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Abstract

In this work, we obtain several inequalities between some vertex-degree-based
topological indices, such as Randi¢ index, aton-bond connectivity (ABC) in-
dex, sum—connectivity index and harmonic index. Sharp lower bounds for the

harmonic index of graphs are also presented.
1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). The Randié
index R(G), proposed by Randi¢ [25] in 1975, is defined as the sum of the weights
ﬁ over all edges uv of G, that is,

R@G) = > d,l 7

weF(G)

where d,, denotes the degree of a vertex u of G. The Randi¢ index is one of the most
successful vertex-degree-based molecular descriptors (topological indices) in structure-
property and structure-activity relationship studies [20,24]. Mathematical properties

of this descriptor have also been studied extensively, as summarized in [13,21].
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A few years ago, Estrada et al. [8] introduced a new vertex-degree-based topological

index, nowadays known as the aton-bond connectivity (ABC') index. This index is

defined as
dy, +d, —2
ABC(G) = ) \[Zm—

weE(Q)
It displays an excellent correlation with the heat of formation of alkanes (8], and a
basically topological approach was developed on the basis of the ABC' index to explain
the differences in the energy of linear and branched alkanes both qualitatively and
quantitatively [7]. The mathematical properties of this index were reported in [3,11,

14,15,18].

The sum—connectivity index X (G) was recently proposed by Zhou and Trinajsti¢
in [34] and defined as
X@= > ‘;ﬁi:%ifi:
weE(G) “ v
It has been found that the sum-connectivity index and the Randié¢ index correlate well
between themselves and with the 7-electronic energy of benzenoid hydrocarbons [22,
23]. Some mathematical properties of the sum—connectivity index were given in [5,27,

28,34, 36).

The harmonic index H(G) is another vertex-degree-based topological index. This

index first appeared in [9], and was defined as
HG) = Y Zi‘éé‘&’ .
weB(G) " v

Favaron, Mahéo and Saclé [10] considered the relation between the harmonic index
and the eigenvalues of graphs. See [4,19,29-32] for more information of this index.
Note that both the sum—connectivity index and the harmonic index can be viewed as
particular cases of the general sum—connectivity index proposed by Zhou and Trinajsti¢

in [35] (see also in [6,26]).

In this paper, we first present sharp lower bounds for the harmonic index of graphs,

and characterize graphs for which these bounds are best possible, and then we obtain
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several inequalities between the Randi¢ index, ABC' index, sum-connectivity index

and harmonic index.

2 Lower bounds for the harmonic index

In this section, we present several sharp lower bounds for the harmonic index of

graphs, and characterize the corresponding extremal graphs.

The first Zagreb index [12,16] of a graph G is defined as

M(G) = Y d.

veV(Q)

This index is also an important vertex-degree-based topological index, and it can be

rewritten as Mi(G) = >, (dy, +d,). 1li¢ [19] and Xu [29] independently found the
weE(G)
following relation between the harmonic index and the first Zagreb index.

Lemma 2.1 Let G be a graph with m > 1 edges. Then

2m?

B TATE)

with equality if and only if d, + d, is a constant for every edge uv of G.

There are many upper bounds for the first Zagreb index, from which we may deduce
lower bounds for the harmonic index by Lemma 2.1. We give three examples in (a)—(c).
We use S,,, P,, and K, to denote the star, the path and the complete graph with n

vertices, respectively.

(a) Let G be a graph with m > 1 edges containing no isolated vertices. For each
edge uv of G, we have d, + d, < m + 1 with equality if and only if every other edge of
G is adjacent to the edge uv. Then

M (G) < Z (m+1) =m(m+1)

wel(G)
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and thus

2m
m+1

H(G) >

with equality if and only if G' has no two independent edges, i.e., G = Sy, or G = K3.

(b) Let G be a triangle- and quadrangle-free graph with n vertices and m > 1 edges.

Then M;(G) < n(n — 1) with equality if and only if G = S, or G is a Moore graph of

diameter 2 [33], and thus H(G) > "(2;"_21) with equality if and only if G = S, or G is

a Moore graph of diameter 2.

(c) Let G be a graph with n vertices, m > 1 edges, maximum degree A and
minimum degree 0. Then [2] M;(G) < 2m(A + §) — nA ¢ with equality if and only if
G has only two types of degrees A and ¢, and thus

2m?

HG) > ———m——
@)z 2m(A+0) —nAo
with equality if and only if one vertex has degree A and the other vertex has degree §

for every edge of G. 1

Zhong [30] proved that S, is the unique extremal graph with the minimum harmonic
index among all connected graphs with n vertices. Using item (a), we can generalize
this result to graphs with n vertices containing no isolated vertices, and we show that

the extremal graph is still S,,. This also implies a shorter proof than the proof in [30].

Theorem 2.2 Let G be a graph with n vertices containing no isolated vertices. Then

2(n—1)

H(G) >

with equality if and only if G =S, .

Proof. First suppose that G is a connected graph. Let m be the number of edges of

G, then m > n — 1. Since -2 is strictly monotonically increasing in m > 1, by item
’ m+1

(a) above, we have H(G) > 73:’_‘1 > @ with equalities if and only if G = S,,,1 and

m=n—11e,G=S,.
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So we may assume that G is disconnected. Let Gi,Ga,...,Gy (K > 2) be the
connected components of G with [V(G;)| = n; for each 1 <14 < k. Since G contains no
k

isolated vertices, we have n; > 2 and ) n; = n. Then
i=1

Since

2(ny — 1) . 2(n2—1) 2(m+n2—1) _ 2(n3ng + nyng — n? —n3 — niny)
n N9 ny + na ning(ny + ng)

207 (ng — 2) 4 2n3(n1 — 2) 4 2(n] — ning + n3)

>0
ning(ny + ng)

we conclude that

k k

2(ny +ng — 1) 2(n; — 1) ny +ng +nz — 1) 2(n; — 1)

H(G) > (n1 2 +Z 2(my 2 3 +Z
ny + no 3 n; ny + ng +ns 1 s

2(ni+ng+ - +mp—1)  2(n—1)

ny+mng + -+ ng n

This completes the proof of the theorem. 1

3 Inequalities between Randi¢ index and harmonic

indices

In this section, we consider the relations between the Randi¢ index and the harmonic

index. Nordhaus-Gaddum-type results for the harmonic index are also given.

Theorem 3.1 Let G be a graph with n vertices, then

2v/n —1

n

R(G) < H(G) < R(G) . (3.1)

The lower bound is attained if and only if G = S,,, and the upper bound is attained if

and only if all connected components of G are regular.
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Proof. Let uv be an edge of G. By the symmetry between u and v, we may assume

that 1 <d, <d, <n—1. To prove (3.1), we consider the function

fla,y) = 5L = i)

1
N R
with 1 <z <y <n-—1. Since
ofwy) _ Vly—2) o Oy Velr—y)

dz Va(z +y)* Ay vy +y)? —
we have f(x,y) is strictly monotonically increasing in 2 and monotonically decreasing
in y. Hence the minimum value of f(x,y) is attained for (z,y) = (1,n — 1), and the
maximum value of f(z,y) is attained for z = y (for each 1 < x < n —1). In other
words,

2v/n —1

n :f(l,n—l)gf(l’,’y)Sf(fE,I)Zl.

Consequently,

2\/n71§%§1

b

with the left equality if and only if (d,, d,) = (1,n— 1) for every edge uv of G, and the
right equality if and only if d, = d,, for every edge uv of G. This proves the theorem. I

Caporossi et al. [1] showed that among all graphs with n vertices, the graphs con-
taining no isolated vertices, in which all connected components are regular, have the
maximum value n/2 for the Randi¢ index. Then by Theorem 3.1, we know that these
graphs are also the extremal graphs with the maximum harmonic index. This implies

the following Nordhaus-Gaddum-type results for the harmonic index.

Theorem 3.2 Let G be a graph with n vertices, then

<HG)+HG)<n. (3.2)

|3

The lower bound is attained if and only if G = K, or G = K, , and the upper bound

is attained if and only if G is a k-reqular graph with 1 < k <n — 2.
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Proof. Let m and 7 be the number of edges in G and G, respectively. Then

_ 2 2
HG)+H(@G) = Y ard " > (,,L,17du)+(n71—dv)

weE(Q) weEB(G)
~ 2n — 2 2n -2
weE(G) weE(G)
_ 2 nn—1) n
"t =g Ty T

with equality if and only if either d,, = d, = n — 1 for every edge uv of G or E(G) = 0,
ie, G2 K, or G=K,. So the lower bound of (3.2) holds.

We now prove the upper bound of (3.2). By Theorem 3.1, we have

=n

_ — . n n
H(G)+H(G) < RG) + R(G) < 5+ 5
with equalities if and only if both G’ and G contain no isolated vertices (i.e., 1 < §(G) <
A(G) < n —2) and all connected components of G and G are regular. We claim that
G must be a regular graph. For otherwise, there exist two vertices u, v in G such that
dy, # d,. Then u and v are contained in two different connected components of G,

and hence wv € E(G). But this forces u and v lie in the same component of G, a

contradiction. So Theorem 3.2 holds. 1

4 Inequalities between sum—connectivity and

harmonic indices

In this section, we present some inequalities between the sum—connectivity index
and the harmonic index. Combining with Theorem 3.1, we also obtain some relations

between the Randi¢ index and the sum—connectivity index.

Theorem 4.1 Let G be a connected graph with n > 3 vertices, then

2

——X(G) < H(O) < 2 x). (4.1)

V3
The lower bound is attained if and only if G = K, , and the upper bound is attained if
and only if G = Py.
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Proof. Let uv be an edge of G. By the symmetry between u and v, we may assume
that 1 < d, < d, <n—1. Since G is a connected graph with n > 3 vertices, we have

d, > 2. We define a function

‘ V)

2
fxy z+y
e

withl <z <y <n—1landy > 2. Itis easy to see that f(x,y) is strictly monotonically

decreasing in both = and y. Therefore the minimum value of f(z,y) is f(n—1,n—1),

and the maximum value of f(x,y) is f(1,2). That is to say,

2
n—1

=fln—1,n-1) < f(z,y) < f(1,2) = —

and thus

?
& XE
88
IN
§w

The left equality holds if and only if (d,, = (n—1,n — 1) for every edge uv of G,

and the right equality holds if and only if (d, d,) = (1,2) for every edge uv of G. This

—

finishes the proof of the theorem. 1

If the graph G has minimum degree at least & > 2, then the upper bound of (4.1)

can be further improved.

Corollary 4.2 Let G be a connected graph with minimum degree at least k > 2. Then

< [ix

with equality if and only if G is a k-regqular graph.

Zhou and Trinajsti¢ [36] recently proved that if G is a connected graph with n > 3
vertices, then \/g R(G) < X(G) with equality if and only if G = P;. In fact, a
similar argument shows that if the graph G' has minimum degree at least & > 2, then
\/g R(G) < X(G) with equality if and only if G is a k-regular graph. We further have
the following.
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Corollary 4.3 Let G be a connected graph with n > 3 vertices. Then

n—1

X(G) < 5

R(G)

with equality if and only if G = K, .

Proof. By Theorem 3.1 and Theorem 4.1, we have

n—1 n—1

X(G) < H(G) <

R(G)

with the first equality if and only if G = K, , and the second equality if and only if G

is a regular graph. This proves the corollary. 1

5 Inequalities between Randi¢ and ABC indices

Theorem 5.1 Let G be a connected graph with n > 3 vertices, then
R(G) < ABC(G) < V2n —4R(G) . (5.1)

The lower bound is attained if and only if G = Py, and the upper bound is attained if
and only if G = K, .

Proof. Let uv be an edge of G. By the symmetry between w and v, we may assume
that 1 <d, <d, <n—1. Since G is a connected graph with n > 3 vertices, we have

d, > 2. In order to prove (5.1), we consider the function

+y—2

flay) =Y =\aty—2

8
[

<

E
<

with 1 <2z <y <n-—1and y > 2. Obviously, f(z,y) is strictly monotonically
increasing in both # and y. Hence the minimum value of f(z,y) is attained for (z,y) =

(1,2), and the maximum value of f(z,y) is attained for (z,y) = (n — 1,n — 1), i.e.,

1=f(1,2) < f(z,y) < fln—1,n—1)=+2n—4.
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Then 1 < ABC(G)/R(G) < v/2n — 4 with the left equality if and only if (d,,d,) =
(1,2) for every edge uv of G, and the right equality if and only if (d,,d,) = (n—1,n—1)

for every edge uv of G. This completes the proof of the theorem. 1

A similar argument shows that the following result holds if we assume the graph G/

has minimum degree at least k£ > 2.

Corollary 5.2 Let G be a connected graph with minimum degree at least k > 2. Then
V2k — 2 R(G) < ABC(Q) with equality if and only if G is a k-regular graph.

6 Inequalities between ABC' and sum—connectivity

indices
Theorem 6.1 Let G be a connected graph with n > 3 vertices. Then

(1) \/gX(G) < ABC(Q) with equality if and only if G = P ;

(i1) ABC(G) < V2 X(G) if n =3, with equality if and only if G = Ks ;
ABC(G) < \/gX(G) if n =4, with equality if and only if G = Ky or G = Sy ;
ABC(G) < % X(G) if n > 5, with equality if and only if G = S, .

Proof. Let uv be an edge of G. By the symmetry between u and v, we may assume
that 1 < d, < d, <n—1. Since G is a connected graph with n > 3 vertices, we have
d, > 2. We consider the function

Fy) = Ve | (@+y)(e+y—2)

I =
Vz+y ry

with 1 <z <y <n-—1andy > 2. Since

ofay) _ P —at)r2w
dy xy?
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we see that f(z,y) is strictly monotonically increasing in y. Therefore the minimum
value of f(z,y) is either f(x,2) for some 1 <z <2 or f(z,z) for some 2 <z <n-—1,
and the maximum value of f(x,y) is f(z,n — 1) for some 1 <z <n — 1.

Since f(z,2) = %52 is strictly monotonically increasing in 1 <z < 2 and f(z,z) =

@ is strictly monotonically increasing in 2 < = < n — 1, we conclude that the

minimum value of f(x,y) is f(1,2) = 3/2. Hence

v@?:ABC«H
- X(G)
with equality if and only if (d,, d,) = (1,2) for every edge uv of G. So (i) holds.

On the other hand, we have

(x+n—1)(x+n-23)
(n—1)z

fla,n—1)=

and

df(x,n—1) a*—(n?—4n+3)  (z+vn®>—4n+3)(x — Vn? —4dn+3)
dx B (n—1)z? B (n—1)z? ’

If n = 3, then df (x,n—1)/dz > 0. This implies that f(x,n—1) is strictly monotonically
increasing in x, and hence the maximum value of f(z,y)is f(n—1,n—1) = f(2,2) = 2.
If n > 4, then it is easy to check that f(z,n —1) is strictly monotonically decreasing in
1<z < \/m, and strictly monotonically increasing in V2—4dn+3<z<

n — 1. So the maximum value of f(x,n —1) is

IIlaX{f(Ln - 1)7f(7l —1,n— 1)} :nlax{M M}

n—1" n-1
f(,3)=f(3,3)=8 ifn=4
fAn-1)="2 ifp>5.

Hence if n = 3, then ABC(G)/X(G) < v/2 with equality if and only if (d,, d,) = (2,2)
for every edge wv of G. If n = 4, then ABC(G)/X(G) < /8/3 with equality if and
only if (dy,d,) = (1,3) or (dy,d,) = (3,3) for every edge uwv of G. If n > 5, then
ABC(G)/X(G) < \/”ETT with equality if and only if (d,,d,) = (1,n — 1) for every

edge uv of G. This proves (ii), and hence completes the proof of the theorem. 1
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If the graph G has minimum degree at least & > 2, then the bound in Theorem 6.1(i)
can be improved as follows.
Corollary 6.2 Let G be a connected graph with minimum degree at least k > 2. Then

@ X(G) < ABC(G) with equality if and only if G is a k-regular graph.

7 Inequalities between ABC' and harmonic indices

Theorem 7.1 Let G be a connected graph with n > 3 vertices. Then

(i) 2 H(G) < ABC(G) with equality if and only if G = Py;

(ii) ABC(G) <+v2n—4H(G) if 3 <n <6, with equality if and only if G = K, ;
ABC(G) < §/%= 2 = H(G) if n > 7, with equality if and only if G = S, .

Proof. By Theorem 4.1 and Theorem 6.1,

H(G) < < \/7ABG ABC
(@) < \[ f (@)
ie., % H(G) < ABC(G) with equalities if and only if G = Py. This proves (i).

We now prove (ii). Let uv be an edge of G. By the symmetry between u and v,
we may assume that 1 < d, < d, <n — 1. Since G is a connected graph with n > 3
vertices, we have d, > 2. We define a function

r+y—2 2
. V oy (z+y)’+y-2)
j(l’, y) = 2 =

T+ dry

with 1 <z <y <n-—1andy>2. Since

0f(.y) _ @+l +2) + @ —2*) +yy —2)

>0
dy dxy?

we know that f(x,y) is strictly monotonically increasing in y. Hence the maximum
value of f(z,y) is f(xz,n — 1) for some 1 <2 <n — 1. We consider the function

(x+n—-1*2x+n-3)

flo.n—1) = 4(n— 1)z




-639-

Then
df(a:,nfl):(a?Jrnfl)[Qac +(n—=3)z—(n—1)(n—3)
dx (n —1)a?
B 2(n — 1)a?

If n = 3 or n = 4, then we have df (z,n — 1)/dz > 0. This implies that f(z,n — 1)
is strictly monotonically increasing in z, and hence the maximum value of f(z,y) is

f(n—1,n—1)=2n—4. If n > 5, then it is easy to calculate that f(z,n—1) is strictly

—(n=3)+4/(n—3)(9In—11)

monotonically docrcasing nl<z< n

3)+\/(n 3)(9n—11)

increasing in —————~—— <z < n—1. Then the maximum value of f(z,n—1)

, and strictly monotonically

is

max{f(1,n—1),f(n—1,n—1)} :nlax{%,%l - 4}

fln—1n—-1)=2n—-4 ifn=50rn=6

Fn—1) = 1l=d ifn>7.
Therefore if 3 < n < 6, then ABC(G)/H(G) < /2n — 4 with equality if and only if
(dy,d,) = (n—1,n — 1) for every edge uv of G; if n > 7, then
ABC(G) _n [n—2
HG) —2Vn-1

with equality if and only if (d,, d,) = (1,n — 1) for every edge uv of G. This completes

the proof of the theorem. 1

Similarly, we can improve the bound in Theorem 7.1(i) by Corollary 4.2 and Corol-

lary 6.2.

Corollary 7.2 Let G be a connected graph with minimum degree at least k > 2. Then
V2k —2 H(G) < ABC(G) with equality if and only if G is a k-regular graph.

Corollary 7.3 Let G be a connected graph with minimum degree at least 2. Then
H(G) < R(G) < X(G) < ABC(G) with the first equality if and only if G is a reqular
graph, and the second equality if and only if G is a cycle.
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Deng et al. [4] recently considered the relation between the harmonic index and the
chromatic number x(G) and proved that x(G) < 2H(G) for every connected graph
G with equality if and only if G is a complete graph. It strengthens a conjecture
relating the Randi¢ index and the chromatic number which is based on the system
AutoGraphiX and proved by Hansen and Vukicevi¢ [17]. We now present two sharp

upper bounds of x(G) in terms of the ABC' index and the sum—connectivity index.

Corollary 7.4 Let G be a connected graph with n vertices and minimum degree at

least k > 2. Then

(@) < \[T 254800 wd x©)<y2x)

with equalities if and only if k =n —1, i.e., G = K, .
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