1,   1,  0,  0,  

 
 
From Table 5 we see the same fine structure for all three pairs. Thus, the three possible pairs 

out of the set of {DDT, ALD , CHL} are equivalent with respect to the AC-finestructure. 

Hence, the fact that the three chemicals are mutually incomparable is not necessarily a basic 

difference in their behavior, expressed by the three indicators, but only in the different 

numerical realization. In general in a mis the incomparability of pairs of chemicals can be 

caused by many different combinations of the 0, 1 pattern within the AC-finestructure. 

Furthermore we see that the indicator pair (BioA, Tox) does not contribute to 
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incomparabilities among the three selected chemicals. This observation will be confirmed and 

extended in a general setting in the next subsection. 

 
Scanning 

The module, scan_incomp4.py, is (as the module incompposet4_1.py) applied to column wise 

normalized data matrices. 

 
The scan-parameter, called �, or “scan-level”  is used as follows: Let qni,j be an element of the 

(columnwise normalized) data matrix, where i refers to an object and j to an indicator  and � a 

quantity selected by the user, then: 

 

|qni1,j1-qni2,j1| ) � and |qni1,j2-qni2,j2| ) � /  

objects i1 and i2 have with respect to indicators j1 and j2 an conflict of order �.  (11) 

 
It is convenient to call the differences qni1,j-qni2,j= :1(i1,i2,j). The scanning is performed by 

varying � systematically, beginning with a low value and ending in a value < 1. In Table 7 the 

results of scanning are shown. The scan-parameter is � and is varied from 0.3 to 0.8 (both 

values arbitrarily selected). In each step eqn. 11 is checked as to how far objects (here: 

chemicals) and the 3 possible indicator pairs fulfill eqn. 11. If eqn. 11 is fulfilled, the 

corresponding object and indicator pair is shown. Clearly a low value of � is pretty often 

fulfilled, enhancing the value of � only those pairs of objects and attributes remain, where 

1(i1,i2,j1), 1(i1,i2,j2) are large enough indicating serious numerical differences in the indicators.  

In Table 8 the results of Table 7 are summarized: The scan-parameter will be given and the 

indicator pairs are shown where equation 11 is fulfilled. In case of � = 0.3 the indicator pair 

(Pers, BioA) fulfills eqn. 11 for 2 and the indicator pair (Pers, Tox) for 3 substance pairs. 

Hence the cumulated frequency of striking incomparabilities with respect to the low value of 

� being 0.3 is 5. When � is enhanced to 0.7 only one object pair, namely (DDT, CHL) 

remains. After a further enhancement of � (�=0.8) no object pair fulfills eqn. 11. DDT and 

CHL are peculiar substances according to the analysis shown in section 3.1. As can be seen 

by checking Table 7 the pair (BioA, Tox) (or (Tox, BioA) ) does not appear in coincidence 

what was found in section 3.1. This indicator pair does not contribute to incomparabilities at 

all, which means: BioA(x) ' BioA(y) ( Tox(x) 'Tox(y) within the set of the 12 PBT-

substances.  
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Table 7: Scan-parameter: lower start: 0.3  upper endpoint 0.8   step: 0.1. 
All results based on data of Table 2. 

 
Endpoint 0.8: There is no incomparability fulfilling equation (11) 
Scanning level 
object pair        indicator pair   1(i1,i2,j1),   1(i1,i2,j2) 
____________________________________________________ 
�=0.3:  
DDT: HCL -->Pers, BioA :  -0.344,   0.52 
DDE: HCL -->Pers, BioA :  -0.419,   0.375 
DDT: HCL -->Pers, Tox :  -0.344,   0.896 
DDT: CHL -->Pers, Tox :  -0.916,   0.788 
ALD: CHL -->Pers, Tox :  -0.736,   0.415 
�=0.4:  
DDT: CHL -->Pers, Tox :  -0.916,   0.788 
ALD: CHL -->Pers, Tox :  -0.736,   0.415 
�=0.5:  
DDT: CHL -->Pers, Tox :  -0.916,   0.788 
�=0.6:  
DDT: CHL -->Pers, Tox :  -0.916,   0.788 
�=0.7:  
DDT: CHL -->Pers, Tox :  -0.916,   0.788 
�=0.8:    
____________________________________________________ 

 
Table 8: Summary of Table 7 

 
� Indicator-pair      Frequency   cumulated frequency  

        related to delta 
____________________________________________________ 

 
0.3, Pers, BioA,  2  
0.3, Pers, Tox,  3   5  
0.4, Pers, Tox,  2   2  
0.5, Pers, Tox,  1   1  
0.6, Pers, Tox,  1   1  
0.7, Pers, Tox,  1   1     
____________________________________________________ 

With increasing demand on the value of discrepancies, the number of object pairs, attribute 

pairs exceeding the demand described by � tends to go to zero. In case of � being “only” 0.3 

there are many contradictions, most induced by the indicator pair BioA,Tox. 
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On the other side DDT, CHL is (with different combinations of indicators) most often 

exceeding the scanning level delta. The largest discrepancy is found for Pers, Tox., this 

indicator pair clearly contributes to all other lower scan levels too. 
 

4 Discussion 
4.1 Summary 
There is an obvious need of techniques how to support decisions. The field of MCDA as 

described for example by Munda [22] encompasses many highly sophisticated methods which 

take care of many scenarios as given by the data material. Often the data material includes 

different scaling levels, and often the evaluation problem needs modeling techniques, as for 

example in ELECTRE III, where the decision maker is allowed for setting vetos, or to 

consider data differences as insignificant etc. 

The price of this apparent convenient general architecture within MCDA-techniques is 

threefold: 

1. There is a need of many additional parameters beyond the data matrix 

2. The transparency of the applied procedures may not as clear as any audience may ask 

for. 

3. The MCDA-methods intend to map m indicators onto one ranking index with the 

consequence that conflicts in data are no more obvious. 

There is on the other side the approach by partial order, which in most MCDA-methods is at 

best just a technical mean, but is not per se considered as a MCDA-technique. When the 

scaling level allows to introduce distances then partial order concepts can deal with “non-

relevant” data conflicts. A typical example is the introduction of fuzzy posets, as clarified by 

Bruggemann et al. [23]. There is, however, a drawback. In order to defuzzify the results of the 

fuzzy poset approach a parameter is needed. This parameter (2-cut) is only in a complex 

manner to be related to the data. Although the method of fuzzy posets has a deep theoretical 

background, it may be useful to offer alternatives, where the relation to the data is better 

understandable. 

Incomparability is a concept, which causes several publications [7, 8, 19, 21, 24] and is the 

source of much disgust of applying partial order concepts. Nevertheless, it is at the very heart 

of an evaluation. Different aspects, expressed by different indicators cannot necessarily be 

balanced out without introduction of many additional concepts, parameters or knowledge 
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beyond the data matrix.  Incomparability as it appears in partial order applications in the 
framework of mis is not a matter of yes/no or white/black but allows many differentiations. 

Just the fact that in mis the incomparability can be resolved into incomparability expressed by 

a set of indicator pairs shows that a differentiation must be possible. Furthermore, when, as 

suggest in the above analyses, the scaling level of the indicators allows distances, then it may 

happen that the conflict is based on only slight numerical differences and could possibly be 

ignored.  Finally, a ranking study based on mis needs indicators, which describe the same 

ranking aim. Therefore it is convenient to assume that in the case of [0,1]-normalized data 

most of the objects are near the line, connecting 0 = (0, 0, ..., 0) with 1 = (1, 1, ..., 1) in the m-

dimensional space. Objects may deviate from this “mainstream” and it is of obvious interest 

to identify them. When, finally such objects are identified, they often cause incomparabilities 

to many others, just because of their “peculiar” data profile that subsequently may be a reason 

for further scrutinizing. In the sections 3.1 and 3.2 consequently the search for “peculiar 

objects” and for object pairs with striking numerical differences is described. 

4.2 Conclusion 
Incomparable - what now? Incomparability may be caused by objects which do not follow the 
“mainstream” and hence such objects need to be identified. In contrast to the fuzzy poset-
approach, here a new parameter is introduced, which has a clear relation to the data matrix. 
When the data are [0,1]-normalized the points 0= (0, 0, ..., 0) and 1= (1, 1, ..., 1)  will not 
necessarily realized, but define the main axis of an ellipsoid-like manifold, where most 
objects are included. The possible maximal distance can be calculated (when the squared 
Euclidian distance is used, then this maximal distance is just m, i.e., the number of indicators) 
followed by the introduction of the parameter f that describes a fraction of this distance. 
Consequently peculiarity of objects is not per se a peculiarity, but is assigned as such in terms 
of the selected value for f. Hence, more correctly the peculiarity should referred to as an f-
pecularity. In this paper we found some peculiar chemicals (on the basis of f=0.05) which are 
also visible in a 3D-plot of the data. However, the method works equally well, until the 
graphical display finds its limits. Thus, the first step is performed, to find peculiar objects and 
it is on the user of this method as to how far peculiar objects are to be considered as outliers 
or give rise to check the data matrix itself for possible erroneous data. 

The second step, needs once again a parameter, which was called �. When numerical 

differences of any two objects given by any pair of indicators out of mis exceed � then there 

is a conflict in data, which may called a �-conflict. Clearly, when the procedure starts with 

low values of � any yx
ji qnqn ,||  may exceed �. When � is a stepwise increased, previous 
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conflicts may be considered as non-relevant. The remaining quadruples (x, y) (qni, qnj), where 

� is exceeded are of high interest, not only because certain object pairs are now in the focus, 

but also because we can identify the indicator pair, causing such �-conflict. 

In the present paper, we restricted ourselves on data, which allow a metric. What about 
scenarios, where indicators of different scaling levels are considered? As long as 
normalization can be justified, there is no problem, and then the procedures as described in 
section 3 can be applied. In scenarios where the normalization cannot be performed, e.g., 
because mis contains metric indicators and linguistic ones, then the argument about numerical 
differences can obviously not be applied. Here the analysis is reduced to an enumeration of 
how many indicator pairs cause an incomparability. However, this kind of analysis of 
incomparabilities is already described in a former publication [19]. 

4.3 Future works 
Fuzziness in decision problems can be handled in different ways and also some MCDA-tools 
are thought of as fuzzy-like, such as ELECTRE III. Multivariate statistics too offer methods 
such as cluster analysis to ignore slight numerical differences. Therefore in future ELECTRE 
III, cluster analysis methods and fuzzy posets are applied, based on the same data set and the 
methods compared.  First preliminary studies show that the hierarchical cluster analysis can 
be combined with partial order concepts in a meaningful manner and that ELECTRE III 
seems to be an approximation to fuzzy partial order approaches as discussed in [23]. 
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