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Abstract

The multiplicative Wiener index π, which was introduced by Ivan Gutman et

al. in [5], is a molecular structure descriptor equal to the product of the distances

between all pairs of vertices of the underlying molecular graph G. Also, Iranmanesh

et al. in [7], introduced the edge-Wiener index of a graph. It obtains in term of the

distances between all pairs of edges set of a graph. We define a new index called

the multiplicative edge-Wiener index that is equal to product of distance between

all pairs of edges set of a graph G. Moreover, we compute this index for some well-

known graphs and we consider its relation to the edge-Wiener index in alkanes, as

well.

1 Introduction

There have been considerable reports about the application of graph theory in chem-

istry. One of the principal areas of research in chemical graph theory is the development

and application of topological indices in quantitative-property (QSPR) and quantitative

structure-activity relationship (QSAR) studies. Among the topological indices reported

in literature, the important ones is Wiener index. To develop new topological indices

and find out their application in chemistry is an interesting program for mathematicians
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and chemists. In this paper we define a novel topological index and we recognize its

relationship with the edge Wiener index in some alkanes.

Let G be a simple connected graph, with vertex and edge sets V (G) and E(G), respec-

tively. The distance d(u, v) or d(u, v|G) between any two vertices u and v is the number of

edges on the shortest path from u to v. The first topological index in mathematical chem-

istry was introduced by H. Wiener in 1947 [12] who realized that there are correlations

between the boiling points of paraffin and the structure of the molecules. In particular,

he mentions in his article that the boiling point tB can be quite closely approximated by

the formula tB = aw + bp+ c where w is the Wiener index, p the polarity number and a,

b and c are constants for a given isomeric group.

In our notation, it can be described as follows:

Wv(G) =
∑

{x,y}⊆V (G)

d(x, y|G) (1)

The literature on the Wiener index is vast. We refer the reader to a number of recent

papers concerned with computing Wiener indices of several classes of graphs [4-6,11].

Let f = xy and g = uv be two edges of G. The distance between f and g is denoted

by de(f, g) or de(f, g|G) and defined as the distance between the vertices of f and g in

the line graph of G. This distance is equal to [7]:

min {d(x, u), d(x, v), d(y, u), d(y, v)}+ 1

Distance 1 means that the edges share a vertex; distance 2 means that at least two of

the four end-vertices of two edges are adjacent. The edge Wiener index of the graph G

is denoted by We(G) and defined as the sum of distances between all pairs edges of the

graph G that is

We(G) =
∑

{f,g}⊆E(G)

de(f, g|G) (2)

It is purposeful to generalize Eq. (2) in the following manner:

We
λ = We

λ(G) =
∑

{f,g}⊆E(G)

dλe (f, g|G) (3)

where λ is some parameter and we name it the edge-Wiener type index. Evidently, if

λ = 1, then We
λ coincides with the ordinary edge Wiener index We. For λ = −1, we
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name We
λ the reciprocal edge-Wiener index. The quantity We

λ for λ = 2 is closely related

to the hyper-edge Wiener index, WWe = (We +W 2
e )/2 [8-9].

The parameter λ may be assume any real value. However, if λ = 0, then, we obtain

that for all (connected) graphs with m edges, We
0 = m (m − 1)/2. In view of this, the

new index We
λ examined only in the case of λ = 0. We now show that it is profitable to

examine the behavior of We
λ when λ has near-zero values. Then, somewhat surprisingly,

We
λ is related to the product of distances.

2 Main Results

At first we offer some properties of the edge Wiener type index.

Lemma 2.1. Let G be a connected graph of order n. Then W λ
e (G) ≥ (n − 1)(n − 2)/2

when λ ≥ 0 and W λ
e (G) ≤ (n− 1)(n− 2)/2 when λ < 0. Equality hold if and only if G is

a star.

Proof. The graph G has at least n− 1 edges, and the distance between any two edges is

at least 1. Hence for λ ≥ 0,

W λ
e (G) =

∑
{f,g}⊆E(G)

dλe (f, g |G) ≥
(
|E(G)|

2

)
≥
(
n− 1

2

)
and similarly for λ < 0, we obtain the desired result. If we had the above equality, then

G must had n−1 edges, so is a tree. Moreover, the line graph of G is the complete graph,

since the distance between any two edges is 1. Hence G is a star. 2

Corollary 2.2. Let G be a connected graph of order n. Then We(G) ≤ (n− 1)(n− 2)/2.

Equality hold if and only if G is a star.

In continue, we bring some definitions [1,10]. Let G be a connected graph and ω be a

real valued weight function on the vertices of G (a vertex–weighted graph (G,ω)). Then

the Wiener number W (G,ω) of a weighted graph (G,ω) is defined as:

W (G,ω) =
1

2

∑
u,v∈V (G)

ω(u)ω(v) d(u, v) (4)

We note that for ω ≡ 1 this yields the usual Wiener index, while for ω(u) = deg(u) we

obtain the Gutman index where is defined as:

Gut(G) =
1

2

∑
u,v∈V (G)

deg(u) deg(v) d(u, v) (5)
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Also we define the Wiener type number W λ(G,ω) of a weighted graph (G,ω) as follows:

W λ(G,ω) =
1

2

∑
u,v∈V (G)

ω(u)ω(v) dλ(u, v) (6)

where λ is some parameter. We have the Gutman type index, as well:

Gutλ(G) =
1

2

∑
u,v∈V (G)

deg(u) deg(v) dλ(u, v) (7)

Evidently, if λ = 1, then Gutλ(G) coincides with the ordinary Gutman index Gut(G).

The edge-Wiener type index of a graph is connected to its Gutman type index by the

following inequality.

Theorem 2.3. Let G be a connected graph of order n and λ ≥ 0. Then∣∣∣∣W λ
e (G)− 1

4
Gutλ(G)

∣∣∣∣ ≤ n4

8
.

Proof. Consider the graph S(G) obtained from G by subdividing each edge once. Con-

sider the following functions α and β on V (S(G)) which defined as follows:

α(v) =

{
deg(v) v ∈ V (G)

0 v ∈ V (S(G))\V (G)
, β(v) =

{
0 v ∈ V (G)

2 v ∈ V (S(G))\V (G)

Now for any two vertices u and v of G, we have d(u, v|S(G)) = 2 d(u, v|G). So we have

W λ(S(G), α) =
1

2

∑
u,v∈V (S(G))

α(u)α(v) dλ(u, v |S(G))

=
1

2

∑
u,v∈V (G)

2λ deg(u) deg(v) dλ(u, v |G)

= 2λ Gutλ(G)

Denote the vertex of degree 2 in V (S(G))\V (G) that subdivides the edge f ∈ E(G) by

vf . Then β(x) 6= 0 only if x = vf for some edge f in G. For every f, g ∈ E(G), we have

d(ve, vf |S(G)) = 2de(f, g |G), and so

W λ(S(G), β) =
1

2

∑
u,v∈V (S(G))\V (G)

β(u) β(v) dλ(u, v |S(G))

=
1

2

∑
f,g∈E(G)

2λ+2 dλe (f, g |G)

= 2λ+2 Wλ
e (G)

We now compare W λ(S(G), α) and W λ(S(G), β). Clearly, the weight function α is ob-

tained from the weight function β by moving one weight unit of a vertex vuw to vertex
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u and the other weight unit to vertex w for all uw ∈ E(G). Hence no weight has been

changed unless that weights with the same distance 1, and the distances between them

has changed by at most 2. Since in total, we have 2|E(G)| weight units, the sum of the

distances between the weight units has changed by at most 2λ
(
2|E(G)|

2

)
. Hence

∣∣W λ(S(G), α)−W λ(S(G), β)
∣∣ ≤ 2λ

(
2|E(G)|

2

)
≤ 2λ−1n4

and so we have
∣∣Wλ

e (G)− 1
4

Gutλ(G)
∣∣ ≤ n4

8
. 2

Corollary 2.4. Let G be a connected graph of order n. Then∣∣∣∣We(G)− 1

4
Gut(G)

∣∣∣∣ ≤ n4

8
.

In follow, we introduce a new topological index.

We know that:

ex =
∞∑
i=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+ · · · ; −∞ < x <∞

implying that for near-zero values of x, as a good approximation, ex ' 1 + x. For

any positive number a, we have ax = ex ln a, therefore we can conclude dλe (e, f |G) '

1 + λ ln(de(f, g |G)), for near-zero values of λ. Substitution back into Eq. (3) readily

yields

W λ
e (G) '

∑
{f,g}⊆E(G)

1 + λ ln(de(f, g |G)) (8)

=

(
|E(G)|

2

)
+ λ ln

 ∏
{f,g}⊆E(G)

de(f, g |G)


Formula (8) suggests a novel distance-based topological index, which in fact is the multi-

plicative edge-Wiener index :

πe(G) =
∏

{f,g}⊆E(G)

de(f, g) (9)

Then it is easy to see that πe(G)2 =
∏

f∈E(G)

πe(f) , where πe(f) =
∏

f 6=g∈E(G)

de(f, g).

The most remarkable difference between We and πe is that edge pairs at distance 1,

do not at all contribute to πe (whereas their contribution to We is not negligible).
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Examples

1. Let Kn be the n-vertex complete graph. By considering any two edges of Kn at

distance 2, for all values of n, we have

πe(Kn) = 2
n(n−1)(n−2)(n−3)

2 .

2. All edge pairs in the star Sn with n vertices are at distance 1 and consequently

πe(Sn) = 1. This simple result illustrates the earlier mentioned fact that the πe

index is insensitive to adjacent edge pairs.

3. A proper generalization of the latter formula is

πe(Km,n) = 2
mn(m−1)(n−1)

2 .

where Km,n denotes the complete bipartite graph with m vertices in one class and

n vertices in the other class. Recall that Sn = K1,n−1.

4. Let Pn be the n-vertex path. Then

πe(Pn) =
n−2∏
k=1

k!

5. Let Cn be the cycle with n vertices. Then

πe(Cn) =

{(
(n
2
− 1)!

)n n
2

n
2 n even(

(n−1
2

)!
)n

n odd

A tree is a connected acyclic graph. Any tree with n vertices possesses n − 1 edges,

and this is the minimal number of edges in connected n-vertex graphs. Since the majority

of the chemical applications of the Wiener number deal with chemical compounds that

have acyclic organic molecules, whose molecular graphs are trees and, actually, most of

the prior work on Wiener numbers deals with trees. When the graph is restricted to

trees, the problem is more complicated. In view of this, it is not surprising that in the

chemical literature there are numerous studies of properties of the Wiener numbers of

trees. Therefore, in the following, we give a theorem about multiplicative index of trees.

Recall that the star Sn and the path Pn are n-vertex trees.

Theorem 2.5. Let Tn be any n-vertex tree, different from Sn and Pn. Then

πe(Sn) < πe(Tn) < πe(Pn).
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Proof. Sn is the only graph having no edge pairs at a distance greater than one. So

πe(Sn) < πe(Tn). Now let G be an arbitrary (connected) graph and x be its arbitrary

vertex. It is required that G possesses at least one more vertex in addition to x. Let

a and b be two integers such that 0 ≤ a < b. Construct the graph H by attaching two

paths Pa+1 and Pb to the vertex x of graph G. The other terminal vertex of path Pa+1 is

located on the edge f of Pa+1 (see Figure 1).

Figure 1: Construction of the graph H, H ′ and H ′′.

Construct the graph H ′ by attaching two paths Pa and Pb+1 to the vertex x of graph

G. This time we denote the terminal edge of Pb+1 by f . It is seen that H ′ is obtained from

H (and vice versa) by moving the edge f from one position to the other. All structural

details of the graphs H and H ′, except the position of the edge f , are identical. All

edges distances in H and H ′, except those involving the edge f are equal. The distances

between the edge f and the edges in two branches attached to vertex x are also equal

and does not need to be considered. All that remains are the distances between edge

f and the edges of the subgraph of G. Now, let g = wz be an edge of G and let

D(x, g) = min {d(x,w), d(u, z)}. Since 0 ≤ a < b, we have:

π′e(f |H ) =
∏

g∈E(G)

(D(x, g |G) + a+ 1) < π′e(f |H ′ ) =
∏

g∈E(G)

(D(x, g |G) + b+ 1) .

That is in π′e, we ignore the equal distances in H and H ′. Therefore, by adding these

distances, we have πe(H) < πe(H
′). This manner show that if edges are moved from a

shorter branch to a longer branch (attached to the same vertex), then the product edge-

Wiener index will necessarily increase. Repeating the construction H → H ′ a sufficient

number of times we conclude that π′e will achieve its maximum value when the shorter
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branch is completely removed (this is graph H ′′ in Figure 1). Applying this argument to

all branching points of an n-vertex tree we immediately conclude that the path graph Pn

(which has no branching points at all) has maximal product edge-Wiener index. Since all

trees except the path graph have at least one branching point, we also see that any n-vertex

tree different from Pn has product edge-Wiener index strictly smaller than πe(Pn). 2

Relation between the πe-index and the edge-Wiener index

Alkanes are chemical compounds that consist only of hydrogen and carbon atoms and

are bonded exclusively by single bonds (i.e., they are saturated compounds) without any

cycles (or loops; i.e., cyclic structure). Alkanes belong to a homologous series of organic

compounds in which the members differ by a constant relative molecular mass of 14. Each

carbon atom has 4 bonds (either C-H or C-C bonds), and each hydrogen atom is joined

to a carbon atom (H-C bonds). The number of carbon atoms is used to define the size

of the alkane. There are many different alkanes. We first focus our attention to normal

alkanes CH3(CH2)n−2CH3 whose molecular graph is the path graph Pn [2], see Figure 2.

Figure 2: The molecular graphs of the normal alkanes (Pn) and of a class of highly

branched alkanes (Rn).

We can show that

We(Pn) =

(
n

3

)
=

(n− 2)(n− 1)n

6
(10)

and by example 4

πe(Pn) =
n−2∏
k=1

k! (11)

If f1(x) and f2(x) are two functions, and if lim
x→∞

f1(x)
f2(x)

= 1, then we say that for x→∞ the

functions f1(x) and f2(x) are asymptotically equal and denoted by f1(x) ∼ f2(x). Suppose

that the parameter n sufficiently large and let us examine the asymptotic behavior of

We(Pn) and ln πe(Pn). From Eq. (10) immediately follows that We(Pn) ∼ n3

6
, i.e.,

n ∼ 3
√

6 We(Pn) (12)
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Series expansion of ln k! at ∞ is equal to

k(ln k − 1) +
1

2
(ln 2π − ln(

1

x
)) +

1

12x
+

1

360x3
+

1

1260x5
+O((

1

x
)11/2).

Therefore ln k! ∼ (k ln k − k) and for the asymptotic behavior of the πe-index, we have

ln πe(Pn) = ln
n−2∏
k=1

k! =
n−2∑
k=1

ln k! ∼
n−2∑
k=1

(k ln k − k) ∼
n∑
k=1

(k ln k − k)

∼
n∫

1

(x lnx− x) dx =
1

2
x2 lnx− 3

4
x2
∣∣∣∣n1 ∼ 1

2
n2 lnn− 3

4
n2.

Finally, we have the following results:

lnπe(Pn) ∼ 1

2
n2 lnn (13)

Substituting Eq. (12) into Eq. (13), we arrive at

ln πe(Pn) ∼ 1
3
√

6
We(Pn)2/3 lnWe(Pn) (14)

The molecular graph Rn (see Figure 2) corresponds to the highly branched alkanes

CH3(CH2)n−2CH3. Since We(Rn) ∼ 3
2
n3, we obtain

n ∼ 3

√
2

3
We(Rn) (15)

Also, πe(Rn) = πe(Pn)9 =

(
ln

n−2∏
k=1

k!

)9

. Now we have

lnπe(Rn) = ln

(
n−2∏
k=1

k!

)9

= 9 ln
n−2∏
k=1

k!

and therefore

ln πe(Rn) ∼ 9

2
n2 lnn (16)

From Eqs. (15) and (16), we obtain

lnπe(Rn) ∼ 3

√
3

2
We(Rn)2/3 lnWe(Rn) (17)

Both Eq. (14) and (17) have the same mathematical form and differ only in the value of

the constant C. Since Pn and Rn are two trees with the minimal and maximal branches

respectively, we conclude that Eq. (18) holds for other homologous series as well (at least

for alkanes).

ln πe = CW
2
3
e lnWe. (18)
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3 Conclusion

The novel topological index (πe) proposed in this work is based on the distances between

two edges of a graph and constructed easily from the edge Wiener type index in particular

case. This index is well related with the edge Wiener index and for alkanes we conclude

that ln πe = CW
2
3
e lnWe for a constant C.
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