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Abstract 

A counting polynomial is a sequence description of a topological property such 

that the exponents are the extent of its partitions while the coefficients are related 

to the occurrence of these partitions. In this paper, the symmetry and then PI 

polynomials of an infinite family of fullerenes with 50 + 10n carbon atoms with 

D5h point group symmetry are computed. As a consequence the PI index of this 

class of fullerenes is computed. 

 

1. Introduction 

Throughout this paper, all graphs considered are assumed to be finite, simple and connected. 

A molecular graph is the graph in which the degree of each vertex is at most four. In such a 

graph vertices are atoms and edges are chemical bonds of a chemical compound.  

A graph can be algebraically described by a matrix or a polynomial. In the latter case, 

we speak of a counting polynomial. Suppose P is a graph theoretical property.  The 

polynomial P(G,k) = kP(G,k) . x
k
, where P(G,k) is the frequency of occurrence of  the 

property partitions of G is called the counting polynomial of P. The first two reported 

counting polynomial in the mathematical chemistry literature are the Zcounting polynomial, 
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to consider the number of kmatchings into account, and distance degree polynomials initially 

called the Wiener and later Hosoya polynomial [1,2]. The roots and coefficients of these 

polynomials are used for the characterization of topological nature of hydrocarbons. More 

about polynomials the reader can find in [3]. 

Sagan et al. [4], presented a treatment apparently independent of Hosoya's. Perhaps 

the most interesting property of H(G,x) is the first derivative, evaluated at x = 1, which equals 

the Wiener index: ( ,1) ( )H G W G  . One of us (ARA) continued the line of the mentioned 

paper of Sagan et al. to introduce the notion of PI polynomial of a molecular graph G as: 

( , )

( , ) ( )
( , ) N u v

u v e E G
PI G x x

 
      (1) 

where N(u,v) = nu(e) + nv(e) and nu(e) is the number of edges lying closer to u than v while 

the number of edges parallel to the edge e = uv  E(G) is given by N(e) = |E(G)|  N(u,v) 

[5]. In the mentioned paper it is shown that this new polynomial has the same basic 

properties as the Wiener polynomial. Thus, its first derivative gives the PI index, which can 

also be calculated by subtracting the total number of equidistant edges in G from the square 

of the edge set cardinality:  

 
2

( ) ( ,1) ( )
e

PI G PI G E N e      (2) 

relation also found in [6] to calculate the PI index. We encourage the interested reader to 

consult [711] for more information on this topic. 

There are four important packages for such calculations. These are TopoCluj [12], 

Omega 1.1 [13], HyperChem [4] and GAP [15]. Calculations given this paper are done by 

using a combination of these packages. Our programs are accessible from the authors upon 

request. All notations are standard and taken from [16,17]. 
 

2. Symmetry of C50+10n Fullerenes 

The fullerenes are an allotropic form of the carbon, for the first time evidenced in 1985 by 

Kroto et al. [18]. These are cage molecules in which a large number of carbon atoms are 

bonded in a nearly spherical shape configuration. Assuming that F is a fullerene and p, h, n 

and m are the number of pentagons, hexagons, carbon atoms and bonds between them. Since 

each atom lies in exactly 3 faces and each edge lies in 2 faces, the number of atoms is n = 

(5p+6h)/3, the number of edges is m = (5p + 6h)/2 = 3/2n and the number of faces is f = p + h. 

By the Euler’s formula n − m + f = 2 and we can deduce that (5p + 6h)/3 – (5p + 6h)/2 + p + h 

= 2. Thus, p = 12, v = 2h + 20 and e = 3h + 30. This implies that such molecules made up 
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entirely of n carbon atoms will have 12 pentagonal and (n/2  10) hexagonal faces, where n  

22 is a natural number equal or greater than 20, see [19,20] for details.  

An automorphism of a graph is a permutation of its vertices preserves their adjacency. 

A permutation of the vertices of a graph belongs to its automorphism group if it satisfies P
t
AP 

= A, where P
t
 is the transpose of permutation matrix P and A is the adjacency matrix of the 

graph under consideration. In this paper symmetry means topological symmetry which is 

word equivalent to automorphism. Symmetry of fullerenes is a classical problem in chemistry. 

There are too many algorithms for computing symmetry of fullerenes. We encourage the 

interested readers to consult the famous book of Fowler and Manolopoulos [19].  

Consider a C50 + 10n fullerene depicted in Figure 1. Suppose G is the symmetry group of 

this fullerene. We consider the action of this group on the set of vertices. Then the number of 

orbits of this action is [n/2] + 4 and each orbit has length 10 or 20. The number of orbits of 

length 10 is equal 2, if n is odd; and 3, otherwise. The orbits of length 10 are {1, …, 5, 

46+10n, …, 50+10n} and {6,…,10, 41 + 10n,…,45 + 10n}. If n is even then we have an 

additional orbit {5n + 21, …, 5n + 30} of length 10.  
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Figure 1. Eleven Types of Edges of C120. 
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On the other hands, the orbits of length 20 in general are as follows:  

{11, …, 20, 31 + 10n, …,40 + 10n},  

{21, …, 30, 21 + 10n, …, 30 + 10n},  

{31, …, 40, 11 + 10n, …, 20 + 10n},  

{41, …, 50, 1 + 10n, …, 10 + 10n}. 

  

 In the next section, we apply these information to compute PI polynomial of this class 

of fullerenes.  

 

3. PI Polynomial of C50+10n Fullerenes 

In this section, we apply our calculations given the previous section to compute the PI 

polynomial and then PI index of these fullerenes. Let us describe our algorithm for computing 

PI polynomials and then PI index of fullerenes C50+10n. To do this, we first draw the fullerene 

molecule F = C50+10n by HyperChem for some different values of n. Then compute the 

distance matrix of the molecular graph of F by TopoCluj. Finally, we prepare a GAP 

pseudocode for computing the PI index and PI polynomial of these fullerenes. This program is 

accessible from the authors upon request. 

In Tables 1 – 9, the type of edges, the number of parallel edges for each type and the 

number of types for nine exceptional classes of together with their PI indices are given. 

 

Table 1: n = 2 & PI = 8900. 
 

Types of Edge  1 2 3 4 5 6 7 

Number of Parallel Edges  13 15 18 20 21 22 25 

Frequency  5 10 20 20 10 20 20 

 

Table 2: n = 3 & PI = 11640. 
 

Types of Edge 1 2 3 4 5 6 7 

Number of Parallel Edges 16 18 20 21 22 26 32 

Frequency 10 30 10 20 10 10 30 

 

Table 3: n = 4 & PI = 15060. 
 

Types of Edge  1 2 3 4 5 6 7 8 9 

Number of Parallel Edges  13 16 17 19 21 23 27 36 37 

Frequency  10 20 10 20 20 5 20 20 10 
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Table 4:  n = 5 & PI = 18680. 
 

Types of edge 1 2 3 4 5 6 7 8 9 10 11 

Number of parallel edges 16 17 18 19 20 21 22 24 32 44 46 

Frequency 10 20 10 20 10 20 10 10 10 10 20 

 

Table 5: n = 6 & PI = 22980. 
 

Types of Edge  1 2 3 4 5 6 7 8 9 10 

Number of Parallel Edges  13 15 17 19 21 25 29 33 49 50 

Frequency  5 10 40 30 20 10 10 10 10 20 

 

Table 6: n = 8 & PI = 32660. 
 

Types of Edge  1 2 3 4 5 6 7 8 9 10 

Number of Parallel Edges  15 17 18 19 21 27 31 39 61 64 

Frequency  10 50 20 20 30 15 10 10 10 20 

 

Table 7: n = 10 & PI = 44100. 
 

Types of Edge  1 2 3 4 5 6 7 8 9 10 

Number of Parallel Edges  17 18 19 21 23 29 33 45 73 78 

Frequency  55 40 30 20 10 20 10 10 10 20 

 

Table 8: n =12 & PI = 57300. 
 

Types of Edge  1 2 3 4 5 6 7 8 9 10 

Number of Parallel Edges  17 18 19 21 25 31 35 51 85 92 

Frequency  40 60 40 30 10 25 10 10 10 20 

 

Table 9: n =14 & PI = 72260. 
 

Types of Edge  1 2 3 4 5 6 7 8 9 10 11 

Number of Parallel Edges  17 18 19 21 23 27 33 37 57 97 106 

Frequency  40 80 20 45 10 10 30 10 10 10 20 

 

From Tables 1 – 9, one can calculate the PI polynomials of these fullerenes. We record 

these polynomials in Table 10. 
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 We now apply our calculations given the Tables 11 and 12 to prove the following 

theorem: 
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Theorem: The PI polynomial of C50+10n fullerene can be computed by the following formulas: 

1. If n > 3 is odd then PI(C50+10n , x) = 40x
15n+58

 + (10n60)x
15n+57

 + 20x
15n+56

 + 20x
15n+54

 

+ (5n15)x
14n+62

 + 10x
14n+60

 + 10x
14n+58

 + 10x
14n+56

 + 10x
12n+58

 + 10x
9n+61

 + 20x
8n+64

. 

2. If n > 14 is even then PI(C50+10n , x) = 40x
15n+58

 + (10n60)x
15n+57

 + 20x
15n+56

 + 

20x
15n+54

 + ((5/2)n10)x
14n+68

 + 10x
14n+66

 + 10x
14n+62

 + ((5/2)n5)x
14n+56

 + 10x
14n+52

 

+10x
12n+60

 + 10x
9n+62

 + 20x
8n+67

. 

In particular, the PI index of these fullerenes can be computed by the following formula: 










n|24500 +1760n+2220n

n|2    4380 +1760n+2220n
)n1050C(PI . 
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Figure 2. Twelve Types of Edges of C210. 
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Figure 2. (Continued). 
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