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Abstract 

Edge frustration index of a graph is defined as the smallest number of edges that have to be deleted 

from the graph to obtain a bipartite spanning subgraph. Bipartite subgraph problem has many 

remarkable applications in various fields. It was claimed that the chemical stability of fullerenes is 

related to the minimum number of vertices or edges that need to be deleted to make a fullerene graph 

bipartite. The aim of this article is to find the frustration index of different graphs using a 

mathematical programming model and genetic algorithm.  

 

1. Introduction 

A graph  ),( EVG  is a combinatorial object consisting of an arbitrary set )(GVV  of 

vertices and a set )(GEE  of unordered pairs ijji,  of distinct vertices of G  called edges. 

A simple graph is a graph that does not have more than one edge between any two vertices 

and no edge starts and ends at the same vertex. Two vertices are adjacent if there is an edge 

between them. The adjacency matrix of a simple graph is a matrix with rows and columns 

labeled by graph vertices, with a 1 or 0 in position ),( ji   according to whether vertices iv  and 

jv  are adjacent or not. G  is bipartite if V  can be partitioned into two subsets 1V  and 2V  such 

that all edges have one endpoint in 1V  and the other in 2V . A subgraph S  of G  is a graph 
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whose set of vertices and set of edges are all subsets of G . A spanning subgraph is a subgraph 

that contains all the vertices of the original graph.  

An edge Ee  is frustrated with respect to a given bipartition ),( 21 VV  of V  if both 

endpoints of e  belong to the same class of the bipartition. Frustration index of a graph G , 

denoted by )(G , is the minimum number of frustrated edges over all possible bipartitions of 

V . Alternatively, )(G  is the smallest cardinality of a set of edges of G  that need to be 

deleted to obtain a bipartite spanning subgraph. Finding the edge frustration index is hard, in 

fact, it is NP-hard. The edge frustration index is important in a model of spin glasses, the 

mixed ising model. Also, this index was introduced and considered in the context of complex 

networks [1]. The edge frustration index has application in chemistry. In [2] Fajtlowicz 

claimed that the chemical stability of fullerenes is related to the minimum number of 

vertices/edges that need to be deleted to make a fullerene graph bipartite. There is some 

correlate studies in [3, 4]. 

A genetic algorithm )(GA  is a search technique used in computing exact or approximate 

solutions to optimization and search problems. Its original idea comes from Darwinian’s 

evolution theory. The concept of GA  was given by Holland [9]. It was first used to solve 

optimization problem by De-Jong’s [10]. A detailed implementation of GA  could be found in 

Goldberg [11]. 

The focus of this article is upon the formation of an integer-linear mathematical 

programming model and a genetic algorithm )(GA  for computing the edge frustration index 

of a graph G . Section 2 presents a binary integer linear mathematical programming model. 

There is a genetic algorithm approach to edge frustration index in section 3. Section 4 

contains some numerical examples.  

 

2. Binary integer linear program 

A Binary Integer Linear Program is a linear program where the decision variables can take 

on only two values, 0 and 1 [5]. This section presents a binary integer mathematical 

programming model whose objective function is equal to the edge frustration index of a graph 

G . The point of departure is the mixed integer linear programming model developed by Klein 

and Aronson [6].  
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Let ),( EVG  be a simple graph on n  vertices labeled with nvv ,,1  . Let C  be its 

adjacency matrix with ijc  in position ),( ji . The problem is to find bipartition ),( 21 VV  of V  

whose total number of frustrated edges is minimized. To formulate the problem, let us denote 

the decision variables as follows: 

for ni 1  and 21  k , let 
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The objective is to find the minimum number of frustrated edges over all possible 

bipartitions of V . This objective can be stated mathematically as 

                                                    
 

n

i ij

ijij ycMinimize
1

                                                (3) 

The objective function incorporates the total number of frustrated edges with respect to the 

bipartition ),( 21 VV . 

We should now define the constraints of the problem, which are the restrictions imposed 

upon the values of the decision variables by the characteristics of the problem under study. In 

order to enforce ijy  on assuming value 1 when iv  and jv  are in the same partition and 0 

otherwise, we can use constraint 

                                          1 jkikij xxy                                          (4) 

where ni 1 , nji   and 21  k . It should be noticed that each vertex must belong to 

one of the partitions. This restriction can be expressed as follows: 

             121  ii xx      for ni 1 .                                     (5) 

The model will be 
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                        :toSubject  

           21,11  kandijniforxxy jkikij  
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  Although this model can be entered in different optimization softwares, solving the model 

to optimality may require an enormous amount of computer time when n  increases. In 

practice that amount of computer time is not always available. In the next section we will 

describe a genetic algorithm to compute the edge frustration index. Its goal is to find a 

solution in a relatively short time. 

 

3. The Proposed Genetic Algorithm 

In this section, there is a genetic algorithm approach to edge frustration index. This 

technique works by taking an initial population of individuals and applying genetic operators 

in each production. In optimization terms, each individual in the population is encoded into a 

string or chromosomes or some float number which represents a possible solution to a given 

problem. The fitness of an individual is evaluated with respect to a given objective function. 

Highly fit individuals or solutions are given opportunities to reproduce by exchanging some 

of their genetic information, in a crossover procedure, with other highly fit individuals. This 

produces new offspring solution, which share some characteristics taken from both parents. 

Mutation is often applied after crossover by altering some genes or perturbing float numbers. 

The offspring can either replace the whole population or replace less fit individuals. This 

evaluation-selection-reproduction cycle is repeated until some stopping criteria are met [11]. 

 

3. 1. Details of the proposed genetic algorithm 

Let ),( EVG  be a simple graph on n  vertices labeled with nvv ,,1  . Let C  be its adjacency 

matrix with ijc  in position ),( ji . The optimization problem is to find the bipartition ),( 21 VV  

of V  with minimum number of frustrated edges. So, each bipartition ),( 21 VV  of  V  is a 

feasible solution of our optimization problem. Each potential solution for this problem can be 

represented as a binary array consisting of n  bits. Each bit belongs to a vertex of G  and the 

value of the bit (0 or 1) shows whether the vertex is in the first partition of V  or in the second 

one (figure 1).   
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                                          1    2    3    4     5    6      n  

0 1 1 0 1 0  1 

Fig. 1. A sample solution that shows the vertex belongs to the first or second partition. 

 

The fitness of a solution is the total number of its frustrated edges, i.e. the number of edges 

whose both endpoints have the same value. Assume that array A  is a chromosome that 

represents bipartition  ),( 21 VV  of  V . In this case, for ni 1  we have 
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the fitness of A  can be compute as follows: 
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where  11 |1 VvniB i   and  22 |1 VvniB i  .  It is obvious that )(Af  is equal to 

the total number of frustrated edges with respect to the bipartition ),( 21 VV .  

In this genetic algorithm, individuals are selected based upon the tournament selection, and 

then a single point crossover is performed. In the One-point crossover a single crossover point 

on both parents' organism strings is selected. All data beyond that point in either organism 

string is swapped between the two parent organisms. The resulting organisms are the children. 

The mutation operator is accomplished by random selection of a set of genes and flipping 

their values from 1 to 0 or vice versa. The mutation rate is 0.15. 

The algorithm terminates when 

maxiteriter   

iter  is the current number of generation and maxiter  denotes the maximum number of 

generation allowed. 

This genetic algorithm is coded in MATLAB.  Some numerical examples are available in 

the next section. 

 

  



4. Computational Results  

We have prepared a MATLAB code for computing the edge frustration index of an 

arbitrary graph using genetic algorithm. This program ran for the following graphs (Fig. 2). 

The population size at each generation was 100. The maximum number of generation was 

equal to 1000. The results are available in table 1. 

  

 

 

 

    G1 

 

 

 

 

G2 

 

 

 

 

G3 
 

G4 

 

 

 

 

G5 

 

 

 

 

G6 

 

G7 (C20) 

 

 

G8 (C24) 

 

G9 (C60) 

 

G10 (C90) 

Fig. 2.  Graphs considered in this section 

 

Table 1 

Graph )(G computed 

using GA   

1G  2 

2G  0 

3G  2 

4G  3 

5G  2 

6G  2 

G 7  6 

              G 8  6 

              G 9  12 

              G 1 0  6 
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