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Abstract 

 Let ),(= EVG  be a simple graph. The Hosoya polynomial of G  is  

),(
)(},{=),( vud

GVvu xxGH   , 

where ),( vud  denotes the distance between vertices u  and v . The 

dendrimer nanostar is a part of a new group of macromolecules that seem 

photon funnels just like artificial antennas and also is a great resistant of photo 

bleaching. In this paper we compute the Hosoya polynomial of an infinite 

family of dendrimer nanostar denoted by ][3 nD .      

 

1.  Introduction 

   A simple graph ),(= EVG  is a finite nonempty set )(GV  of objects called vertices 

together with a (possibly empty) set )(GE  of unordered pairs of distinct vertices of G  called 

edges. In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, 

and the edges represent the chemical bonds. 

   The Hosoya polynomial of a graph is a generating function for distance distribution, 

introduced by Hosoya [8] in 1988 and for a connected graph G  is defined as:  

( , )

{ , } ( )

( , ) = d u v

u v V G

H G x x


  

where ),( vud  denotes the distance between vertices u  and v . The Hosoya polynomial has 

many chemical applications [5,6,7]. Especially, the two well-known topological indices, i.e. 

Wiener index and hyper-Wiener index, can be directly obtained from the Hosoya polynomial. 
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  The Wiener index of a connected graph G is denoted by )(GW , is defined as the sum of 

distances between all pairs of vertices in G  (see [9]), i.e.,  

{ , } ( )

( , ) = ( , )
u v V G

W G x d u v


  

  The hyper-Wiener index is denoted by ( )WW G  and defined as follows:  

2

{ , } ( ) { , } ( )

1 1
( ) = ( , ) ( , )

2 2u v V G u v V G

WW G d u v d u v
 

   

  Note that the first derivative of the Hosoya polynomial at 1=x  is equal to the Wiener 

index:  

=1( ) = ( ( , )) |xW G H G x   

Also we have the following relation: 

=1

1
( ) = ( ( , )) |

2
xWW G xH G x   

   Dendrimers are a new class of polymeric materials. They are highly branched, mono-

disperse macromolecules. The structure of these materials has a great impact on their physical 

and chemical properties. As a result of their unique behavior dendrimers are suitable for a 

wide range of biomedical and industrial applications [11]. Recently some people investigated 

the mathematical properties of this nanostructures in [1-4,10,12,14]. 

  Xu and Zhang [13], computed the Hosoya polynomial of )(84 SCTUC  nanotubes. In this 

paper similar to [5] we compute the Hosoya polynomial of another family of dendrimer. 

  In Section 2 we compute the Hosoya polynomial of a graph with inductive structure 

denoted by ][1 nD  which is a branch of an infinite family of dendrimer ][3 nD . In Section 3 we 

use results in Section 2 to compute the Hosoya polynomial of an infinite family of dendrimer 

nanostar ][3 nD . 

 

2.  Hosoya polynomial of 
1
[ ]D n  

  In this section we introduce a graph with inductive structure denoted by ][1 nD  which is 

useful for the study of an infinite family of dendrimer. We need some definitions. 

 We recall that in computer science, a binary tree is a tree data structure in which each 

node has at most two child nodes, usually distinguished as ``left'' and ``right''. Nodes with 

children are parent nodes, and child nodes may contain references to their parents. Outside the 
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tree, there is often a reference to the "root'' node (the ancestor of all nodes), if it exists. Any 

node in the data structure can be reached by starting at root node and repeatedly following 

references to either the left or right child. 

 

Figure  1.  Labeled hexagon. 

   We label every vertex of hexagon with one pendant edge as shown in Figure 1. Suppose 

that ][1 nD  is obtained by replacing this hexagon to every vertex of a complete binary tree 

such that the vertex 0  of a parent connect to vertex 6  of its child (see [3]1D  in Figure 2). Let 

to denote the first hexagon (root) of ][1 nD  by symbol O . We also denote the right child and 

the left child of O  by (1)O  and (2)O , respectively. Let )...( 11 kxxO  be dendrimer which has 

grown 1)( k -stages. As know we shall denote its left and right child by 1)...( 11 kxxO  and 

2)...( 11 kxxO , respectively. Now suppose that ,6}{0,1,, yx . We mean ))...(( 1 ixxOx  a vertex 

x  in hexagon )...( 1 ixxO . We shall compute the distance of two arbitrary vertices ))...(( 1 ixxOx  

and ))...(( 1 jyyOy . We obtain the following theorem which its proof follows from the 

construction of ][1 nD  and left to the reader. Note that in the following theorem we consider 

two vertices which are not in the same hexagon. 

 

Figure  2.  The graph [3]1D . 
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Theorem 1 .    

1.  4;5,6)(,0)(=))...((),(( 1  kydxdxxOyOxd k  

2.  4)5(,6)(,0)(=))......(()),...((( 111  klydxdxxxxOyxxOxd lkkk  

3.  )25(,6)(,6)(=))...(()),...((( 11 rlkydxdyyOyxxOxd lk  , where r  is defined as   

}:{= ii yximinr  .  

Now we try to compute the Hosoya polynomial of ][1 nD . We need the following lemma. 

Lemma 1 .    

1.  The number of vertices of ][1 nD  is 8215  n .  

2.  The number of edges of ][1 nD  is 8216  n .  

3.  The number of hexagons of ][1 nD  is 12 1 n . 

4.  The diameter of ][1 nD  is n10 . 

5.  The radius of ][1 nD  is 55 n . 

Proof. The parts (1), (2), (3) are easy to prove.  

4.  It is obvious that the maximum distances between two vertices of this graph is   

between ,1))...(6( 1 nxxO  and ,1))...(6( 1 nyyO , where 11 yx  . By Theorem 1(iii) we have 

nndyyOxxOd nn 10=2)2)5((2(6,6)=,1)),...(,1),6,...((6 11  . 

5.  Note that the radius of a graph G  is )}(|),({=)( GVyyxdmaxminGr yx  . This 

minimum occur when )6(= Ox  and the maximum of ])}[(|)),(6({ 1 nDVyyOd   by Theorem 

1(i) occur while ,1))...(6= 1 nyyOy . So, the radius of ][1 nD  is 55 n . ▄   

 

  Now we shall compute the coefficient of ),( vudx  in ),(

,1 =))],[( vud

vu
xxnDH  .   We need 

the following lemma which its proof can be obtain directly by considering of all the 

possibilities. 

  

Lemma 2 .  Let x  and y  be two vertices of a hexagon of ][1 nD  with position shown in 

Figure 1. We have the following table: 
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Case  

 Equation   The number 

of solutions  

1
 

4=,6)(,0)( ydxd   13 

2

 
5=,6)(,6)( ydxd   10  

3

 

5=,6)(,0)( ydxd   9 

4

 
1=,6)(,6)( ydxd   2  

5

 

6=,6)(,6)( ydxd   8  

6

 

1=,6)(,0)( ydxd   3  

7

 

6=,6)(,0)( ydxd   6  

8

 

2=,6)(,6)( ydxd   5  

9

 

7=,6)(,6)( ydxd   4  

10

 

2=,6)(,0)( ydxd   6  

11
 

7=,6)(,6)( ydxd   3  

12

 
3=,6)(,6)( ydxd   8  

13

 

8=,6)(,6)( ydxd   1  

14

 
3=,6)(,0)( ydxd   9  

15

 

8=,6)(,0)( ydxd   1  

16

 

4=,6)(,6)( ydxd   10   

 

The following theorem gives the coefficient of ix  of )],[( 1 xnDH   for 40  i . Our 

method in the following theorem lead us to follow an approach for computing of the 
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coefficient ix  of )],[( 1 xnDH   for 5i  in Theorem 3. 

Theorem 2 .   

1.  The constant coefficient of )],[( 1 xnDH   is 8215  n . 

2.  The coefficient of x  in )],[( 1 xnDH   is 82 4 n . 

3.  The coefficient of 2x  in )],[( 1 xnDH   is 12222  n .    

4.  The coefficient of 3x  in )],[( 1 xnDH   is 15222  n  

5.  The coefficient of 4x  in )],[( 1 xnDH   is 18220  n . 

 

 Proof.   

1.  The constant coefficient of )],[( 1 xnDH   is exactly the number of its vertices. Therefore 

we have the result by Lemma 1(i). 

2.  The coefficient of x  in )],[( 1 xnDH   is the number of its edges which is 82 4 n . So we 

have the result by Lemma 1(ii). 

3.  To obtain the coefficient of 2x , we compute the number of pair of vertices which have 

distance two. Note that these two vertices can be in the same hexagon, which there are eight 

pairs of vertices with this property. Also they may are in different hexagons, one of them in 

the parent's hexagon and another one in the child's hexagon. We have four pairs of this kind of 

vertices. For the hexagon in level n  of ][1 nD  we have two vertices which have distance two 

with the last vertices of ][1 nD . Since the number of hexagons is 12 1 n  and the number of 

parent's and child's hexagon is 12=2...21 1   nn , we have 

12222=221)4(21)6(2= 1
2  nnnna . 

  Similarly we can compute the values of 3a  and 4a . ▄  

 

  The following theorem gives the coefficients of lx  in )],[( 1 xnDH   for 5l . We put 

,0}{=* xMaxx , and use the following notations:  

 *=0
= (2 2 1)

n

r
A n t r    

*0=
2)2(2=  rtnB

n

r
 

ntC 2...2=  , ntD 2...2= 1   
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Theorem 3 .  Suppose that the Hosoya polynomial of ][1 nD  is 

i
i

n

i

vud

Vvu
xaxxnDH  


10

0=

),(

,1 ==)],[( . For every 5i , we have 

 
























.5)(4;9

5)(3;638

5)(2;3645

5)(1;982

,5)(0;1310

=

modiifDCA

modiifDCBA

modiifDCBA

modiifCDBA

modiifCBA

ai  

  

   Proof. We prove the theorem for case )50( modi  . Another cases prove with similar 

approach. Let ti 5= , for some Nt . Therefore we have to consider three cases of Theorem 1. 

By Theorem 1 (i), there are yx,  and k  such that tkydxd 5=45,6)(,0)(  . So tk =  and 

4=,6)(,0)( ydxd  . By Lemma 2(i) the number of solutions is 13. The number of pairs which 

satisfy Parts (i) and (ii) of Theorem 1 is )2...13(2=13 ntC  . Now we shall compute the 

number of pairs which their distance is t5  and satisfy in Theorem 1(iii). We have 

.5=)25(,6)(,6)( trlkydxd   We have two cases as follows: 

Case 1:  









.;=2

0,=,6)(,6)(

nlrandnkrwheretrlk

ydxd
 

Case 2:  









.1;=2

5,=,6)(,6)(

nlrandnkrwheretrlk

ydxd
 

  There exists one pair 6== yx  in Case 1 and we shall obtain the number of solutions of 

trlk =2 , where nkr   and nlr  . This equation is equivalent to tlk = , where 

rnk 0  and rnl 0 . This equation has 122=)2(1)(  rtnrntt  solutions 

by Inclusion-Exclusion principle. Since r  can choose every element between 0  and n , the 

number of possible cases is *0=
1)2(2  rtn

n

r
. 

  There exists 10 pair yx,  in Case 2 and we shall obtain the number of solutions of 

1=2  trlk , where nkr   and nlr  . This equation is equivalent to 1=  tlk , 

where rnk 0  and rnl 0 . This equation has 222=1)2(  rtnrntt  

solutions by Inclusion-Exclusion principle. Since r  can choose every element between 0  and 
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n , the number of possible cases is *0=
2)2(210  rtn

n

r
. By considering all cases we have 

.1310=5 CBAa t   ▄  

 

3  Hosoya polynomial of dendrimer 
3
[ ]D n  

In this section we use our results in Section 2 to compute the Hosoya polynomial of a 

dendrimer nanostar. We consider the first kind of dendrimer which has grown n  steps 

denoted ][3 nD . The dendrimer [3]3D  is depicted in Figure 3. Note that there are two edges 

between each two hexagons in this dendrimer. 

 

 

 

Figure 3.  The first kind of dendrimer of generation 1-3 has grown 3 stages  

  First we construct ][3 nD  from ][1 nD . Consider three copies of ][1 nD  with roots PO,  

and Q . The dendrimer ][3 nD  is obtained by identifying the vertex 6 of one copy of ][1 nD  

with two vertices 6  of two another copy of ][1 nD . 

  We have the following theorem: 

Theorem 4 .   

1.  The number of vertices of ][3 nD  is 26245  n  (see [1])  

2.  The number of edges of ][3 nD  is 24248  n . 

3.  The number of hexagons of ][3 nD  is 1)3(2 1 n . 

4.  The diameter of ][3 nD  is 1010 n . 

5.  The radius of ][3 nD  is 55 n .  

-402-



 
 

Proof.   

1.  Since ][3 nD  is obtained by identifying vertex 6  of three copy of ][1 nD , we have 

2|])[(|3|=])[(| 13  nDVnDV . So we have the result by Lemma 1(i). 

2.  Obviously |])[(|3|=])[(| 13 nDEnDE  , so we have the result by Lemma 1(ii). 

3.  It is obvious that the number of hexagons in ][3 nD  is 3 times of the number of 

hexagons of ][1 nD . Therefore, we have the result by Lemma 1(iii). 

4.  The maximum distances between two vertices of this graph is between ,1))...(6( 1 nxxO  

and ,1)...(6 1 nxxP . By Theorem 1 we have  

1010=1)52(4=,1)),...,(,6(62=,1)),...(,1),6,...((6 111  nnxxOOdxxPxxOd nnn . 

5.  In this case we have Ox 6=  and therefore 55=])[( 3 nnDr .▄  

 

Here we compute the Hosoya polynomial of ][3 nD . For this purpose let i
ii
xgxg =)( , 

where ig  is the number of vertices which have distance i  from )6(O  in ][1 nD . 

  

Remark 1. Obviously the degree of )(xg  is finite, but simply we suppose that its degree 

is infinite and we consider )(xg  as a series in the rest of paper. 

We state and prove the following lemma which is about )(xg : 

 Lemma 3 . .
21

221
=)(

5

5432

x

xxxxx
xg




   

Proof. Clearly we have 1=0g , 2=== 321 ggg  and 0=4g . By Theorem 1 we have 

)(6,5=)),...,(),(6( 1 ydkxxyOOd k  . Suppose that )(6,5= ydki   5)( i . We have the 

following cases 

(i) ki 5= . In this case tk = , 6=y . 

(ii) 15= ki . In this case tk = , 3=y . 

(iii) 25= ki . In this case tk = , {2,4}y . 

(iv) 35= ki . In this case tk = , {1,5}y . 

(v) 45= ki . In this case tk = , 0=y . 

If ti 5= , then the number of possibilities of y  is 12 t . For other cases, i.e., rti 5= , 

41  r , the number of possibilities of y  is t2 . Therefore  
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...)2222(12

)2222(12221=)(

4322210

432225432





xxxxx

xxxxxxxxxxg
 

  If 43222 221=)( xxxxxl  , then  ...1))((221))((2)(=)( 105  xlxxlxxlxg  

...))(2)(2(2
2

1)(2
)(= 35255 


 xxx

xl
xl .

21

221
=

21

)(
=

5

5432

5

5

x

xxxxx

x

xxl









▄ 

Now we are ready to state and prove the main theorem of this paper. Observe that the 

statement in the following theorem is a polynomial, because we need to consider the 

coefficients ix  of )(xg  just for ni 100  . 

  

Theorem 5 .  2
13 ))(3()],[(3=)],[( xgxnDHxnDH  , where 

.
21

221
=)(

5

5432

x

xxxxx
xg




   

Proof. Let i
i

n

i
xbxnDH 

1010

0=3 =)],[(  and i
i

n

i
xaxnDH 

10

0=1 =)],[( . By definition of Hosoya 

polynomial ib  is the number of pairs of vertices with distance i  in ][3 nD . This pair can be in 

the one of the ][1 nD . Since in every ][1 nD  the number of these kind of pairs is ia , we have 

ia3  pairs of vertices with distance i  in one of the ][1 nD . Now we consider two vertices x  and 

y  such there are in different ][1 nD . If jxd =,6)(  and lyd =,6)( , then ilj = . The number of 

these kind of vertices is the coefficient of ix  in 2))(( xg . Since we are able to choose two 

vertices yx,  in three ways from different ][1 nD , the number of these kind of vertices is the 

coefficient of ix  in 2))(3( xg . Therefore 2
13 ))(3()],[(3=)],[( xgxnDHxnDH  .▄   

  

Remark 2.   Since 1=|)),((=)( xxGHGW  , and ,|)),((
2

1
=)( 1=xxGxHGWW  , we are able to 

obtain the Wiener index and hyper Wiener index of dendrimer ][3 nD  easily by Theorem 5 

and it left to the reader. 

 

Acknowledgement: The second author wishes to thank the Yazd Science and Technology Park 
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