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Abstract

In recent years, an increasing interest has focused on the use of Sinc methods as an
essential tools for solving some singular problems arising in different areas of applied sci-
ences. Due to the presence of singularity, these problems raise difficulties in obtaining
their analytic or numerical solutions, and various schemes have been proposed to overcome
these difficulties. However, among existing approaches, the Sinc methods are well-suited
for handling singularity and have high performance on boundary value problems (BVPs)
such as problems on unbounded domains or problems with endpoint singularities. In this
work, in several geometries and kinetics, an implementation of the Sinc–Galerkin scheme
is used to approximate effectiveness factor and concentration profile of key component
when a single independent reaction takes place in a porous catalyst structure where en-
zymes are immobilized. A comparison between the proposed approximated solution and
numerical solution reveals that the Sinc–Galerkin method (SGM), as demonstrated with
examples, is reliable, accurate and its convergence rate is high.

1 Introduction

Recently, there is an interesting concern to estimate effectiveness factor (η) in bioengi-

neering process where immobilized enzymes/cells are used as catalysts (hereafter called
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biocatalysts). Because of their excellent functionality, the immobilized biocatalysts have

a great potential as industrial catalysts. Hence, many scientists and engineers have made

numerical methods to estimate η for simulation of reaction–diffusion systems in industrial

and commercial scales. In the present paper, we consider a reaction–diffusion process

inside an inert permeable solid particle where the bacterial immobilization has been made

inside it. At isothermal conditions, the steady regime of the reaction–diffusion process

inside the catalyst porous structure is described by a singular BVP and governed by a

dimensionless form as:
d

dx

(
xm dy

dx

)
= Φ2xmR(y), (1)

with the boundary conditions

dy

dx

∣∣∣∣
x=0

= 0, and y(x) |x=1 = 1. (2)

Here, x is the spatial variable, y is the concentration of the key component, Φ is the Thiele

modulus and m is the shape factor of the catalyst(m = 0 for the slab and m = 2 for the

sphere). The dimensionless reaction rate function R(y) is normalized to be R(1) = 1.

The effectiveness factor (η) is defined as the mean rate of reaction divided by the same

rate of reaction evaluated at external conditions [10]:

η =
m+ 1

Φ2

dy

dx

∣∣∣∣
x=1

. (3)

Also, in this paper the rate of reaction R(y) appears in one of the following types:

(i) R(y) = yn (in slab geometry),

(ii) R(y) = (1+β)y
1+βy

(in spherical geometry),

(iii) R(y) = (1+β)2y

(1+βy)2
(in slab geometry).

Several numerical approaches have been devised for solving a nonlinear BVP e.g., shoot-

ing technique, orthogonal collocation methods and finite differences methods are of the

famous schemes among scientists and are well reflected in various books [2, 7, 8, 14, 32].

Moreover, a good account of work based on soft computing using Maple, Mathematica

and Matlab, can be found in [35], [9] and [4], respectively.

Many investigations have been carried out in the literature, to establish approximate so-

lutions of the above reaction–diffusion problem in some geometries, both in numeric and

analytic manner [1, 11, 12, 15]. Li et al. [16] suggested a simple polynomial up to third

degree to estimate η when chemical kinetics are well represented for a particular case

of Michaelis–Menten model inside a spherical biocatalyst. They applied rate of reaction
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of the type (ii) and the numerical results of their approach compared with a numerical

shooting procedures similar to that described by Walas [33]. According to their numerical

procedure, they were forced to impose the constraint β ≥ 0.75Φ2−1. Moreover, the differ-

ence between the numerical solution (based on shooting technique) and the approximate

solution of the reaction–diffusion process increases with increasing Φ2 and decreasing β.

According to their statement, the effectiveness factor of the biocatalyst particles may be

estimated using the third-order approximate solution for some systems with low value of

Φ2 such as oxygen transport into natural mycelial pellets in submerged cultures. Got-

tifredi & Gonzo [10] manipulated analytically BVP’s (1)-(2) into a convenient integral

form and by the use of Polymath nonlinear algebraic equation routine [23] and through

a Gaussian quadrature estimated effectiveness factor and concentration (y(0)), but in the

slab geometry. They have also predicted the effectiveness factor in an asymptotic regime

corresponding to large values of Φ for a particular case of Michaelis–Menten kinetics in

a spherical pellet. However, according to our numerical results and in comparison with

a robust shooting method [19], their asymptotic solutions are not sufficiently accurate.

Recently, Danish et al. [5] applied an improved variant of Homotopy analysis method

(HAM), known as the optimal HAM (OHAM), to approximate analytic solutions for η of

the BVP’s (1)-(2) when associated with the reaction rate of type (ii), but not for large

values of Φ.

In recent years there has been an increasing interest in the use of Sinc methods as an es-

sential tools for solving some singular problems and those who have settled on unbounded

domains [21, 22]. The Sinc method is a highly efficient numerical method developed by

Frank Stenger, the pioneer of this field, people in his school and others [3,17,20,30]. The

books [13,18,28,29] have provided excellent overviews of methods based on Sinc functions

for solving ODEs, PDEs and IEs arising in applied sciences. See also [6, 24–27]. There

are several advantages to using approximation based on Sinc numerical methods. It may

readily handle the singularity, control the convergence of Sinc approximation solution in

unbounded regions [21, 22] and has characterized by exponentially decaying errors [24].

The aim of this paper is to use a version of Sinc–Galerkin scheme with modified compos-

ite translated Sinc basis functions and three adjusting boundary polynomials to discritize

(1)-(2). Our method consists of reducing the solution of singular BVP to a mild set of

nonlinear algebraic equations.
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2 A survey of some properties of the Sinc function

Let C denote the set of all complex numbers and for all z ∈ C define the sine cardinal or

Sinc function by

sinc(z) ≡
{

sin(πz)
πz

if z �= 0,

1 if z = 0.
(4)

For h > 0, and any integer k, the translated Sinc function with evenly spaced nodes is

denoted S(k, h)(z) and defined by

S(k, h)(z) ≡ sinc

(
z − kh

h

)
.

The Sinc functions form an interpolatory set of functions, i.e.,

S(k, h)(jh) = δj,k =

{
1 if j = k,

0 if j �= k.

If f is a function defined on the real line R then the cardinal function of f , denoted

C(f, h)(z), is defined by

C(f, h)(z) ≡
∞∑

k=−∞
f(kh)S(k, h)(z), (5)

whenever the series in (5) converges. Obviously the cardinal function interpolates f at

the points {kh}∞k=−∞. The series was addressed in [34] and analyzed in depth in [36].

The properties of cardinal expansion are derived in the infinite strip Dd of the complex

w-plane, where for d > 0,

Dd =
{
w = t+ is : |s| < d ≤ π

2

}
.

Approximations can be constructed for infinite, semi-infinite and finite intervals (see, e.g.,

[28, pp. 65-70] and [31]). To construct approximations on the interval (0, 1), which is

used in this paper, the eye-shaped domain in the z-plane

DE =

{
z = x+ iy :

∣∣∣∣arg
(

z

1− z

)∣∣∣∣ < d ≤ π

2

}
,

is mapped conformally onto the infinite strip Dd via

w = φ(z) = ln

(
z

1− z

)
.

The basis functions on (0, 1) are taken to be the composite translated Sinc functions,

Sk(z) ≡ S(k, h) ◦ φ(z) = sinc

(
φ(z)

h
− k

)
, z ∈ DE. (6)
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The inverse map of w = φ(z) is

z = φ−1(w) =
exp(w)

1 + exp(w)
.

Thus, we may define the inverse images of the real line and the evenly spaced nodes

{kh}k=∞
k=−∞ as

Γ =
{
φ−1(t) ∈ DE : −∞ < t < ∞

}
= (0, 1),

and

xk = φ−1(kh) =
ekh

1 + ekh
, k = 0, ± 1, ±2, . . . ,

respectively.

In the following, for our subsequent development, some required definitions and properties

related to functions of the class B(DE) are presented (For more details, see [18] and the

references cited in).

Definition 2.1. Let B(DE) be the class of functions F which are analytic in DE and∫
φ−1(t+L)

|F (z)dz| → 0, as t → ±∞,

where L =
{
iv : |v| < d ≤ π

2

}
, and on the boundary of DE, (denoted ∂DE), satisfy

N(F ) =

∫
∂DE

|F (z)dz| < ∞.

Definition 2.2. A function F ∈ B(DE) is said to decay exponentially with respect to the

conformal mapping φ of DE onto Dd if there exist positive constants α, γ and K so that

|F (z)| ≤ K

{
exp(−α |φ(z)|), if z ∈ φ−1 ((−∞, 0)) ,
exp(−γ |φ(z)|), if z ∈ φ−1 ([0,∞)) .

If the function F ∈ B(DE) is decreasing exponentially, then the interpolation and quadra-

ture formulas for F (x) and F (x)Sj(x) over [0, 1] take the form

F (x) ∼=
N∑

k=−M

FkSk(x), (7)

∫ 1

0

F (x)Sj(x)dx ∼= h
F (xj)

φ′(xj)
, (8)

respectively and Fk = F (xk), and the mesh size is given by

h =

√
πd

αM
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where M is suitably chosen and

N =

�
α

γ
M + 1

�
,

( �x� denotes the integer part of x).

For establishing our numerical scheme it is convenient to introduce the notation δ
(p)
j,k as

δ
(p)
j,k =

dp

dφp
[S(j, h) ◦ φ(z)]

∣∣∣∣
z=xk

, p = 0, 1, 2, . . . .

Hence for p = 0, 1 and 2 these quantities are as following

δ
(0)
j,k =

{
1 if j = k,
0 if j �= k,

δ
(1)
j,k =

1

h

{
0 if j = k,
(−1)k−j

k−j
if j �= k,

δ
(2)
j,k =

1

h2

{
−π2

3
if j = k,

−2(−1)k−j

(k−j)2
if j �= k.

3 The formulation to approximate η and y(x)

For the boundary conditions (2), the Sinc basis functions Sk(x) are not differentiable

when x tends to 0. Thus, we use the nullifier function 1
φ′(x) and modify the Sinc basis

functions as Sk(x)
φ′(x) . Now, the derivatives of the modified Sinc basis functions are defined

and tend to zero as x approaches 0. Also, in the treatment of boundary conditions, a

linear combination of the following boundary basis polynomials, which are obtained by

Hermite interpolation at the nodes 0 and 1, must be added to Sinc expansion of numerical

approximation to the solution of (1)-(2).

ϕ1(x) = (2x+ 1)(1− x)2, ϕ2(x) = x2(3− 2x), ϕ3(x) = x2(x− 1).

In order to illustrate our method we define

Ly =
d2y

dx2
+

m

x

dy

dx
, (9)

then, (1) is given by Ly = Φ2R(y). In the Sinc–Galerkin technique, the approximate

solution for y(x) in (1) subject to boundary condition (2) is presented by

y(x) ∼= yL(x) = Y (x) + u(x), (10)
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where

Y (x) =
N∑

k=−M

ck
Sk(x)

φ′(x)
= x(1− x)

N∑
k=−M

ckSk(x),

and u(x) is a linear combination of ϕi(x) (1 ≤ i ≤ 3), based on boundary conditions (2),

as follows:

u(x) = c−M−1
ϕ1(x) + ϕ2(x) + c

N+1
ϕ3(x).

The unknown coefficients {ck}k=N+1

k=−M−1
are determined by orthogonalizing the residual Ly−

Φ2R(y) with respect to the Sinc basis functions {Sj(x)}j=N+1
j=−M−1 in (6). The inner product

is defined by

〈f, g〉 =
∫ 1

0

f(x)g(x)W (x)dx,

where W (x) is a weight function given by

W (x) =
1√
φ′(x)

=
√

x(1− x).

According to boundary conditions (2) and the Sinc–Galerkin approach, we can discretize

(1) to L = N +M + 3 nonlinear equations as follows:

〈
LyL − Φ2R(yL), Sj

〉
= 0, j = −M − 1 , . . . , N + 1, (11)

Equations (11) can be equivalently written as

〈LY, Sj〉+ c−M−1
〈Lϕ1, Sj〉+ 〈Lϕ2, Sj〉+ c

N+1
〈Lϕ3, Sj〉 = Φ2 〈R(yL), Sj〉 ,

j = −M − 1 , · · · , N + 1. (12)

Using (9), the inner product 〈LY, Sj〉 is given by∫ 1

0

LY (x)Sj(x)W (x)dx =

∫ 1

0

Y ′′(x)Sj(x)W (x)dx+

∫ 1

0

m

x
Y ′(x)Sj(x)W (x)dx. (13)

Integration by parts to remove the derivatives from the dependent variable Y (x) leads to

the equality

∫ 1

0

Y ′′(x)Sj(x)W (x)dx = BT +

∫ 1

0

Y (x)

(
d2

dφ2
Sj(x)−

1

4
Sj(x)

)(
dφ

dx

) 3
2

dx, (14)

where the boundary term is

BT =

[
Y ′(x)Sj(x)W (x)− Y (x)

d

dx
(Sj(x)W (x))

]x=1

x=0

= 0. (15)
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Also, we have∫ 1

0

m

x
Y ′(x)Sj(x)W (x)dx =

∫ 1

0

Y (x)

[
m

x2φ′Sj(x)−
m

x

(
1− 2x

2
Sj(x) +

dSj(x)

dφ

)]√
φ′dx.

(16)

Applying the Sinc trapezoidal quadrature rule (8) to (14) and (16), we obtain

〈LY, Sj〉 = h

N∑
k=−M

ck
δ
(2)
j,k − 1

4
δ
(0)
j,k√

φ′(xk)
−bh

N∑
k=−M

ck

(φ′(xk))
3/2

[
−

δ
(0)
j,k

xk
2φ′(xk)

+
(1− 2xk) δ

(0)
j,k + 2δ

(1)
j,k

2xk

]
.

Furthermore, according to (8), the inner products 〈f, Sj〉 and 〈Lϕi, Sj〉 (1 ≤ i ≤ 3) are

approximated by 〈
Φ2R(yL), Sj

〉
=

hΦ2R(yL(xj))

(φ′(xj))
3/2

, (17)

and

〈Lϕi, Sj〉 =
h
[
ϕi

′′(xj) +
m
xj
ϕi

′(xj)
]

(φ′(xj))
3/2

, (18)

respectively, where yL (xj) can be replaced by

yL (xj) =

{
u (xj) +

cj
φ′(xj)

if j = −M, . . . , N,

u (xj) if j = −M − 1, N + 1.
(19)

By substituting (13)-(19) into (12) and rearranging the sums, we convert the BVPs (1)-(2)

into a set of L nonlinear algebraic equations as follows:

N∑
k=−M

ck

(φ′(xk))
3/2

[
m

(
1

x2
kφ

′(xk)
− 1− 2xk

2xk

)
δ
(0)
j,k − m

xk

δ
(1)
j,k + φ′(xk)δ

(2)
j,k

]
+ c−M−1

Lϕ1(xj)

(φ′(xj))
3/2

+
Lϕ2(xj)

(φ′(xj))
3/2

+ cN+1
Lϕ3(xj)

(φ′(xj))
3/2

=
Φ2R(yL(xj))

(φ′(xj))
3/2

,

j = −M − 1 , · · · , N + 1. (20)

The system (20) can be solved for the unknown coefficients cj (−M − 1 ≤ j ≤ N + 1) by

applying an iterative method, like the Newton’s method, consequently, y(x) given in (10)

can be estimated.

We end this section by giving a lemma which obtains two approximate representation

corresponding to η and y(0).

Lemma 3.1. Let y(x) be the solution of BVPs (1)-(2) approximated by the Sinc–Galerkin

method, then the Sinc–Galerkin solutions of effectiveness factor and dimensionless con-

centration of the key reactant at the center of catalyst are respectively as follows:

η =
m+ 1

Φ2
cN+1, y(0) = c−M−1, (21)

where m denotes the shape factor of the catalyst.
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Proof. It is enough to use the asymptotic behavior of Y (x) and Y ′(x) near 0 and 1,

respectively as follows:

Y (0) = Y ′(1) = 0.

4 Numerical results and discussion

In this section, we approximate effectiveness factor and concentration profile inside a bio-

catalyst particle of slab or spherical geometry to clarify the accuracy and efficiency of our

method for different values of Φ and β. Throughout this section, we choose heuristically

α = 1, γ = 1 and d = π/2 which leads to h = π/
√
2M . Also the Sinc–Galerkin solution of

(1)-(2) will be compared very favorably with the numerical solution obtained by a robust

shooting technique [19]. By generating the shoot routine, a Maple implementation of

shooting method, Meade et al. [19] handled numerical solutions of a class of two-point

BVPs similar to that of (1)-(2). Our numerical experiments are implemented in Maple

15 programming. The programs are executed on a Notebook System with 2.0 GHz Intel

Core 2 Duo processor with 2 GB 533 MHz DDR2 SDRAM.

Before starting this section, we refer the reader to the fact that Li et al. [16] introduced

definition of the dimensionless rate of reaction and Thiele modulus in a different way and

by comparison we find that

Φ2
Li =

1 + β

9
Φ2,

where the subscript Li denotes Li et al. [16] definition for the specific case of a Michaelis–

Menten kinetic expression. Moreover, the subscripts N , Li, GG and SG on η or y(0),

which are subsequently used, stand for Numerical, Li et al., Gottifredi & Gonzo and Sinc–

Galerkin, respectively.

Figures 1 and 2 illustrate the computed dimensionless concentration profiles of a Michaelis–

Menten model with the reaction rate of type (ii) by using Sinc–Galerkin method for dif-

ferent values of Φ and β (Φ = 2, β = 1; Φ = 5, β = 20). The numerically obtained

profiles [19] and those obtained by Li et al. [16] and Danish et al. [5] have also been

shown in these figures. The figures tell us the SG solutions are in good agreement with

those obtained numerically or by OHAM. Moreover, despite restrictions imposed by Li et

al. [16] on the values of Φ and β, their third-order approximate solution is not as good as

SG solution.
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Table 1 provides a comparison among the numerical solutions of effectiveness factor and

Figure 1: Substrate concentration distribution inside the biocatalyst particle when Φ = 2
and β = 1.

approximate results obtained by Li et al. [16], Gottifredi & Gonzo [10] and SGM for

the above mentioned Michaelis–Menten model. The results of this table show that Li et

al. [16] approach is unstable for large values of Φ and ηLi reach a constant value, around

0.5, almost independently of Φ and β values. The Gottifredi & Gonzo solution is in an

asymptotic regime and its relative error is in the range 1.87–11.75%. In contrast, the rel-

ative error between the SG approximate solution and the numerical solution is not more

than 0.15%, which indicate our approximate solution provides an efficient and reasonable

method to evaluate the effectiveness factor of desired reaction–diffusion problem for large

values of Φ. However, for higher values of Φ, one may consider larger values of M .

We examine our method for a nth order irreversible power-law kinetic expression of type

(i) in a slab pellet. For different values of n and Φ, tables 2 and 3 show that the values of

η and y(0) by using SG method, GG method and the numerical (eventual exact) method.

Besides, according to table 3, by increasing M , the deviations among Sinc–Galerkin and

numerical solutions of η and y(0) are significantly decreased.

Tables 4 and 5 compare the approximated dimensionless concentration profile y(x) in-
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Table 1: Comparison of the numerical and approximated values of ef-
fectiveness factor (η) obtained by Sinc–Galerkin method (with M = 15)
and the other two methods

β = 2

ΦLi 15 20 30
Li et al. [16] 0.5053 0.5030 0.5014
Gottifredi & Gonzo [10] 0.1343 0.1007 0.0671
SGM 0.1292 0.0978 0.0658
Numerical 0.1293 0.0979 0.0659

Li et al. 290.80 413.79 660.97
% Error∗ Gottifredi & Gonzo 3.87 2.87 1.84

SGM 0.08 0.10 0.15
β = 6

ΦLi 10 20 30
Li et al. [16] 0.5250 0.5063 0.5027
Gottifredi & Gonzo [10] 0.3322 0.1661 0.1108
SGM 0.3044 0.1590 0.1076
Numerical 0.3043 0.1592 0.1077

Li et al. 72.53 218.03 366.76
% Error Gottifredi & Gonzo 9.17 4.33 2.88

SGM 0.03 0.13 0.09
β = 10

ΦLi 10 20 30
Li et al. [16] 0.5383 0.5096 0.5043
Gottifredi & Gonzo [10] 0.4289 0.2144 0.1430
SGM 0.3838 0.2030 0.1378
Numerical 0.3838 0.2033 0.1380

Li et al. 40.26 150.66 265.43
% Error Gottifredi & Gonzo 11.75 5.46 3.62

SGM 0.00 0.15 0.14

∗%Error= |(ηNumerical − ηComputed) /ηNumerical| × 100.
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Figure 2: Substrate concentration distribution inside the biocatalyst particle when Φ = 5
and β = 20.

side a slab biocatalyst pellet with Langmuir-Hinshelwood reaction kinetics of form (iii)

with those computed by Gottifredi & Gonzo and numerically for β = 2 and Φ = 1 and

2. According to tabular values of x, in the vicinity of center of particle and with the

increase in Φ, the deviation between yN and yGG is increased, while the Sinc–Galerkin

approximation of y(x) obtained with low computational effort, is in good agreement with

corresponding numerical solution, even for x near origin. It should be emphasized that

for this special rate expression, R′(1) < 0 when β > 1, and therefore in the internal of

pellet R(x) > R(1). Also the apparent reaction order is negative and for different values

of β and Φ, the corresponding η values can be greater than one. In tables 6 and 7, the

predictive solutions of η based on SG and GG schemes are reported for different values

of β and Φ(β = 1.5, 2 and Φ in the range 0 < Φ ≤ 3). The final two tables show that

ηGG is in fair agreement with our prediction and numerical solution. Due to exponentially

decaying error property, our computed solutions are moderately low-cost and have small

or negligible deviations from numerical values.
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Table 2: Numerical and approximated values of η and y(0) for different
values of Φ, for a power–law kinetic, R(y) = yn

Φ yN(0) ηN yGG(0) ηGG ySG(0) ηSG

0.30 0.955837 0.985135 0.955003 0.984997 0.955837 0.985133
0.60 0.833046 0.942157 0.825258 0.940426 0.833047 0.942151
1.00 0.594446 0.849847 0.561278 0.842379 0.594457 0.849832
1.50 0.294290 0.7056815 0.241401 0.693524 0.294327 0.705661
2.00 0.099525 0.568214 0.055594 0.559991 0.099584 0.568195
2.30 0.040594 0.499986 0.011926 0.495205 0.040657 0.499968
2.40 0.028442 0.479970 0.003490 0.476152 0.0285057 0.479952

n = 0.5, M = 10, slab geometry.

Table 3: Numerical and approximated values of η and y(0) for different values of Φ, for a power–
law kinetic, R(y) = yn

Φ yN(0) ηN yGG(0) ηGG ySG(0) ηSG

M = 10 M = 20 M = 10 M = 20

0.30 0.958091 0.944810 0.956191 0.944864 0.958091 0.958091 0.944893 0.944899
0.60 0.859724 0.821647 0.848380 0.821505 0.859729 0.859725 0.821627 0.821645
0.80 0.784878 0.733492 0.765435 0.757971 0.784889 0.784878 0.733463 0.733490
1.00 0.712256 0.652516 0.685360 0.652817 0.712278 0.712258 0.652481 0.652513
1.50 0.557912 0.494815 0.519498 0.496152 0.557969 0.557916 0.494766 0.494811
2.00 0.443723 0.390008 0.401616 0.391828 0.443826 0.443730 0.389948 0.390003
3.00 0.297419 0.268561 0.247755 0.269944 0.297627 0.297433 0.268485 0.268555
4.00 0.212590 0.203141 0.137781 0.203829 0.212914 0.212613 0.203052 0.203134

n = 2, slab geometry.

Table 4: Concentration profile for
different values of x for R(y) =
(1+β)2y

(1+βy)2

x yN [19] ySG yGG

0.0 0.4425 0.4425 0.427
0.1310 0.4522 0.4521 ——
0.2360 0.4738 0.4737 0.584
0.3396 0.5072 0.5072 0.609
0.5341 0.6027 0.6026 0.679
0.7949 0.7965 0.7965 0.829
0.8987 0.8941 0.8941 0.909
0.9467 0.9430 0.9429 0.9504

β = 2, M = 5, Φ = 1, slab pellet.
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Table 5: Concentration profile for
different values of x for R(y) =
(1+β)2y

(1+βy)2

x yN [19] ySG yGG

0.0 0.0173 0.0176 0.0131
0.111 0.0210 0.0212 ——
0.222 0.0335 0.0337 ——
0.334 0.0598 0.0594 0.208
0.511 0.1500 0.1501 0.298
0.659 0.2998 0.3004 0.417
0.786 0.5005 0.5006 0.569
0.882 0.7000 0.7000 0.729
0.963 0.8997 0.8997 0.905

β = 2, M = 5, Φ = 2, slab pellet.

Table 6: Numerical and approximated values of η and y(0) for
different values of Φ, for Langmuir–Hinshelwood type, R(y) =
(1+β)2y

(1+βy)2

Φ yN(0) [19] ηN [19] ySG(0) ηSG yGG(0) ηGG

0.141 0.9900 1.0013 0.9900 1.0013 0.99 1.0013
0.443 0.9003 1.0125 0.9003 1.0125 0.90 1.0086
0.623 0.8228 1.0231 0.8004 1.0231 0.80 1.0090
0.877 0.6006 1.0336 0.6006 1.0336 0.60 0.9900
1.215 0.2959 0.9823 0.2959 0.9823 0.30 0.9150
1.361 0.1993 0.9243 0.1993 0.9244 0.20 0.8680
1.660 0.0874 0.7893 0.0874 0.7893 0.10 0.7640
1.870 0.0500 0.7060 0.0500 0.7060 0.05 0.6940
2.111 0.0267 0.6272 0.0267 0.6272 0.02 0.6230

β = 1.5, M = 10, slab geometry.

Table 7: Numerical and approximated values of η and y(0) for dif-

ferent values of Φ, for Langmuir–Hinshelwood type, R(y) = (1+β)2y

(1+βy)2

Φ yN(0) [19] ηN [19] ySG(0) ηSG yGG(0) ηGG

0.20 0.9799 1.0045 0.9799 1.0044 0.979 1.0014
0.40 0.9182 1.0181 0.9182 1.0181 0.914 1.0038
0.60 0.8107 1.0414 0.8107 1.0414 0.802 1.0029
1.00 0.4425 1.0972 0.4425 1.0972 0.427 0.9669
1.40 0.1196 0.9708 0.1196 0.9708 0.111 0.8690
2.00 0.0173 0.6966 0.0173 0.6967 0.013 0.6815
3.00 8.417e-04 0.4647 1.045e-03 0.4649 3.47e-04 0.4645

β = 2, M = 10, slab geometry.
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5 Conclusion

The present work exhibits the reliability of the Sinc–Galerkin method with its new bound-

ary treatment to solve the two point singular BVPs that arise frequently in mathematical

model of diffusion and reaction in porous catalyst. The method was applied to calculate

effectiveness factor of power–law kinetics and Langmuir–Hinshelwood rate expressions in

slab and spherical geometries. Approximated results are in close agreement with nu-

merical/exact solutions even for small and large values of Φ and unlike some existing

approaches [11,37], our method has a high performance to predict effectiveness factor in

those cases where the apparent reaction order is negative and η > 1.
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