
A Survey on Graphs Extremal with Respect to

Distance–Based Topological Indices

Kexiang Xua, Muhuo Liub,c, Kinkar Ch. Dasd,

Ivan Gutmane,f , Boris Furtulae

aCollege of Science, Nanjing University of Aeronautics
& Astronautics, Nanjing, P. R. China

kexxu1221@126.com

bSchool of Mathematical Science, Nanjing
Normal University, Nanjing, P. R. China

cDepartment of Mathematics, South China Agricultural
University, Guangzhou, P. R. China

liumuhuo@163.com

dDepartment of Mathematics, Sungkyunkwan University,
Suwon 440-746, Republic of Korea

kinkar@mailcity.com

eFaculty of Science, University of Kragujevac,
P. O. Box 60, 34000 Kragujevac, Serbia,
gutman@kg.ac.rs , furtula@kg.ac.rs

fChemistry Department, Faculty of Science,
King Abdulaziz University, Jeddah 21589, Saudi Arabia

(Received December 5, 2012)

Abstract

This survey outlines results on graphs extremal with respect to distance–based indices, with

emphasis on the Wiener index, hyper–Wiener index, Harary index, Wiener polarity index, re-

ciprocal complementary Wiener index, and terminal Wiener index.
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1 Introduction

Throughout this survey, the graphs considered will be assumed to be simple and con-

nected. If G = (V,E) is such a graph, then its vertex set is V (G) = {v1, . . . , vn} and its

edge set E(G) = {e1, . . . , em}. This the number of vertices and edges of G is denoted by

n and m, respectively.

The distance dG(u, v) (or simply d(u, v) when no misunderstanding could occur) be-

tween the vertices u and v of G is equal to the length of (number of edges in) a shortest

path connecting u and v. The number of vertex pairs of G, whose distance is k is denoted

by d(G, k). Details on distance in graph theory can be found in the books [8, 15, 56],

whereas on general distances in [29].

In the following we denote by Cn , Pn , Sn , and Kn the cycle graph, the path graph,

the star graph, and the complete graph of order n, respectively. Other undefined notation

and terminology can be found in [5, 76].

The history of distance–based topological indices begins with year 1947, in which

Harold Wiener [153] used the following formula to calculate the boiling point tB of alkanes:

tB = aW (G) + bWP (G) + c .

In this formula a, b, c are constants for a given isomeric group, W (G) is (in modern

terminology, different from what Wiener originally used) equal to the sum of distances

of all unordered vertex pairs in the molecular graph G, whereas WP (G) is the number

of unordered vertex pairs at distance 3 in G, i.e., d(G, 3). Initially, Wiener’s ideas did

not attract the attention of the chemical community, but as time passes, the quantity

W became one of the most popular molecular structure descriptors. It found numerous

applications for designing quantitative structure–property relationships (QSPR) [28, 93].

Besides, it also was applied in crystallography, communication theory, facility location,

cryptology, etc. [4, 73, 120]. Eventually, this graph invariant became known under the

name Wiener index or Wiener number ; for details see [129,130].

Mathematicians started with the study of W (G) almost three decades after chemists

[43], initially without any knowledge of Wiener’s earlier works. Anyway, also in con-

temporary mathematical literature W (G) is usually referred to as the Wiener index

[31,32, 41,53,96, 134,151]

Wiener himself named WP (G) polarity number , and this quantity is nowadays usually
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called the Wiener polarity index of G [23–25,37, 83,100,105,106].

In the above specified notation, the Wiener index and the Wiener polarity index are

defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) (1)

WP (G) = d(G, 3) .

Note that the equation (1), explicitly using the graph–distance concept, was first given

by Hosoya [81]. Wiener himself spoke of the number of carbon–carbon bonds separating

two carbon atoms [153].

After the Wiener index was invented, a large number of other distance–based topologi-

cal indices have been proposed and considered in the chemical and mathematico–chemical

literature; for more information and additional references see [1,30,63,64,66,67,101,107,

111,112,114,116,143,144,174]. All distance–based topological indices can be derived from

the distance matrix or some closely related distance–based matrices; for more informa-

tion on this matter see [12,89–91,116,118,127]. Much work has been devoted also to the

eigenvalues of the distance and related matrices [16, 17,139].

In this survey we shall restrict our considerations to only a few of distance–based

topological indices, namely to the following:

• Wiener index W

• Wiener polarity index WP

• hyper–Wiener index WW

• Harary index H

• reciprocal complementary Wiener index RCW

• terminal Wiener index TW

The Wiener index and Wiener polarity index were described above.

Hyper–Wiener index

In 1993, Milan Randić [126] introduced a distance–based quantity that he named hyper–

Wiener index and denoted by WW . His definition could be applied only to trees, and

was impossible to use for cycle–containing graphs. In 1995, Klein, Lukovits, and one of

the present authors [95] showed that Randić’s WW (for trees) satisfies the identity

WW (G) =
1

2

∑
{u,v}⊆V (G)

[
dG(u, v) + dG(u, v)

2
]

(2)
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which could be applied to all connected graphs. Since then, Eq. (2) is used as the

definition of hyper–Wiener index.

Harary index

In 1993, Plavs̆ić et al. [121] and Ivanciuc et al. [89] independently introduced the Harary

index, named in honor of Frank Harary on the occasion of his 70th birthday. Actually,

the Harary index was first defined in 1992 by Mihalić and Trinajstić [117] as:

Hold(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)2
.

In spite of this, the Harary index is nowadays defined as [89, 121]:

H(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)
.

Reciprocal complementary Wiener index

In 2000, Ivanciuc et al. [88, 90] introduced the this topological index, defined it as:

RCW (G) =
∑

{u,v}⊆V (G)

1

d+ 1− dG(u, v)

where d is the diameter of graph G (i.e., the greatest distance between any two vertices).

Terminal Wiener index

The concept of terminal Wiener index was put forward by Petrović and two of the present

authors [68]. Somewhat later, but independently, Székely, Wang, and Wu arrived at the

same idea [140]. Let V1(G) ⊂ V (G) be the set of vertices of the graph G whose degree is

equal to one (the so-called pendent vertices or leaves). Then TW is defined in full analogy

with the Wiener index, Eq. (1), as

TW (G) =
∑

{u,v}⊆V1(G)

dG(u, v) . (3)

Thus, the terminal Wiener index consists of the sum of distances between pendent vertices.

If the graph G has no pendent vertex, or just one such vertex, then TW (G) = 0. The

application of this molecular structure descriptor is purposeful mainly for graphs with

many pendent vertices, especially trees [26, 27, 65, 78].

In Eq. (3) summation goes over pairs of vertices of degree 1. The terminal–Wiener–

index concept was recently generalized [86] by considering pairs of vertices of some fixed

degree k > 1.
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Concluding this introductory section we remind that the distance–based topological

indices W , WW , H, and RCW can be expressed in terms of the numbers d(G, k) of

vertex pairs at distance k :

W (G) =
∑
k≥1

k d(G, k)

WW (G) =
∑
k≥1

k + k2

2
d(G, k)

H(G) =
∑
k≥1

1

k
d(G, k)

RCW (G) =
∑
k≥1

1

d+ 1− k
d(G, k) .

In addition to this, as already mentioned, WP (G) = d(G, 3).

* * * * *

In recent years, characterizing the extremal (maximal or minimal) graphs in a given

set of graphs with respect to distance–based topological indices has become an important

direction in chemical graph theory. Up to now, a number of nice results have been obtained

along these lines. To our surprise, from a number of such results, we see that there exist

close relations among the graphs extremal w.r.t. different distance–based topological

indices. For some classes of graphs, the extremal graphs are identical. By collecting these

extremal results and presenting them together, we hope to inspire the discovery of new

results of this kind, as well as the elaboration of attractive and fundamental new proof

techniques.

2 General graphs

In this section we report some extremal results with respect to the distance–based topo-

logical indices W , WW , H, WP , and RCW in different classes of general graphs.

Let PKn,m be the path–complete graph, obtained from the disjoint union of a path

and a complete graph by the addition of edges between one end-vertex of the path and

some, but not all, vertices of the complete graph.

Theorem 2.1. Let G be a connected graph with n vertices and m edges. Then the fol-

lowing holds:
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(1) The path–complete graph PKn,m is the unique graph with maximal Wiener index

[135] (resp. diameter [75]). Any graph G with diameter at most 2 has minimal

Wiener index.

(2) If G �∼= Kn , then

RCW (G) ≤ n(n− 1)

2
− m

2
.

Equality holds if and only if the diameter of G is 2 [172].

Theorem 2.2. ( [94]) Let a ≥ 2 be an positive integer and G be any connected graph with

m edges where
(
a
2

)
≤ m ≤

(
a+1
2

)
. Then

a(a+ 1)−m ≤ W (G)

with equality holding if and only if G ∼= G0 , where G0 is the graph obtained by deleting(
a+1
2

)
−m edges from the complete graph Ka+1 that are incident with a fixed vertex in it.

Actually, in [43], the authors had also implicitly characterized the extremal graph

maximizing the Wiener index among all connected graphs of order n and with m edges,

which is just the result in Theorem 2.1 (1). Moreover, in [43] it was implicitly pointed

out that the minimal Wiener index is attained at one connected graph in which any two

distinct non-adjacent vertices have distance 2.

Denote by G� = (V,E) a graph with diameter d (3 ≤ d ≤ 4 and |V (G�)| ≥ d + 2),

such that for any two distinct vertices u ∈ V (G�)\V (Pd+1) and v ∈ V (G�), dG�(u, v) = 1

or 2, where Pd+1 is a path with d + 1 vertices in G�. The two graphs depicted in Fig. 1

are of G�-type.

Fig. 1. Examples of graphs of G�-type.
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Theorem 2.3. Let G be a connected graph with n vertices, m edges, and diameter d.

Then

(1) ([18]) 1
6
(d−2)(d−1)d+n(n−1)−m ≤ W (G) ≤ 1

2
n(n−1)d− 1

3
(d−2)(d−1)d−(d−1)m

with the left equality holding if and only if G is a graph with diameter d ≤ 2, or

G ∼= Pn , or G is isomorphic to some G�. The right equality holds if and only if G

is a graph with diameter d ≤ 2 or G ∼= Pn ;

(2) ([20]) H(Pd+1) +
n(n−1)+2(m−d)(d−1)

2d
− d+1

2
≤ H(G) ≤ H(Pd+1) +

n(n−1)+2m
4

− d(d+3)
4

with the left equality holding if and only if G is a graph with diameter d ≤ 2 or

G ∼= Pn, and the right equality holding if and only if G is a graph with diameter

d ≤ 2, or G ∼= Pn , or G is isomorphic to some G� .

A connected graph G is called a cactus if each block of G is either an edge or a

cycle. Denote by Cat(n, t) the set of connected cacti possessing n vertices and t cycles.

Let C0(n, t) be the cactus graph obtained from a star Sn by adding t independent edges

between its leaves.

Theorem 2.4. Among all graphs in Cat(n, t), C0(n, t) is the unique graph having the

minimal Wiener index [102] (resp. hyper–Wiener index [51]), and the maximal Harary

index [152].

Let 1 ≤ k < n and Kk
n be the graph obtained by attaching k pendent vertices to one

vertex of the complete graph Kn−k .

Theorem 2.5. Among all connected graphs with n vertices and k cut edges, Kk
n uniquely

has the minimal Wiener index [84,136,137,155] (resp. hyper–Wiener index [163]) and the

maximal Harary index [163].

Note that the kite graph Kn,k is obtained by identifying one vertex of Kk with one

pendent vertex of Pn−k+1 and the Turán graph Tn(k) is a complete k-partite graph of

order n in which any two partition sets differ in size by at most one.

Theorem 2.6. Among all connected graphs with n vertices and clique number k,

(1) the Turán graph Tn(k) uniquely has the minimal Wiener index [50] (resp. hyper–

Wiener index [50]) and the maximal Harary index [158];
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(2) the kite graph Kn,k uniquely has the minimal Harary index [158] and the maximal

Wiener index [50] (resp. hyper–Wiener index [50]).

Moreover, in [12], the authors also determined some extremal bipartite graphs with

respect to Harary index, that are all complete bipartite graphs. Hence these results can

be viewed as special cases of Theorem 2.6 (1).

Theorem 2.7. Among all connected graphs with n vertices and chromatic number k,

(1) the Turán graph Tn(k) uniquely has the minimal Wiener index [50] (resp. hyper–

Wiener index [50]) and the maximal Harary index [158];

(2) the kite graph Kn,k uniquely has the maximal Wiener index [50] (resp. hyper–Wiener

index [50]) and the minimal Harary index [158].

The broom Bn,Δ is a tree obtained by attaching Δ−1 pendent vertices to one pendent

vertex of the path Pn−Δ+1.

Theorem 2.8. ( [138]) For any connected graph G with n vertices and maximum degree

Δ, we have W (G) ≤ W (Bn,Δ), where the equality holds if and only if G ∼= Bn,Δ.

The dumbbell D(n, p, q) is a tree consisting of the path Pn−p−q together with p in-

dependent vertices adjacent to one pendent vertex of Pn−p−q and q independent vertices

adjacent to the other pendent vertex of Pn−p−q. A caterpillar is a tree if by deleting all its

pendent vertices it reduces to a path. Note that in the theory of benzenoid hydrocarbons,

caterpillars are also called Gutman trees [39, 40, 58, 61, 82].

Suppose that n ≥ 2(a + b). Denote by CPn(a, b) a caterpillar obtained by attaching

one pendent vertex to each of the first a vertices in Pn−a−b and one pendent vertex to

each of the last b vertices of Pn−a−b .

Recall that the average distance of a connected graph G on n vertices is defined as

μ(G) =
(
n
2

)−1
W (G). In [13,14,36], the extremal graph with maximal average distance are

determined among all connected graphs with n ≥ 5 vertices and matching number β ≥ 2

and with domination number γ.

Theorem 2.9. ([13]) If G is a connected graph with n ≥ 5 vertices and matching number

β ≥ 2, then

μ(G) ≤ μ (D (n, �(n+ 1)/2− β	 , 
(n+ 1)/2− β�))

with equality holding if and only if G ∼= D(n, �(n+ 1)/2− β	, 
(n+ 1)/2− β�).
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Theorem 2.10. ( [14]) Let G be any connected graph with n vertices and domination

number γ.

(1) If γ ≤ n
3
, then μ(G) ≤ μ(D(n, �n+2−3γ

2
	, 
n+2−3γ

2
�)) with equality holding if and only

if G ∼= D(n, �n+2−3γ
2

	, 
n+2−3γ
2

�).

(2) If γ ≥ n
3
, then μ(G) ≤ μ(CPn(
3γ−n

2
�, �3γ−n

2
	)) with equality holding if and only if

G ∼= CPn(
3γ−n
2

�, �3γ−n
2

	).

If the order n of the graph G is fixed, then the extremal graph with respect to average

distance is just the extremal one with respect to Wiener index, and vice versa. Therefore

the following two corollaries can be deduced immediately from Theorems 2.9 and 2.10.

Corollary 2.1. If G is a connected graph with n ≥ 5 vertices and matching number

β ≥ 2, then

W (G) ≤ W (D(n, �(n+ 1)/2− β	, 
(n+ 1)/2− β�))

with equality holding if and only if G ∼= D(n, �n+1
2

− β	, 
n+1
2

− β�).

Corollary 2.2. Let G be a connected graph of order n with domination number γ.

(1) If γ ≤ n
3
, then W (G) ≤ W (D(n, �n+2−3γ

2
	, 
n+2−3γ

2
�)) with equality holding if and

only if G ∼= D(n, �n+2−3γ
2

	, 
n+2−3γ
2

�).

(2) If γ ≥ n
3
, then W (G) ≤ W (CPn(
3γ−n

2
�, �3γ−n

2
	)) with equality holding if and only

if G ∼= CPn(
3γ−n
2

�, �3γ−n
2

	).

As usual, we denote by G the complement of the graph G. A graph G is self–

complementary if G ∼= G. It is well–known [5] that any self–complementary graph G

of order n satisfies the condition n ≡ 0 or 1(mod 4). For k ≥ 1, let G4k be the set of

all graphs whose structure is shown in Fig. 2, where Gk is any graph of order k and

the double lines connecting two circled graphs indicate that all edges between them are

present. In addition, let G4k+1 be the set of graphs obtained from a graph from G4k by

adding a new vertex adjacent to all vertices in the two copies of Gk as indicated in Fig. 2.

In [77], the self–complementary graphs with extremal average distance were determined.

In view of the relation between Wiener index and average distance, we can obtain directly

the following result.
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�� ���� ��

Fig. 2. The structure of the graphs belonging to the class G4k .

Theorem 2.11. ([77]) Let G be a self-complementary graph of order n.

(1) If n ≡ 0(mod 4), then 3n(n−1)
4

≤ W (G) ≤ n(n−1)(13n−12)
16n−16

with the left equality holding

if and only if G is a graph with diameter 2, and the right equality holding if and

only if G ∈ G4k .

(2) If n ≡ 1(mod 4), then 3n(n−1)
4

≤ W (G) ≤ n(n−1)(13n−1)
16n

with the left equality holding

if and only if G is a graph with diameter 2, and the right equality holding if and

only if G ∈ G4k+1 .

Recall that the circumference of a graph G is the maximum length of any cycle in G.

Denote by Ck(�
1) the graph obtained by attaching a path of length � to one vertex of cycle

Ck . Let n, � be two positive integers such that (�−1) | (n−1). The graph F ∗
n,� is obtained

by joining an isolated vertex u to every vertices of (n−1)/(�−1) copies of complete graphs

K�−1 . In the following theorem, the extremal graphs with respect to Wiener index are

characterized among all connected graphs with n vertices and circumference �.

Theorem 2.12. ( [99]) Let G be a connected graph with n vertices and circumference �.

(1) If (� − 1) | (n − 1), then W (G) ≥ W (F ∗
n,�) with equality holding if and only if

G ∼= F ∗
n,� .

(2) W (G) ≤ W (C�((n− �)1)) with equality holding if and only if G ∼= C�((n− �)1).

The well–knownMoore graph is an r-regular graph with diameter k whose order attains

the upper bound

1 + r
k−1∑
i=0

(r − 1)i .

Hoffman and Singleton [79] proved that every r-regular Moore graph G with diameter 2

must have r ∈ {2, 3, 7, 57}. They pointed out that G ∼= C5 if r = 2, G is just Petersen

graph for r = 3, whereas for r = 7, G is the known under the name Hoffman–Singleton

graph. For r = 57 it is not known whether such a graph does exist or not.
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Recall that M1(G) =
∑

v∈V (G)

dG(v)
2 is the well–known first Zagreb index of the graph G

(see [35,62,71,72,145]). In the following theorem we characterize the extremal connected

triangle– and quadrangle–free graphs extremal with respect to Wiener index, hyper–

Wiener index, and Harary index.

Theorem 2.13. Let G be a connected triangle– and quadrangle–free graph with n vertices

and m edges. Then

(1) ([173]) 3n(n−1)
2

− 1
2
M1(G) − m ≤ W (G) with equality holding if and only if G is a

graph of diameter d ≤ 3;

(2) ([171]) 3n(n− 1)− 3
2
M1(G)− 2m ≤ WW (G) with equality holding if and only if G

is a graph of diameter d ≤ 3;

(3) ([171]) H(G) ≤ n(n−1)
4

+ m
2
with equality holding if and only if G is a star or a Moore

graph of diameter 2.

Denote by G1 ∨G2 the join of two vertex disjoint graphs G1 and G2 . Thus, G1 ∨G2

is the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈
V (G1), v2 ∈ V (G2)}.

By G we denote the complement of the graph G.

Obviously, either G ∼= C3 or G ∼= Sn holds for any connected graph G with n ≥ 2

vertices and matching number β = 1.

Theorem 2.14. ([45]) Let G be a connected graph with n ≥ 4 vertices and matching

number β, where 2 ≤ β ≤ �n/2	.

(1) If β = �n/2	, then WW (G) ≥ WW (Kn) and H(G) ≤ H(Kn). Either equality holds

if and only if G ∼= Kn .

(2) If 2n/5 < β ≤ �n/2	 − 1, then WW (G) ≥ WW (K1 ∨ (K2β−1 ∪ Kn−2β)) and

H(G) ≤ H(K1 ∨ (K2β−1 ∪Kn−2β)) . Either equality holds if and only if G ∼= K1 ∨
(K2β−1 ∪Kn−2β) .

(3) If 2 ≤ β < 2n/5, then WW (G) ≥ WW (Kβ ∨Kn−β) and H(G) ≤ H(Kβ ∨Kn−β) .

Either equality holds if and only if G ∼= Kβ ∨Kn−β .
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(4) If β = 2n/5, then WW (G) ≥ WW (Kβ ∨Kn−β) = WW (K1 ∨ (K2β−1 ∪Kn−2β)) and

H(G) ≤ H(Kβ ∨Kn−β) = H(K1 ∨ (K2β−1 ∪Kn−2β)) . Either equality holds if and

only if G ∼= Kβ ∨Kn−β or G ∼= K1 ∨ (K2β−1 ∪Kn−2β) .

Theorem 2.15. Let G be a connected graph with n vertices and (edge)-connectivity k,

where 1 ≤ k ≤ n− 1. Then,

(1) ([74, 150]) W (G) ≥ W (Kk ∨ (K1 ∪ Kn−k−1)), with equality holding if and only if

G ∼= Kk ∨ (K1 ∪Kn−k−1) ;

(2) ([2]) WW (G) ≥ WW (Kk ∨ (K1 ∪ Kn−k−1)), with equality holding if and only if

G ∼= Kk ∨ (K1 ∪Kn−k−1) .

By the definitions of the Wiener, hyper–Wiener, and Harary indices, one can easily

see that any edge addition will decrease the Wiener index and the hyper–Wiener index,

and will increase the Harary index. In other words:

Proposition 2.1. Let G be a connected graph with e �∈ E(G). Then, W (G) > W (G+ e),

WW (G) > WW (G+ e), and H(G) < H(G+ e).

Proposition 2.1 directly implies:

Theorem 2.16. Let G be a connected graph of order n. Then,

(1) W (G) ≥ W (Kn), where the equality holds if and only if G ∼= Kn ;

(2) WW (G) ≥ WW (Kn), where the equality holds if and only if G ∼= Kn ;

(3) ([171]) H(G) ≤ H(Kn) , where the equality holds if and only if G ∼= Kn ;

(4) ([172]) RCW (G) ≤ RCW (Kn), where the equality holds if and only if G ∼= Kn .

Denote by S(Kn− ie) the set of graphs obtained by deleting i edges from Kn . Clearly,

S(Kn− 0e) = {Kn}. The next theorem determines the first to (k+1)-th smallest Wiener

and hyper–Wiener indices of graphs of order n > 2k.

Theorem 2.17. ([109]) Suppose that n > 2k. For i = 0, 1, . . . , k, the i-th smallest

Wiener (resp. hyper–Wiener) indices of connected graphs of order n are the graphs from

S(Kn − ie).

By the definition of Wiener polarity index, it easily follows:

Theorem 2.18. ([105]) Let G be a connected graph of order n. Then, WP (G) ≥ 0, where

the equality holds if and only if the diameter of G is less than 3.
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3 Trees

In this section, we outline some extremal results for the six distance–based topological

indices W , WW , H, WP , RCW , and TW , pertaining to trees.

Theorem 3.1. Let T be a tree of order n. Then,

(1) ([43, 59, 69, 124]) W (Sn) ≤ W (T ) ≤ W (Pn), with left (resp. right ) equality holding

if and only if T ∼= Sn (resp. T ∼= Pn) ;

(2) ([59, 69]) WW (Sn) ≤ WW (T ) ≤ WW (Pn), with left (resp. right ) equality holding

if and only if T ∼= Sn (resp. T ∼= Pn) ;

(3) ([59, 157]) H(Pn) ≤ H(T ) ≤ H(Sn), with left (resp. right ) equality holding if and

only if T ∼= Pn (resp. T ∼= Sn) ;

(4) ([172]) RCW (Pn) ≤ RCW (T ) ≤ RCW (Sn), with left (resp. right ) equality holding

if and only if T ∼= Pn (resp. T ∼= Sn).

By Proposition 2.1, among all connected graphs, the extremal graphs with maximal

Wiener and hyper–Wiener index, and with minimal Harary index must be a tree. Thus,

by Theorem 3.1 we have:

Corollary 3.1. Let G be a connected graph of order n.

(1) ([43]) W (G) ≤ W (Pn), where the equality holds if and only if G ∼= Pn .

(2) WW (G) ≤ WW (Pn), where the equality holds if and only if G ∼= Pn .

(3) ([171]) H(G) ≥ H(Pn) , where the equality holds if and only if G ∼= Pn .

(4) ([172]) RCW (G) ≥ RCW (Pn) , where the equality holds if and only if G ∼= Pn .

A tree of order n is said to be a bi-star if it is obtained by attaching n1 pendent vertices

to one leaf of P2 and n2 pendent vertices to the other leaf of P2 , where n1 + n2 = n− 2.

This bi-star is denoted by BS(n1, n2). Denote by T ∗(k1, k2, k3, �1, . . . , �m) a special tree

with diameter 4 as shown in Fig. 3. Consider the set T ∗ of such trees

T ∗ =
{
T ∗(k1, k2, k3, �1, . . . , �m)

}
(4)
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for which the conditions

k1 + k2 + k3 +
m∑
i=1

�i = n−m− 5

and

m+ k2 + 1 =

⌊
n− 2

2

⌋
or

⌈
n− 2

2

⌉
are satisfied.

�� �� ��

�� �� �� �� ��

	
	�

�
��

Fig. 3. The tree T ∗(k1, k2, k3, �1, . . . , �m) from Eq. (4) and Theorems 3.2, 3.9.

Theorem 3.2. ([37]) Let T be a tree of order n. Then

0 ≤ WP (T ) ≤
⌈
n− 2

2

⌉⌊
n− 2

2

⌋

where the left equality holds if and only if T ∼= Sn and the right equality holds if and only

if T is either a bi-star BS(
n−2
2
�, �n−2

2
	) or a tree in the set T ∗ .

Although until the present moment a generally accepted measure of branching does

not exist, there are several properties that any proposed measure has to satisfy [3,52,70,

115,125,128,131,146,147]. Basically, a topological index (TI) acceptable as a measure of

branching must satisfy the inequalities

TI(Sn) < TI(T ) < TI(Pn) or TI(Pn) < TI(T ) < TI(Sn)

for any tree T of order n ≥ 5 different from Sn and Pn . From Theorem 3.1, we find that

the four indices W , WW , H and RCW satisfy the basic requirement to be branching

measures. On the other hand, Theorem 3.2 implies that WP is not a branching index.

-474-



Taking Theorem 3.1 into consideration, we naturally ask: Which trees have the ex-

tremal distance–based topological indices among the trees of order n different from Sn and

Pn ?

In order to approach this problem, we first introduce some necessary notations and

definitions.

A vertex v of a tree T is called a branching point if d(v) ≥ 3. Let Tn(n1, n2, . . . , nm)

be the tree of order n obtained by inserting, respectively, n1 − 1, . . . , nm − 1 vertices into

the m edges of the star Sm+1 , where n1 + · · ·+ nm = n− 1.

Assume that T is a tree of order n with exactly two branching points v1 and v2

with d(v1) = r and d(v2) = t. The orders of r − 1 components, which are paths, of

T − v1 are p1, . . . , pr−1, the order of the component which is not a path of T − v1 is

pr = n − p1 − · · · − pr−1 − 1. The orders of t − 1 components, which are paths, of

T − v2 are q1, . . . , qt−1 , the order of the component which is not a path of T − v2 is

qt = n − q1 − · · · − qt−1 − 1. We denote this tree by T = Tn(p1, . . . , pr−1; q1, . . . , qt−1),

where r ≤ t, p1 ≥ · · · ≥ pr−1 and q1 ≥ · · · ≥ qt−1 .

For convenience, when considering the trees

Tn(n1, n2, . . . , nk, . . . , nm) or Tn(p1, . . . , pk, . . . , pr−1 ; q1, . . . , qk, . . . , qt−1)

we use the symbols n�k
k or p�kk (resp. q�kk ) to indicate that the number of nk or pk (resp. qk)

is �k > 1 in the following. For example, T16(2, 2, 3, 3, 5) will be written as T16(2
2, 32, 51).

Let T2, T3, . . . , T8 be the trees of order n ≥ 14 depicted in Fig. 4, and TD the tree

depicted in Fig. 5.

�� �� �� ��

�� �� �	







 


 


 







 


 




Fig. 4. The trees T2, T3, . . . , T8 encountered in Theorems 3.3 and 3.4.
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Fig. 5. The tree TD encountered in Theorem 3.3 .

The following two theorems present trees extremal with respect to W , WW , H, and

RCW among the trees of order n different from Sn and Pn. These results may be viewed

as a extensions of Theorem 3.1.

Theorem 3.3. (1) ([22, 108]) Suppose that T is a tree of order n ≥ 28, different from

those occurring in the below inequalities. Then,

W (Pn) > W (Tn(n− 3, 12)) > W (Tn(n− 4, 2, 1)) > W (Tn(1
2; 12))

> W (Tn(n− 5, 3, 1)) > W (Tn(n− 4, 13)) > W (Tn(1
2; 2, 1))

> W (Tn(n− 6, 4, 1)) > W (Tn(n− 5, 22)) > W (Tn(1
2;n− 5, 1))

> W (Tn(1
2; 3, 1)) > W (Tn(2, 1; 2, 1)) > W (Tn(1

2; 13))

> W (Tn(n− 7, 5, 1)) > W (Tn(1
2;n− 6, 1)) > W (Tn(1

2; 4, 1))

> W (Tn(n− 5, 2, 12)) > W (Tn(1
2; 22)) > W (Tn(2, 1; 3, 1))

> W (TD) > W (T ) .

(2) ([104]) Suppose that T is a tree of order n ≥ 20, different from those occurring in

the below inequalities. Then,

WW (Pn) > WW (Tn(n− 3, 12)) > WW (Tn(n− 4, 2, 1)) > WW (Tn(1
2; 12))

> WW (Tn(n− 5, 3, 1)) > WW (Tn(n− 4, 13)) > WW (Tn(1
2; 2, 1))

> WW (Tn(n− 6, 4, 1)) > WW (Tn(n− 5, 22)) > WW (Tn(1
2;n− 5, 1))

> WW (Tn(1
2; 3, 1)) > WW (Tn(2, 1; 2, 1)) > WW (Tn(1

2; 13))

> WW (Tn(n− 7, 5, 1)) > WW (Tn(1
2;n− 6, 1))) > WW (T ) .

(3) ([157]) Suppose that T is a tree of order n ≥ 16, different from those occurring in

the below inequalities. Then,

H(Pn) < H(Tn(n− 3, 12)) < H(Tn(n− 4, 2, 1)) < H(Tn(1
2; 12))

< H(Tn(n− 5, 3, 1)) < H(Tn(1
2; 2, 1)) < H(Tn(n− 4, 13)) < H(T ) .
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(4) ([9]) Suppose that T is a tree of order n ≥ 7, different from those occurring in the

below inequalities. Then,

RCW (Pn) < RCW (Tn(
(n− 2)/2�, �(n− 2)/2	, 1))

< RCW (Tn(
n/2�, �(n− 4)/2	, 1)) < RCW (T ) .

Theorem 3.4. (1) ([33,57,110]) Suppose that T is a tree of order n ≥ 24, different from

those occurring in the below inequalities. Then,

W (T ) > W (T5) > W (T8) = W (T7) > W (T6) > W (T4)

> W (T3) > W (T2) > W (Sn) .

(2) ([104]) Suppose that T is a tree of order n ≥ 18, different from those occurring in

the below inequalities. Then,

WW (T ) > WW (T5) > WW (T8) > WW (T7) > WW (T6) > WW (T4)

> WW (T3) > WW (T2) > WW (Sn) .

(3) ([157]) Suppose that T is a tree of order n ≥ 14, different from those occurring in

the below inequalities. Then,

H(T ) < H(T8) < H(T7) < H(T6) < H(T5) < H(T4)

< H(T3) < H(T2) < H(Sn) .

Recall that a chemical tree is a tree with maximum degree not greater than 4. By

Theorem 3.3, we find that the extremal trees with greatest Wiener and hyper–Wiener

indices, and the ones with smallest Harary and reciprocal complementary Wiener indices

are chemical trees. Recently, Deng [23] determined the maximal values for Wiener polarity

index in the class of chemical trees, but, disappointedly, he did not characterize the

corresponding extremal chemical tree(s).

Theorem 3.5. ([105]) Let T be a tree of order n different from Sn. Then, WP (T ) ≥
WP (D(n, n− k− b, b)), where the equality holds if and only if T ∼= D(n, n− k− b, b) with

k ≥ 3 and n− k ≥ b ≥ 0.

In the subsequent two theorems we assume that n− 1 = kq + r with 0 ≤ r < k, that

is, q = �n/k	. Then, obviously, n− 1 = k �n/k	+ r = (k − r)�n/k	+ r 
n/k�.
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Theorem 3.6. ([7,42,133]) Let T be a tree with n vertices and k pendent vertices, where

2 ≤ k ≤ n− 2. Then,

W

(
Tn

(⌈n
k

⌉r
,
⌊n
k

⌋k−r
))

≤ W (T ) ≤ W (D (n, �k/2	 , 
k/2�))

with the left equality holding if and only if T ∼= Tn(
n/k�r, �n/k	k−r) and the right equality

holding if and only if T ∼= D(n, �k/2	, 
k/2�).

Theorem 3.7. Let T be a tree with n vertices and k pendent vertices, where 2 ≤ k ≤ n−2.

(1) ([168]) WW (Tn(
n/k�r, �n/k	k−r)) ≤ WW (T ), with equality holding if and only if

T ∼= Tn(
n/k�r, �n/k	k−r).

(2) ([87]) H(T ) ≤ H(Tn(
n/k�r, �n/k	k−r)), with equality holding if and only if T ∼=
Tn(
n/k�r, �n/k	k−r).

Theorem 3.8. ([123]) Suppose that T is a tree with n vertices and k pendent vertices

where 3 ≤ k ≤ n− 2. Then

RCW (T ) ≥ RCW

(
Tn

(⌈
n− k + 1

2

⌉
,

⌊
n− k + 1

2

⌋
, 1k−2

))

with equality if and only if T ∼= Tn(
n−k+1
2

�, �n−k+1
2

	, 1k−2).

Theorem 3.9. ([24]) Suppose that T is a tree with n vertices and k pendent vertices,

where 3 ≤ k ≤ n− 2.

(1) If 
n/2� ≤ k ≤ n − 2, then WP (T ) ≤ 
n−2
2
��n−2

2
	 with equality holding if and only

if T is either a bi-star BS(
n−2
2
�, �n−2

2
	) or a tree in the set T ∗ .

(2) If 3 ≤ k < 
n/2�, then WP (T ) ≤ k2 − 3k + n − 1 with equality holding if and only

if T is a starlike tree in which the lengths of all pendent chains are at least 2.

Combining Proposition 2.1 and Corollaries 2.1 and 2.2, we naturally arrive at the

following two corollaries.

Corollary 3.2. If T is a tree with n ≥ 5 vertices and matching number β ≥ 2, then

W (T ) ≤ W

(
D

(
n,

⌊
n+ 1

2
− β

⌋
,

⌈
n+ 1

2
− β

⌉))

with equality holding if and only if T ∼= D(n, �n+1
2

− β	, 
n+1
2

− β�).
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Corollary 3.3. Let T be a tree with n vertices and domination number γ.

(1) If γ ≤ n
3
, then W (T ) ≤ W (D(n, �n+2−3γ

2
	, 
n+2−3γ

2
�)) with equality holding if and

only if T ∼= D(n, �n+2−3γ
2

	, 
n+2−3γ
2

�).

(2) If γ ≥ n
3
, then W (T ) ≤ W (CPn(
3γ−n

2
�, �3γ−n

2
	)) with equality holding if and only

if T ∼= CPn(
3γ−n
2

�, �3γ−n
2

	).

Let An,β be the tree obtained by attaching a pendent vertex to each of β−1 noncentral

vertices of the star Sn−β+1. Clearly, the matching number of An,β is β, and there is exactly

one tree with n vertices and matching number β = 1, which is just the star Sn . Recently,

the minimal Wiener and hyper–Wiener indices and the maximal Harary index in the class

of trees with n vertices and matching number β ≥ 2 were determined.

Theorem 3.10. Let T be a tree with n vertices and matching number 2 ≤ β ≤ �n/2	.

(1) ([38]) W (An,β) ≤ W (T ), where the equality holds if and only if T ∼= An,β .

(2) ([168]) WW (An,β) ≤ WW (T ), where the equality holds if and only if T ∼= An,β .

(3) ([19,87]) H(T ) ≤ H(An,β), where the equality holds if and only if T ∼= An,β .

For a bipartite graph G of order n with matching number β and independence number

α, it is well known that α + β = n (see, e.g., [5, 76]). Therefore the following corollary

can be easily obtained from Theorem 3.10.

Corollary 3.4. ([19, 87, 168]) Let T be a tree with n vertices and independence number

α. Then,

(1) W (An,n−α) ≤ W (T ), with equality holding if and only if T ∼= An,n−α ;

(2) WW (An,n−α) ≤ WW (T ), with equality holding if and only if T ∼= An,n−α ;

(3) H(T ) ≤ H(An,n−α), with equality holding if and only if T ∼= An,n−α .

As the following two results show, the extremal reciprocal complementary Wiener

index in the class of trees with n vertices and matching number β (resp. independence

number α) appears to have a much more complex structure.
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Theorem 3.11. ([123]) Let T be a tree with n vertices and matching number β ≥ 2.

(1) If β = �n/2	, then RCW (T ) ≥ RCW (Pn), with equality if and only if T ∼= Pn;

(2) If β ≤ �n/2	 − 1 and β is odd, then RCW (T ) ≥ RCW (Tn(β
2, 1n−2β−1)), with

equality if and only if T ∼= Tn(β
2, 1n−2β−1).

(3) If β ≤ �n/2	 − 1 and β is even, then RCW (T ) ≥ RCW (Tn(β + 1, β − 1, 1n−2β−1)),

with equality if and only if T ∼= Tn(β + 1, β − 1, 1n−2β−1).

Corollary 3.5. Let T be a tree with n vertices and independence number α.

(1) If α = 
n/2�, then RCW (T ) ≥ RCW (Pn), with equality if and only if T ∼= Pn;

(2) If α ≥ 
n/2�+ 1 and n− α is odd, then RCW (T ) ≥ RCW (Tn((n− α)2, 12α−n−1)),

with equality if and only if T ∼= Tn((n− α)2, 12α−n−1);

(3) If α ≥ 
n/2�+ 1 and n− α is even, then RCW (T ) ≥ RCW (Tn(n− α+ 1, n− α−
1, 12α−n−1)), with equality if and only if T ∼= Tn(n− α + 1, n− α− 1, 12α−n−1).

For 2 ≤ Δ ≤ n− 1, the Volkmann tree Vn,Δ is defined as follows [52,53, 97]:

If n = Δ+ 1, then Vn,Δ is just a star of order n.

For n > Δ+ 1, define ni as

ni = 1 +
i∑

j=1

Δ(Δ− 1)j

for i = 1, 2, . . ., and choose k such that nk−1 < n ≤ nk .

Then, calculate the parameters m and h so that

m =
n− nk−1

Δ− 1
and h = n− nk−1 − (Δ− 1)m .

The vertices of Vn,Δ are arranged into k + 1 levels. In level 0, there is only one vertex

labeled as v0,1. In level i for i = 1, 2, . . . , k − 1, there are Δ(Δ − 1)i vertices labeled as

vi,1, vi,2, . . . , vi,Δ(Δ−1)i . These are connected (in that order) to the vertices in level i, so

that Δ−1 vertices from level i are adjacent to each vertex from level i−1. At level k there

are n−nk−1 vertices, labeled as vk,1, vk,2, . . . , vk,n−nk−1
. They are connected (in that order)

to the vertices in level k − 1, so that Δ− 1 vertices from level k are adjacent to vertices

vk−1,1, vk−1,1, . . . , vk−1,m. The remaining h vertices at level k (if any) are connected to the

vertex vk−1,m+1 in level k − 1.
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In Fig. 6 we illustrate the structure of the Volkmann trees Vn,Δ by the example with

n = 22 and Δ = 4.

Theorem 3.12. ([53,92,97]) Let T be a tree with n vertices and maximum degree at most

Δ ≥ 3. Then

W (Vn,Δ) ≤ W (T ) ≤ W (Pn)

with the left equality holding if and only if T ∼= Vn,Δ and the right equality holding if and

only if T ∼= Pn .

����

���� ���� ���� ����

���� ���� ���� ���� ���� ���	 ���
 ���� ��� ����� ����� �����

���� ���� ���� ���� ����

����� �

����� �

����� �

����� �

Fig. 6. The Volkmann tree V22,4 with its vertices labeled.

Which are the extremal trees of order n with respect to the indices W , WW , H, and

RCW is the maximum degree Δ is fixed? In the following theorem, we will give a partial

answer to this question.

Recall that Bn,Δ is a broom as defined in Section 2.

Theorem 3.13. Let T be a tree with n vertices and maximum degree Δ ≥ 3. Then

(1) ([32]) W (T ) ≤ W (Bn,Δ), with equality holding if and only if T ∼= Bn,Δ .

(2) ([168]) WW (T ) ≤ WW (Bn,Δ), with equality holding if and only if T ∼= Bn,Δ .

(3) ([87, 149]) H(Bn,Δ) ≤ H(T ) ≤ H(Vn,Δ), with the left equality holding if and only if

T ∼= Bn,Δ, and the right equality holding if and only if T ∼= Vn,Δ .

(4) ([123]) RCW (T ) ≥ RCW (Tn(
n−Δ+1
2

�, �n−Δ+1
2

	, 1Δ−2)), with equality holding if and

only if T ∼= Tn(
n−Δ+1
2

�, �n−Δ+1
2

	, 1Δ−2).

-481-



Define the following auxiliary sets:

V (Δ)(T ) = {v ∈ V (T ) | dT (v) = Δ} and N (Δ)(T ) =
⋃

u∈V (Δ)(T )

NT (u)

where NT (u) denotes the set of first neighbors of the vertex u in the graph T .

Let h = n− (Δ+1) and T0 = SΔ+1 . Let Ti be a tree obtained from Ti−1 by attaching

a pendent vertex to one vertex of N (Δ)(Ti−1) \ V (Δ)(Ti−1), where i = 1, 2, . . . , h. Then we

can construct a tree Th after h steps, and the set of all Th’s is denoted by T Δ.

Theorem 3.14. ([100]) Let T be a tree with n vertices and maximum degree Δ, where

3 ≤ Δ ≤ n− 3. Then,

WP (D(n,Δ− 1, �)) ≤ WP (T ) ≤ WP (T
Δ)

with the right equality holding if and only if T ∼= TΔ ∈ T Δ and the left equality holding if

and only if T ∼= D(n,Δ− 1, �), where 0 ≤ � ≤ min{Δ− 1, n−Δ− 2}.

Let Cn,d be the tree obtained from a path Pd+1 = v0v1 . . . vd , by attaching n − d − 1

pendent vertices to the vertex v�d/2�.

Theorem 3.15. Let T be a tree with n vertices and diameter d, where 3 ≤ d ≤ n − 2.

Then

(1) ([103,154]) W (Cn,d) ≤ W (T ), with equality holding if and only if T ∼= Cn,d ;

(2) ([48,168]) WW (Cn,d) ≤ WW (T ), with equality holding if and only if T ∼= Cn,d ;

(3) ([87]) H(T ) ≤ H(Cn,d), with equality holding if and only if T ∼= Cn,d ;

(4) ([9]) RCW (T ) ≥ RCW (Cn,d), with equality holding if and only if T ∼= Cn,d .

Note that, in [19], some extremal trees with respect to Harary index are characterized

in terms of order n, diameter d, first Zagreb index M1 , and second Zagreb index M2 .

By Theorem 3.2, the extremal tree maximizing the Wiener polarity index in the class

of trees with n vertices and diameter 3 or 4 is determined. The following theorem charac-

terizes the trees with maximal Wiener polarity index when the diameter is greater than

4.

Denote by CTn(k1, k2, . . . , kd−1) the tree (a caterpillar) of order n obtained by attaching

ki pendent vertices to the vertex vi of Pd+1 = v0v1 . . . vd for i = 1, 2, . . . , d− 1.
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Theorem 3.16. ([25]) Let T be a tree with n vertices and diameter d.

(1) If d ≥ 3, then WP (T
(0)) ≤ WP (T ), with equality if and only if T ∼= T (0), where

T (0) ∼= D(n, r, t) with r + t = n− d+ 1 (t ≥ r ≥ 1) for d ≥ 4 and T (0) ∼= Bn,n−3 for

d = 3.

(2) If d ≥ 5, then WP (T ) ≤ WP (CTn(0, 0, . . . , 0, ki, ki+1, ki+2, 0, . . . , 0, 0)), with equality

if and only if T ∼= CTn(0, 0, . . . , 0, ki, ki+1, ki+2, 0, . . . , 0, 0), where 1 ≤ i ≤ d− 5 and

ki+1 = �n−d−1
2

	 or 
n−d−1
2

�.

The following theorems present the minimal Wiener and reciprocal complementary

Wiener indices among non-caterpillars with n vertices and diameter d, where 4 ≤ d ≤
n− 3.

Theorem 3.17. ([113]) Let T be a non-caterpillar tree with n vertices and diameter d,

where 4 ≤ d ≤ n− 3. Then, W (Tn(
d
2
�, �d

2
	, 2, 1n−d−3)) < W (T ).

Theorem 3.18. ([123]) Let T be a non-caterpillar tree of order n ≥ 7. Then,

RCW

(
Tn

(⌈
n− 3

2

⌉
,

⌊
n− 3

2

⌋
, 2

))
≤ RCW (T ) .

The degree sequence of a tree is the sequence of the degrees (in non-increasing order)

of its vertices. Suppose that the degrees of non-leaf vertices are given, the so-called greedy

tree is formed by the following “greedy algorithm” [134,151]:

(i) Label the vertex with the greatest degree by v (the root).

(ii) Label the neighbors of v by v1, v2, . . . , such that d(v1) ≥ d(v2) ≥ · · · .
(iii) Label the neighbors of v1 (except v) by v11, v12, . . . such that they take all the

greatest degrees available and that d(v11) ≥ d(v12) ≥ · · · . Then do the same for v2, v3, . . . .

(iv) Repeat (iii) for all the newly labeled vertices, always starting with the neighbors

of the labeled vertex with greatest degree whose neighbors are not yet labeled.

As an example, in Fig. 7 is depicted the greedy tree with degree sequence

π = (4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
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Fig. 7. A greedy tree.

If T is a caterpillar obtained from the path P = v1v2 . . . vk by attaching yi (yi ≥ 1)

pendent vertices to the vertex vi , i ∈ {1, k} and attaching yj−1 (yi ≥ 1) pendent vertices

to vj for j ∈ {2, . . . , k − 1}, then we denote the resultant tree by T (y1, y2, . . . , yk) [169].

Clearly, the degree sequence of T (y1, y2, . . . , yk) is

π = (y1 + 1, y2 + 1, . . . , yk + 1, 1, . . . , 1) .

For example, the caterpillar T (5, 3, 2, 1) is depicted in Fig. 8. Its degree sequence is

π = (6, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1).

�� �� �� ��

Fig. 8. The caterpillar T (5, 3, 2, 1).

Theorem 3.19. Given the degree sequence and the number of vertices, the greedy tree

minimizes the Wiener index ([134,151,170]) and also maximizes the Harary index ([149]).

In addition, the same greedy tree maximizes the Wiener polarity index ([106]).

Let Tn,π,p be the class of trees on n vertices and p leaves, with degree sequence π =

(d1, d2, . . . , dn), where d1 ≥ d2 ≥ · · · ≥ dn .

Theorem 3.20. ([169]) Let T be the tree with maximum Wiener index in Tn,π,n−5 .

(1) If d1 > d2 + d3, then T ∼= T (d1 − 1, d5 − 1, d4 − 1, d3 − 1, d2 − 1).

(2) If d1 = d2 + d3, then either T ∼= T (d1 − 1, d5 − 1, d4 − 1, d3 − 1, d2 − 1) or

T ∼= T (d1 − 1, d4 − 1, d5 − 1, d3 − 1, d2 − 1).
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(3) If d1 < d2 + d3, then T ∼= T (d1 − 1, d4 − 1, d5 − 1, d3 − 1, d2 − 1).

Theorem 3.21. ([169]) Let T be the tree with maximum Wiener index in Tn,π,n−6 .

(1) If d1 > d2 + d3 + d4 − 2, then T ∼= T (d1 − 1, d6 − 1, d5 − 1, d4 − 1, d3 − 1, d2 − 1).

(2) If d1 = d2+d3+d4−2, then either T ∼= T (d1−1, d6−1, d5−1, d4−1, d3−1, d2−1)

or T ∼= T (d1 − 1, d5 − 1, d6 − 1, d4 − 1, d3 − 1, d2 − 1).

(3) If d2 + d3 − 1 < d1 < d2 + d3 + d4 − 2, then T ∼= T (d1 − 1, d5 − 1, d6 − 1, d4 − 1, d3 −
1, d2 − 1).

(4) If d2 + d3 − 1 = d1, then either T ∼= T (d1 − 1, d5 − 1, d6 − 1, d4 − 1, d3 − 1, d2 − 1)

or T ∼= T (d1 − 1, d4 − 1, d6 − 1, d5 − 1, d3 − 1, d2 − 1).

(5) If max{d2 + d3 − d4, d2 +
1
3
(d5 − d6)} < d1 < d2 + d3 − 1, then T ∼= T (d1 − 1, d4 −

1, d6 − 1, d5 − 1, d3 − 1, d2 − 1).

(6) If d1 = d2 + d3 − d4 > d2 +
1
3
(d5 − d6), then either T ∼= T (d1 − 1, d4 − 1, d6 − 1, d5 −

1, d3 − 1, d2 − 1) or T ∼= T (d1 − 1, d4 − 1, d5 − 1, d6 − 1, d3 − 1, d2 − 1).

(7) If d1 = d2 +
1
3
(d5 − d6) > d2 + d3 − d4, then either T ∼= T (d1 − 1, d4 − 1, d6 − 1, d5 −

1, d3 − 1, d2 − 1) or T ∼= T (d1 − 1, d3 − 1, d6 − 1, d5 − 1, d4 − 1, d2 − 1).

(8) If d1 = d2+ d3− d4 = d2+
1
3
(d5− d6), then T ∈ {T (d1− 1, d4− 1, d6− 1, d5− 1, d3−

1, d2 − 1), T (d1 − 1, d4 − 1, d5 − 1, d6 − 1, d3 − 1, d2 − 1), T (d1 − 1, d3 − 1, d6 − 1, d5 −
1, d4 − 1, d2 − 1)}.

(9) If d2 +
1
3
(d5 − d6) ≤ d1 < d2 + d3 − d4 or d1 ≤ d2 +

1
3
(d5 − d6) < d2 + d3 − d4, then

T ∼= T (d1 − 1, d4 − 1, d5 − 1, d6 − 1, d3 − 1, d2 − 1).

(10) If d2 + d3 − d4 ≤ d1 < d2 +
1
3
(d5 − d6) or d1 ≤ d2 + d3 − d4 < d2 +

1
3
(d5 − d6), then

T ∼= T (d1 − 1, d3 − 1, d6 − 1, d5 − 1, d4 − 1, d2 − 1).

(11) If d1 < d2 +
1
3
(d5 − d6) = d2 + d3 − d4, then either T ∼= T (d1 − 1, d3 − 1, d6 − 1, d5 −

1, d4 − 1, d2 − 1) or T ∼= T (d1 − 1, d4 − 1, d5 − 1, d6 − 1, d3 − 1, d2 − 1).

Although the extremal trees with maximal Wiener index are determined in Tn,π,p

when p is large enough, as pointed out in [169], the problem of characterizing the trees

maximizing the Wiener index in Tn,π,p for any p is still open. For the newest results on

this matter see [132].
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Let T (4)
m be the set of trees with m edges and diameter 4. Denote by S

(t)
m (c1, c2, . . . , ck)

the tree with m edges obtained by attaching c1 − 1, c2 − 1, . . . , ct − 1 pendent vertices to

t leaves of the star St+1 ; for an example see Fig. 9. From [148], we know that any tree

from T (4)
m must be of the form S

(t)
m (c1, c2, . . . , ck).

Fig. 9. The tree S
(4)
10 (3, 3, 2, 2).

Theorem 3.22. ([148]) Let T be a tree from T (4)
m . Then

W (T ) ≤ W (S(t)
m (k, . . . , k, k + 1, . . . , k + 1))

with equality holding if and only if T ∼= S
(t)
m (k, . . . , k, k + 1, . . . , k + 1) where k = �√m	.

In the tree S
(t)
m (k, . . . , k, k+1, . . . , k+1), t = k, the term k appears k2 + k−m times and

the term k + 1 appears m− k2 times provided k2 + k > m. If t = k + 1, then the term k

appears k2 + 2k + 1−m times and the term k + 1 appears m− k2 − k times.

We end this section by outlying extremal results on the terminal Wiener index TW ,

defined via Eq. (3).

In the introductory part, we already pointed out that is reasonably to investigate TW

only for graphs possessing two or more pendent vertices. Therefore, to date, results on

extremal values of TW are established only for trees. All results that are presented below

have been published in [68].

The proofs of all theorems on TW presented here are based on the following lemma:

Lemma 3.1. [68] Let T be an n-vertex tree with k pendent vertices. Let e be an edge of

T . Denoting by p1(e) and p2(e) the numbers of pendent vertices of T , lying of the two

sides of e, the terminal Wiener index can be calculated as

TW (T ) =
∑
e

p1(e) · p2(e)

with summation going over all edges of T .
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Theorem 3.23. Let T be an n-vertex tree. Then, TW (T ) ≥ n− 1. Equality is attained

if and only if T ∼= Pn .

A tree is said to be starlike if it possesses a single vertex of degree greater than two.

If the degree of this vertex is d ≥ 3, then the respective tree is referred to as starlike of

degree d.

Theorem 3.24. Among n-vertex trees with a fixed number k of pendent vertices, k ≥ 3 ,

the starlike trees of degree k possess minimal TW equal to (n− 1)(k − 1) .

The problem of characterizing trees with maximal TW values is more complex than

in the case of trees with minimal TW . Nonetheless, this problem has been completely

solved in [68].

Theorem 3.25. Let T be an n-vertex tree with a fixed number k of pendent vertices,

k ≥ 4 . The trees whose all non–pendent edges (e′) satisfy the condition p1(e
′) · p2(e′) =

�k/2	
k/2� have maximal TW . The terminal Wiener index of these trees is equal to

TW = k(k − 1) + (n− 1− k)

⌊
k

2

⌋⌈
k

2

⌉
.

The characterization of trees possessing maximal TW among all trees is given by the

following theorem:

Theorem 3.26. Within the class of n-vertex trees, the trees having maximal TW obey to

one of the following conditions:

(1) If 3 ≤ n ≤ 9 , then the star Sn has the maximal terminal Wiener index, equal to

(n− 1)(n− 2) .

(2) If n = 3s , where s ≥ 4 , then the tree with k = 2s+ 2 pendent vertices has maximal

terminal Wiener index, equal to s3 + 3s2 + s− 1 . This tree is unique.

(3) If n = 3s+ 1, where s ≥ 3 , then the trees with k = 2s+ 2 and k = 2s = 3 pendent

vertices have maximal terminal Wiener indices, equal to s3 + 4s2 + 3s . There are


s/2� distinct trees of this kind.

(4) If n = 3s + 2, where s ≥ 3 , then the trees with k = 2s + 3 pendent vertices have

maximal terminal Wiener indices, equal to s3 +5s2 +6s+2 . There are 
(s− 1)/2�
distinct trees of this kind.
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The trees described in Theorems 3.25 and 3.26 can be constructed as follows:

(a) If the number of pendent vertices (k) is even and 4 ≤ k ≤ n − 1 , then the unique

tree with maximal TW is obtained from the path Pn−k by attaching to each of its

terminal vertices k/2 new pendent vertices.

(b) If the number of pendent vertices (k) is odd and 5 ≤ k ≤ n− 1 , then the tree with

maximal TW is obtained from the path Pn−k by attaching to each of its terminal

vertices (k− 1)/2 new pendent vertices, and by attaching one more pendent vertex

to some vertex of Pn−k . There exist 
(n− k)/2� distinct trees of this kind.

(c) If the number of pendent vertices k = n− 1, then the tree with maximal TW is the

star Sn .

Recently Lin [98] considered trees in which all vertices have odd degrees, and deter-

mined the species with smallest and greatest Wiener index. The trees of this kind, with the

first few smallest and first few greatest Wiener indices have also been determined [54,55].

Connected graphs in which all vertices have even degrees (which, of course, are not trees)

are said to be Eulerian. Eulerian graphs extremal with respect to the Wiener index were

characterized in [60].

More results on trees with extremal Wiener and terminal Wiener indices [11], and

Harary indices [164] were also recently communicated.

4 Unicyclic and bicyclic graphs

In this section we report some extremal results for the distance–based topological indices,

with restriction to unicyclic or bicyclic graphs.

Recall that a unicyclic graph is a connected graph with n vertices and n edges, and a

bicyclic graph is a connected graph with n vertices and n+ 1 edges. If n = 3, then there

is exactly one unicyclic graph, i.e., C3 . If n = 4, there is precisely one bicyclic graph,

obtained by deleting one edge from K4 . Thus, we only need to consider unicyclic graphs

of order n ≥ 4 and bicyclic graphs of order n ≥ 5.

In order to characterize the unicyclic graphs extremal w.r.t. the distance–based topo-

logical indices, we first introduce some necessary notations.

Denote by Ck(n
�1
1 , n

�2
2 , . . . , n

�m
m ) the unicyclic graph obtained by attaching �1 paths of

length n1, �2 paths of length n2, . . . , �m paths of length nk, respectively, to one vertex of

Ck, where n1 > n2 > · · · > nm . Note that the graph Ck(�
1), defined in Section 2, is a
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special case of Ck(n
�1
1 , n

�2
2 , . . . , n

�m
m ). For example, the graph C5(4

1, 32, 22) is shown in Fig.

10.

Fig. 10. The graph C5(4
1, 32, 22).

There are exactly two unicyclic graphs of order 4, namely C4 and C3(1
1). We have

W (C4) = W (C3(1
1)), WW (C4) = WW (C3(1

1)), RCW (C4) = RCW (C3(1
1)), H(C4) =

H(C3(1
1)), and WP (C4) = WP (C3(1

1)) = 0.

Theorem 4.1. Let G be a unicyclic graph of order n ≥ 5.

(1) ([141, 167]) W (C3(1
n−3)) ≤ W (G) ≤ W (C3((n− 3)1)), where the left equality holds

if and only if G ∼= C3(1
n−3) for n ≥ 6 and G ∼= C3(1

n−3) or G ∼= C5 for n = 5, and

the right equality holds if and only if G ∼= C3((n− 3)1).

(2) ([46, 156]) WW (C3(1
n−3)) ≤ WW (G) ≤ WW (C3((n− 3)1)), where the left equality

holds if and only if G ∼= C3(1
n−3) for n ≥ 6 and G ∼= C3(1

n−3) or G ∼= C5 for n = 5,

and the right equality holds if and only if G ∼= C3((n− 3)1).

(3) ([160]) H(C3((n− 3)1)) ≤ H(G) ≤ H(C3(1
n−3)), where the left equality holds if and

only if G ∼= C3((n − 3)1), and the right equality holds if and only if G ∼= C3(1
n−3)

for n ≥ 6 and G ∼= C3(1
n−3) or G ∼= C5 for n = 5.

From Theorem 2.1 (2), we easily deduce the following:

Corollary 4.1. Let G be a unicyclic or bicyclic graph. Then, RCW (G) attains its max-

imal value if and only if the diameter of G is 2.

This corollary further implies:

Theorem 4.2. Let G be a unicyclic graph of order n ≥ 5. Then,

RCW (G) ≤ RCW (C3(1
n−3))

where the equality holds if and only if G ∼= C3(1
n−3) for n ≥ 6 and G ∼= C3(1

n−3) or

G ∼= C5 for n = 5.
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Let C
(s)
k (p1, q1) be the unicyclic graph obtained by attaching two paths of lengths p

and q, respectively, to two vertices of Ck whose distance is s , s ≤ �k/2	.

Theorem 4.3. ([9]) Let G be a unicyclic graph of order n ≥ 7. Then

RCW
(
C

(2)
4

(

(n− 4)/2�1, �(n− 4)/2	1

))
≤ RCW (G)

with equality holding if and only if G ∼= C
(2)
4 (
(n− 4)/2�1, �(n− 4)/2	1).

A unicyclic graph is said to be a cycle–caterpillar if by deleting all its pendent vertices

it reduces it to a cycle [159]. Denote by Ug a cycle–caterpillar obtained by attaching

k1 > 0, k2 = 
(n− g)/2� or �(n− g)/2	, and k3 > 0 pendent vertices to three consecutive

vertices v1, v2 and v3 of Cg with g ≥ 4. Let U3 be a cycle–caterpillar obtained by attaching

ki pendent vertices to the vertex vi (where i = 1, 2, 3) of the cycle C3 = v1v2v3v1 with

|ki − kj| ≤ 1 for i, j ∈ {1, 2, 3}.
Let Si,t−k be the unicyclic graph of order t−k+ i obtained by attaching t−k pendent

vertices to one pendent vertex of C3(1
i−3), where i ≥ 4 and t − k ≥ 1. Let Si,n−k,k−i be

the unicyclic graph of n obtained by attaching k − i ≥ 1 pendent vertices to a pendent

vertex of Si,n−k which is at distance 2 to the vertex of C3(1
i−3) with maximum degree.

See Fig. 11 for two illustrative examples.

���� ������

Fig. 11. Examples of graphs Si,t−k and Si,n−k,k−i .

Denote by S3(1
n−4, 11) the unicyclic graph obtained by attaching n−4 pendent vertices

to one vertex of C3 and one pendent vertex to another vertex of C3.

As pointed out in [105], the minimal Winer polarity index of unicyclic graphs on n

vertices is attained by C3(1
n−3) or C4 or C5 . In the following two theorems, we present the

extremal unicyclic graphs with the greatest and second smallest Wiener polarity indices

among unicyclic graphs of order n.
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Theorem 4.4. ([83]) Let G be the unicyclic graph with the maximal Wiener polarity index

in the class of unicyclic graphs of order n ≥ 5.

(1) If n = 5, then G ∼= S4,1 .

(2) If n = 6, then G ∼= S4,2 .

(3) If n = 7, then G ∼= U7 .

(4) If n = 8, then G ∈ {U7, S5,3, S4,3,1}.

(5) If n = 9, then G ∈ {U7, U5, U3, S4,3,2, S5,3,1, S4,4,1, S6,3, S5,4}.

(6) If n = 10, then G ∈ {U5, U3, S4,4,2, S5,4,1, S6,4}.

(7) If n = 11, then G ∼= U5 or G ∼= U3 .

(8) If n ≥ 12, then G ∼= U3 .

Theorem 4.5. ([105]) Let G be a unicyclic graph with minimal Wiener polarity index

among unicyclic graphs of order n ≥ 5, different from C3(1
n−3) and C5 . Then G is either

in the set {S3(1
n−4, 11), C4(1

n−4), C5(1
1)} or is C4(1

t, 0, 1n−4−t, 0) with 1 ≤ t ≤ �n/2	−2,

where C4(1
t, 0, 1n−4−t, 0) is a cycle–caterpillar obtained by attaching t pendent vertices to

a vertex v of C4 and n− 4− t pendent vertices to another vertex of C4 not adjacent to v.

In the subsequent theorem, the unicyclic graph with the second smallest reciprocal

complementary Wiener index among all the unicyclic graphs of order n ≥ 7 is character-

ized.

Theorem 4.6. ([9]) Let G be a unicyclic graph of order n ≥ 7, different from

C
(2)
4 (
n−4

2
�1, �n−4

2
	1).

(1) If n is odd and n ≤ 11, then RCW (C
(1)
3 (
n−3

2
�1, �n−3

2
	1)) ≤ RCW (G), with equality

holding if and only if G ∼= C
(1)
3 (
n−3

2
�1, �n−3

2
	1).

(2) If n is even or n ≥ 13, then RCW (C
(2)
4 (
n−2

2
�1, �n−6

2
	1)) ≤ RCW (G), with equality

holding if and only if G ∼= C
(2)
4 (
n−2

2
�1, �n−6

2
	1).

For 2 ≤ β ≤ �n/2	, we denote by Un,m the unicyclic graph obtained by attaching

n− 2m+ 1 pendent edges and m− 2 pendent paths of length 2 to one vertex of C3 , see

Fig. 12.
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Fig. 12. The graph U(n,m).

There is exactly one unicyclic graph with n vertices and matching number β = 1,

which is C3 . In the following, we describe the unicyclic graphs extremal with respect to

Wiener, hyper–Wiener, and Harary indices among unicyclic graphs with n vertices and

matching number β ≥ 2.

Theorem 4.7. Let G be a unicyclic graph with n ≥ 9 vertices and matching number β.

(1) ([38]) If β ≥ 2, then W (Un,β) ≤ W (G), with equality holding if and only if G ∼= Un,β .

(2) ([44]) If β ≥ 2, then WW (Un,β) ≤ WW (G), with equality holding if and only if

G ∼= Un,β .

(3) ([161]) If β ≥ 3, then H(G) ≤ H(Un,β), with equality holding if and only if G ∼= Un,β .

Let B′
n,Δ be the graph obtained by adding a new edge between two pendent vertices of

the broom Bn,Δ . In the next theorem the graph with maximal Wiener index in the class

of unicyclic graphs of order n and with maximum degree Δ is completely determined.

If Δ = 2, then there is only one unicyclic graph, which is just Cn . Therefore, we may

assume that 3 ≤ Δ ≤ n− 1.

Theorem 4.8. ([34]) Let G be a graph with n vertices and maximum degree Δ , 3 ≤ Δ ≤
n− 1. Then

W (G) ≤ W (B′
n,Δ)

with equality holding if and only if G ∼= B′
n,Δ .

Denote by Un,g the set of unicyclic graphs with n vertices and girth g. Let

C
(1)
g (11, 1n−g−1) be a graph obtained by attaching n− g− 1 pendent vertices and a single
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pendent vertex to two adjacent vertices of Cg . For 3 ≤ g ≤ n − 3, let C∗
g ((n − g)1) be

the graph obtained by attaching a pendent vertex to the unique neighbor of the pendent

vertex of Cg((n− g − 1)1).

Theorem 4.9. ([167]) Let G ∈ Un,g with n ≥ 6 and 3 ≤ g ≤ n− 2. Then

W (Cg(1
n−g)) ≤ W (G) ≤ W (Cg((n− g)1))

where the left equality holds if and only if G ∼= Cg(1
n−g), and the right equality holds if

and only if G ∼= Cg((n− g)1).

Theorem 4.10. ([47]) Let G ∈ Un,g \ {Cg(1
n−g), Cg((n− g)1)} with n ≥ 13 and 3 ≤ g ≤

n− 2. Then the following holds:

(1) W (G) ≤ W (G∗
1) with equality holding if and only if G ∼= G∗

1 where

G∗
1
∼= C(�g/2�)

g (11, (n− g − 1)1) and G∗
1
∼= C∗

g ((n− g)1)

for g ∈ {3, 4, n− 3, n− 2} and 5 ≤ g ≤ n− 4, respectively.

(2) W (C
(1)
g (11, 1n−g−1)) ≤ W (G) with equality if and only if G ∼= C

(1)
g (11, 1n−g−1).

Corollary 4.2. ([47]) Let G0 and G1 be the unicylic graphs with minimal Wiener index

and with maximal Wiener index, respectively, among all unicyclic graphs of order n ≥ 7

different from C3(1
n−3) and C3((n− 3)1). Then

(1) G0
∼= C4(1

n−4) or G0
∼= C

(1)
3 (11, 1n−4);

(2) G1
∼= C4((n− 4)1) or G1

∼= C
(1)
3 (11, (n− 4)1).

Note that the result in Corollary 4.2 has been independently obtained also in [141].

Let Un,g(k) be the element of Un,g, obtained by attaching k paths of almost equal

lengths to one vertex of Cg . Let, in addition, U∗
n,g(k) be the graph in Un,g obtained

by attaching k paths of almost equal lengths q1, q2, . . . , qk to only one pendent vertex of

Ug+q0,g(1) with qi − q0 − g ≤ 1 for i = 1, 2, . . . , k. Recall that An,β is the same graph as

defined before.

If g is odd, let C∗
n,g(β) be the graph in Un,g obtained by identifying a vertex of a cycle

Cg of odd order g with the vertex of An−g+1,β− g−1
2

of degree n − β − g−1
2
. When g is

even, let C∗
n,g(β) be the graph in Un,g obtained by identifying the vertex u1 in a cycle

Cg = u1u2u3 . . . ugu1 of even order g with the vertex of An−g,β− g
2
of degree n− β− g

2
, and

by attaching a pendent vertex to the vertex u2 in Cg .
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Theorem 4.11. ([80]) Let 3 ≤ g ≤ n−1 and G be a graph in Un,g with k pendent vertices.

(1) If 1 ≤ k ≤ n − 3 and g > �(n − g)/k	, then W (G) ≥ W (Un,g(k)), with equality

holding if and only if G ∼= Un,g(k).

(2) If 2 ≤ k ≤ n−3 and g ≤ �(n−g)/k	 ; n−g �= 0(mod k), then W (G) ≥ W (U∗
n,g(k)),

with equality holding if and only if G ∼= U∗
n,g(k).

(3) If 2 ≤ k ≤ n − 3 and n = (k + 1)g, then W (G) ≥ W (Un,g(k)) = W (U∗
n,g(k)), with

equality holding if and only if G ∼= Un,g(k) or G ∼= U∗
n,g(k).

Theorem 4.12. ([10]) Let 3 ≤ g ≤ n− 1 and G be a graph in Un,g with matching number

β ≥ 3g/2. Then

W (G) ≥ W (C∗
n,g(β))

with equality holding if and only if G ∼= C∗
n,g(β).

Further results on extremal Wiener indices of unicyclic graphs can be found in [60,119].

Let B(n) be the set of bicyclic graphs of order n. The structure of cycles in G ∈ B(n)
can be divided into the following three cases (see [162]):

(I) The two cycles Cp and Cq in G have only one common vertex v.

(II) The two cycles Cp and Cq in G are linked by a path of length � > 0.

(III) The two cycles C�+k and C�+m in G have a common path of length � > 0.

The bicyclic graphs Cp,q , Cp,�,q , and θk,�,m (where 1 ≤ � ≤ min{k,m}), corresponding
to the above three cases will be referred to as the base subgraphs of G ∈ B(n) of type (I),
(II), and (III), respectively. These are depicted in Fig. 13.

�� ���
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Fig. 13. The base graphs of type (I), (II), and (III).
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For n ≥ 5, let B
(1)
n and B

(2)
n be the bicyclic graphs shown in Fig. 14. In Fig. 15 are

depicted the graphs θ2,1,3 and θ2,2,3, which are bicyclic with diameter 2. It is easy to see

that θ2,1,3 �∈ {B(1)
n , B

(2)
n } and θ2,2,3 �∈ {B(1)

n , B
(2)
n }.

� � � � � �

����� � ����

Fig. 14. Bicyclic graphs used in Theorem 4.13.

������ ������

Fig. 15. Bicyclic graphs with diameter 2.

For n ≥ 5, let B
(0)
n be the graph obtained by attaching a path of length n− 4 to one

vertex of degree 2 of θ2,1,2. In the following two theorems, we characterize the bicyclic

graphs extremal w.r.t. W , WW , and H in the class B(n). Note that, in [142], the authors

have determined the extremal graphs with respect to Wiener index among bicyclic graphs

containing two disjoint cycles.

Theorem 4.13. Let G be a bicyclic graph of order n ≥ 5 and i ∈ {1, 2}. Then we have:

(1) ([49]) W (B
(i)
n ) ≤ W (G), with equality holding if and only if G ∼= B

(i)
n for n ≥ 7 and

G ∼= B
(i)
n or G ∼= θ2,2,3 for n = 6 and G ∼= B

(i)
n or G ∼= θ2,1,3 or G ∼= K2,3 for n = 5;

(2) ([49]) WW (B
(i)
n )) ≤ WW (G), with equality holding if and only if G ∼= B

(i)
n for n ≥ 7

and G ∼= B
(i)
n or G ∼= θ2,2,3 for n = 6 and G ∼= B

(i)
n or G ∼= θ2,1,3 or G ∼= K2,3 for

n = 5;

(3) ([160]) H(G) ≤ H(B
(i)
n ), with equality holding if and only if G ∼= B

(i)
n for n ≥ 7 and

G ∼= B
(i)
n or G ∼= θ2,2,3 for n = 6 and G ∼= B

(i)
n or G ∼= θ2,1,3 or G ∼= K2,3 for n = 5.
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Remark 4.1. It needs to be pointed out that the extremal graph θ2,2,3 has been overlooked

in [49]. But, clearly, it is an extremal graph, since its diameter is 2.

Theorem 4.14. Let G be a bicyclic graph of order n ≥ 5.

(1) ([49]) W (G) ≤ W (B
(0)
n ), where the equality holds if and only if G ∼= B

(0)
n .

(2) ([49]) WW (G) ≤ WW (B
(0)
n ), where the equality holds if and only if G ∼= B

(0)
n .

(3) ([160]) H(B
(0)
n ) ≤ H(G), where the equality holds if and only if G ∼= B

(0)
n .

From Corollary 4.1, in view of the structure of bicyclic graphs with diameter 2, we

obtain the following:

Theorem 4.15. Let G be a bicyclic graph of order n ≥ 5 and i ∈ {1, 2}. Then,

RCW (G) ≤ RCW (B(i)
n )

where the equality holds if and only if G ∼= B
(i)
n for n ≥ 7 and G ∼= B

(i)
n or G ∼= θ2,2,3 for

n = 6 and G ∼= B
(i)
n or G ∼= θ2,1,3 or G ∼= K2,3 for n = 5.

Denote by Ln,i the graph obtained by attaching a path of length i to a vertex of degree

2 of θ2,1,2, and then attaching another path of order n−4− i to the other vertex of degree

2 of θ2,1,2. The following theorem characterizes the bicyclic graphs with the smallest and

second smallest reciprocal complementary Wiener indices.

Theorem 4.16. ([9]) Let G be a bicyclic graph of order n ≥ 7, different from Ln,�(n−4)/2�

and Ln,�(n−6)/2�. Then

RCW
(
Ln,�(n−4)/2�

)
< RCW

(
Ln,�(n−6)/2�

)
< RCW (G) .

5 Concluding remarks

In the above sections, we have collected many results on graphs extremal with regard to

Wiener, hyper–Wiener, Harary, Wiener polarity, and reciprocal complementary Wiener

indices. In this section, we would like to outline a few concluding remarks.

Remark 5.1. As mentioned in Section 1, the Wiener index and the Wiener polarity index

were defined simultaneously. The Wiener polarity index seems less well–known than the
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Wiener index, and even less well–known than the hyper–Wiener index, Harary index, and

reciprocal complementary Wiener index, which were conceived much later. So far, results

on Wiener polarity index are much fewer than those on other distance–based topological

indices. Therefore, there are many extremal problems w.r.t. Wiener polarity index that

have been left unsolved. Moreover, it would be interesting to study the relation between

Winer polarity index and the other topological indices. By doing so, we might envisage

the major differences between WP and the other distance–based indices.

Remark 5.2. Since the diameter is included in the reciprocal complementary Wiener

index, it is much more difficult to deal with it than with the Harary index. But, to

our surprise, sometimes in a given set of graphs, the graph with maximal Harary index

is just the same that with minimal reciprocal complementary Wiener index (see, e.g.,

Theorem 3.15). Thus, it would be an interesting problem to find the other classes of

graphs, in which the graph with maximal (resp. minimal) Harary index is just the one

with minimal (resp. maximal) reciprocal complementary Wiener index. Furthermore, the

reciprocal forms of the other distance–based topological indices would also be worthy of

consideration.

Remark 5.3. When studying the extremal trees, unicyclic, and bicyclic graphs, with

respect to distance–based topological indices, we find that in many cases (especially for

W , WW , and H), the extremal unicyclic graph is obtained by adding a new edge to the

extremal tree, and the extremal bicyclic graph is obtained by adding a new edge to the

extremal unicyclic graph (cf. Theorems 3.1 and 4.1). It is therefore natural to ask: Can

the unicyclic graphs with given graphic parameters extremal w.r.t. the three indices W ,

WW , and H be obtained by adding a new edge to the extremal tree with the same graphic

parameters? What about the transition from the unicyclic to the bicyclic case? Examples

corroborating our idea are found in Theorems 3.10, 4.7, 3.13 (1), and 4.8. However, finding

the answer to this problem in the general case is still an open and challenging task.

Other interesting remarks on Wiener index, hyper–Wiener index, and Harary index

can be found in [157]. So far there is a great number of results on graphs extremal with

respect to the Wiener index. But there are fewer results on graphs extremal with respect

to other distance–based topological indices (WW , H, RCW , WP , TW , and so on). In line

with this remark, in the future one should focus more attention to the extremal problems

of other distance–based topological indices, especially when some additional conditions

on the graphs are given.
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In spite of the great number of extremal results on the Wiener index, there still are

some open problems. We mention here the characterization of extremal graphs with given

radius (for some partial results see [85, 150, 166]), and with given diameter ( for partial

but incomplete results see [21, 122, 165] and in Theorem 2.3). Similarly, some interesting

and attractive problems on other distance–based topological indices also remain open.

Recently, Brückler et al. [6] introduced a general distance–based topological index,

called Q-index. The Q-index is defined as

Q(G) =
∑
k≥1

f(k) d(G, k)

where f is a function such that f(0) = 0 and d(G, k) is the number of vertex pairs at

distance k. The Wiener, hyper–Wiener, Harary, and reciprocal complementary Wiener

indices are all special cases of the Q-index.

We would like to end this survey with the following remark.

Remark 5.4. Suppose that some property of the function f is given, enabling one to

characterize the extremal graphs (with respect to the Q-index) in some particular sets of

graphs. By comparing this results with the existing results for W , WW , H, RCW , . . . ,

in may be that some interesting and fundamental mathematical unified properties of the

distance–based topological indices could be envisaged.
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