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Abstract 

Let G  be a simple graph. The Harary index of G  is defined as  

{ , } ( )

1
( ) =

( , )u v V G

H G
d u v

  

where ),( vud  denotes the distance between disjoint vertices u  and v . The dendrimer 

nanostar is a part of a new group of macromolecules that seem photon funnels just like 

artificial antennas and also is a great resistant of photo bleaching. In this paper we compute 

the Harary index for an infinite family of dendrimer nanostar.  

 

1  Introduction 

   A simple graph ),(= EVG  is a finite nonempty set )(GV  of objects called vertices 

together with a (possibly empty) set )(GE  of unordered pairs of distinct vertices of G  called 

edges. In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, 

and the edges represent the chemical bonds. 

  In theoretical chemistry molecular structure descriptors (also called topological 

indices) are used for modeling physico-chemical, pharmacologic, toxicologic, biological and 

other properties of chemical compounds [16, 17]. There exist several types of such indices, 

especially those based on graph theoretical distances. In 1993 Plavsic et al. in [15] and 

Ivanciuc et al. in [11] independently introduced a new topological index, which was named 

Harary index in honor of Frank Harary on the occasion of his 70 th birthday. This topological 

index is derived from the reciprocal distance matrix and has a number of interesting chemical-
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physics properties [12]. The Harary index and its related molecular descriptors have shown 

some success in structure-property correlations [3–5, 8]. 

  The Harary index is defined as the half-sum of the elements in the reciprocal distance 

matrix (also called the Harary matrix [18]),  

 
{ , } ( )

1
( ) =

( , )u v V G

H G
d u v

  

where ),( vud  denotes the distance between disjoint vertices u  and v  and the sum goes over 

all the pairs of vertices. 

  The Wiener index of a connected graph G is denoted by )(GW  and defined as the 

sum of distances between all pairs of vertices in G  ([9]), i.e.,  

 
{ , } ( )

( , ) = ( , ) .
u v V G

W G x d u v


  

  Dendrimers are a new class of polymeric materials. They are highly branched, mono-

disperse macromolecules. The structure of these materials has a great impact on their physical 

and chemical properties. As a result of their unique behavior dendrimers are suitable for a 

wide range of biomedical and industrial applications [13]. Recently some people investigated 

the mathematical properties of this nanostructures in  [1, 2, 6, 7, 10, 14, 18]. 

  In this paper, we compute Harary index of an infinite family of nanostar dendrimer. 

In Section 2 we compute the Harary index of a graph with inductive structure denoted by 

][1 nSN   which is a branch of an infinite family of dendrimer ][2 nNS . In Section 3 we use 

results in Section 2 to compute the Harary index of an infinite family of dendrimer nanostar 

][2 nNS . 

  As usual we denote diameter and radius of a graph G  by )(Gdiam  and )(Gr , 

respectively. 

 

2  Harary index of ][2 nSN   

  In this section we introduce a graph with inductive structure denoted by ][2 nSN   

which is useful for the study of an infinite family of dendrimer. We need some definitions. 

Figure 1 show [3]2SN  .  
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Figure 1.  [3]2SN   and labeled hexagon, respectively. 

  

  We recall that in computer science, a binary tree is a tree data structure in which each 

node has at most two child nodes, usually distinguished as ``left'' and ``right''. Nodes with 

children are parent nodes, and child nodes may contain references to their parents. Outside the 

tree, there is often a reference to the ``root'' node (the ancestor of all nodes), if it exists. Any 

node in the data structure can be reached by starting at root node and repeatedly following 

references to either the left or right child. 

  We label every vertices of hexagon with pendant path as shown in Figure 1. Let to 

denote the first hexagon (root) of ][2 nSN   by symbol O . We also denote the right child and 

the left child of O  by (1)O  and (2)O , respectively. Let )...( 11 kxxO  be dendrimer which has 

grown until 1)( k -th stage. As know we shall denote its left and right child by 1)...( 11 kxxO  

and 2)...( 11 kxxO , respectively. Now suppose that ,7}{0,1,, yx . We mean ))...(( 1 ixxOx  a 

vertex x  in hexagon )...( 1 ixxO . We shall compute the distance of two arbitrary vertices 

))...((
1 i

xxOx  and ))...(( 1 jyyOy . We obtain the following theorem which its proof follows 

from the construction of ][2 nNS  and left to reader. 

  

Theorem 1 .  The distance of two arbitrary vertices ))...(( 1 ixxOx  and ))...(( 1 jyyOy  obtain as 

follows:   
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    1.  45,7)(,0)(=))...((),(( 1  jydxdyyOyOxd j  

 

    2.  4)5(,7)(,1)(=))......(()),...((( 111  kjydxdxxxxOyxxOxd jkkk , where 1=1kx  

and 

4)5(,7)(,5)(=))......(()),...((( 111  kjydxdxxxxOyxxOxd jkkk , where 2=1kx . 

 

    3.  4)25(,7)(,7)(=))...(()),...((( 11  rjkydxdyyOyxxOxd jk , where r  is defined as 

}:{= ii yximinr  .  

   

  Now we try to compute the Harary index of ][2 nSN  . Let to consider the following 

polynomial as Harary polynomial which its value at 1=x  give us Harary index of a graph.  

 ( , )

{ , } ( )

1
( , ) = .

( , )

d u v

u v V G

H G x x
d u v

  

  The following theorem gives the coefficient of 
ix  of )],[(

2
xnSNH   for 41  i . 

Our method in the following theorem lead us to follow an approach for computing of the 

coefficient 
ix  of )],[(

2
xnSNH   for 5i  in Theorem 4. 

  

Theorem 2 .  

    1.  The coefficient of x  in )],[( 2 xnSNH   is 329  n . 

    2.  The coefficient of 
2x  in )],[( 2 xnSNH   is 323 1  n . 

    3.  The coefficient of 
3x  in )],[( 2 xnSNH   is 32 2 n . 

    4.  The coefficient of 
4x  in )],[( 2 xnSNH   is 

4

13223 1  n

. 

   Proof.  

    1.  The coefficient of x  in )],[( 2 xnSNH   is the number of edges of ][2 nSN  . It is 

easy to see that the number of its edges is 329  n . 

    2.  To compute the coefficient of 2x , we compute the number of pair of vertices 

which have distance 2 and are in different hexagons. So we have to consider two cases of Part 

(i) of Theorem 1, that is 2=45,7)(,0)(  jydxd  . In this case 1=j . Then 
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{0,1}=,7)}(,0),({ ydxd  . Obviously 7=y  is one of the answer. For this case there are two 

cases (1,7)  and (5,7) . Also if 1=,7)(yd , then 6=y  and 0=x  . Therefore we have three 

solutions (2)))),7((1((1)),),6((0( OOOO  and (1)))),7((5( OO  . 

Now by considering the Part (ii) of the Theorem 1 all of the pair of the vertices of 

distance 2 are in form: 

2)))...()),5(...((4(2))),...()),7(...((0(

2))),...()),6(...((5(1))),...()),7(...((0(

1))),...()),7(...((2(1))),...()),6(...((1(

1111

1111

1111

kkkk

kkkk

kkkk

xxOxxOxxOxxO

xxOxxOxxOxxO

xxOxxOxxOxxO

 1)(1  nk .  

Therefore the number of solutions are 1)6(2 1 n . In other hand there are 6 pairs of 

vertices of distance 2 in first hexagon and 9 pairs of vertices of distance 2 in other hexagon, so 

the coefficient of 2x  is  

323=
2

91)9(21)6(2
=6))2...29(11)6(2(3

2

1 1
1

11 


 


 n
nn

nn . 

 

    3.  The proof of part (iii) and (iv) are similar to proof of part(ii).   

 

Theorem 3 .   

    1.  9=[1])( 2SNdiam   and for every 2n , 610=])[( 2  nnSNdiam . 

    2.  5=[1])( 2SNr  , 8=[2])( 2SNr   and for every 3n , 35=])[( 2  nnSNr . 

    

  Proof.   

    1.  When 1=n  , the most distances between two vertices is 9=(1)))),0((3( OOd  . 

When 2n  ,it is obvious that the most distances between two vertices of this graph is 

between )...( 1 nxxOx  and )...( 1 nyyOy , where 22 yx   and 0== yx . By Theorem 1(iii) 

we have 610=44)5(2(0,7)2=))),...()),0(,...((0( 11  nndyyOxxOd nn . 

    2.  Note that the radius of a graph G  is )}(|),({=)( GVyyxdmaxminGr yx   . 

When 1=n  ,this minimum occur when (1)7= Ox   and (1)0= Oy   or (1)6= Ox   

and Oy 3= , therefore in the both cases we have 5=)(Gr  . 

when 2=n , this minimum occur when 1=x  or (1)5 O  and Oy 3= , therefore we 

have 8=)(Gr . 
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When 3n , this minimum occur when (1)0= Ox   and the maximum of 

35=])}[()|(0,{ 1  nnSNVyyd  and this occur when )...(7= 1 nxxOy  , by Theorem 1(ii).    

  Now we shall compute the coefficient of lx  in lx
l

xnSNH 
1

=))],[( 1 , where 5l . 

  We need to the following lemma which its proof can be obtain directly by 

considering all the possibilities. 

  

Lemma 1 . Let x  and y  be vertices of hexagons of ][2 nSN   with position shown in Figure 0. 

Then we have the following table:  

    

 Case   Equation   The number of solutions  

  1  4=,7)(,0)( ydxd   9  

2  4=,7)(,1)( ydxd   11  

3  4=,7)(,5)( ydxd   11  

4  1=,7)(,7)( ydxd   2  

5  6=,7)(,7)( ydxd   7  

6  5=,7)(,0)( ydxd   10  

7  5=,7)(,1)( ydxd   12  

8  5=,7)(,5)( ydxd   12  

9  2=,7)(,7)( ydxd   3  

10  7=,7)(,7)( ydxd   10  

11  6=,7)(,0)( ydxd   8  

12  6=,7)(,1)( ydxd   11  

13  3=,7)(,7)( ydxd   6  

14  8=,7)(,7)( ydxd   8  

15  7=,7)(,0)( ydxd   4  

16  7=,7)(,1)( ydxd   8  

17  7=,7)(,5)( ydxd   8  

18  4=,7)(,7)( ydxd   9  
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19  9=,7)(,7)( ydxd   6  

20  8=,7)(,0)( ydxd   1  

21  8=,7)(,1)( ydxd   4  

22  8=,7)(,5)( ydxd   4  

23  5=,7)(,7)( ydxd   10  

24  10=,7)(,7)( ydxd   1   

   

  Here we state the main theorem of this paper which gives the coefficients of lx  in 

)],[( 2 xnSNH   for 5l . First we use the following notations:  

 12= qA , nqqB 222= 1    , 

2)2(2=
2=

 rqnC
n

r
, 

3)2(2=
2=

 rqnD
n

r
.  

  

Theorem 4 .  Suppose that the Harary polynomial of ][2 nSN   is 

l

l

n

l

vud

Vvu
xa

vud
x

vud
xnSNH 






610

1=

),(

,2
),(

1
=

),(

1
=)],[( . Then for every 5l , we have 

 

 
























.5)(4;104

,5)(3;4984

,5)(2;86118

,5)(1;1031210

,5)(0;72119

=

modlifDCBA

modlifDCBA

modlifDCBA

modlifDCBA

modlifDCBA

al  

 

Proof. We prove the theorem for case )50( modl  . Another cases prove similarly. Let 

ql 5= , for some Nq . Therefore we have qjydxd 5=45,7)(,0)(   and so 

4=,7)(,0)( ydxd  . By Lemma 1 , there are 9 cases. By solving of the equation of Theorem 

1 (i) we will have jq = , and by Part (ii) of this theorem the number of all possibilities cases 

is  

 .119=)2(21129 1 BAnqq     

  Now by considering the part (iii) of Theorem 1, we have to find the number of solution of 
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qrjiydxd 5=4)25(,7)(,7)(  . we have two cases. 

Case 1: When 1=,7)(,7)( ydxd   this equation has solution, and this occur for 2 different 

cases by Lemma 1. With substituting in equation we have 12=  rqji , where 

njir  , . This equation is equivalent to 1=  qji , ),(0 rnji   .This equation 

has 222=1)2(  qrnrnqq  solutions by Inclusion-Exclusion principle.since r  

can choose every element between 2  and n  ,the number of possible cases is: 

 
=2

= (2 2 2) .
n

r

C n r q    

  Since there are 2 pair yx,  for this part, we have C2  of possible cases. 

Case 2: When 6=,7)(,7)( ydxd   this equation has solution, and this occur for 7 different 

cases by Lemma 1. With substituting in equation we have 22=  rqji , where 

njir  , . This equation is equivalent to 2=  qji , ),(0 rnji   .This equation has 

322=2)2(1)(  qrnrnqq  solutions by Inclusion-Exclusion principle.since r  

can choose every element between 2  and n  ,the number of possible cases is: 

 
=2

= (2 2 3) .
n

r

D n r q    

  Since there are 7 pair yx,  for this part, we have D7  of possible cases, and proof is 

complete.  

  

  We obtained the following result: 

  

Corollary 1 .  The Harary index of ][2 nSN   is 1=22 )],[(=])[( xxnSNHnSNH   and 

l

l

n

l

nnnn xa
l

xxxxxnSNH 
 

610

5=

413221

2

1
13)2(23

4

1
3)(23)2(33)2(9=)],[(

, where la  is obtained in Theorem 4. 

  

3  Harary index of dendrimer ][2 nNS  

  In this section we use our results in Section 2 to compute the Harary polynomial of a 

dendrimer nanostar. We consider the first kind of dendrimer which has grown n steps denoted 

][2 nNS . Figure 2 show [3]2NS . 
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Figure  2.  The first kind of dendrimer of generation 1-3 has grown 3 stages 

  

  It is easy to see that we are able to construct ][2 nNS  from two copies of ][2 nSN  . 

  

Theorem 5 .   

    1.  910=])[( 2 nnNSdiam . 

    2.  1)5(=])[( 2 nnNSr . 

Proof.   

    1.  The most distances between two vertices of this graph is ,1)),...,(0( 11 nxxO  and 

,1)),...,(0( 11 nxxP  . 

By Theorem1(i) we have ,1))),...(,1)),0(,...((0( 1111  nn xxPxxOd  

910=14)5(0,7)(3,0)2(=1,1))),...,(),0((3(2= 11  nnddxxOOd n . 

    2.  Note that the radius of a graph G  is )}(|),({=)( GVyyxdmaxminGr yx   . 

This minimum occur when Ox 3=  and ),...,(0= 1 nxxPy   , therefore by Theorem 

1(i)  we have  

1)5(=145(0,7)(3,0)

=1))),...,(0()(3(=))),...,(),0((3(=])[( 112





nndd

xxOOdxxpOdnNSr nn
.    

 

  Here we compute the Harary polynomial of ][2 nNS  . For this purpose let 
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i

ii
xgxg =)( , where ig  is the number of vertices which have distance i from )3(O  in 

][1 nSN  .  

 

Remark 1: Obviously the degree of )(xg  is finite, but simply we suppose that its degree is 

infinite and we consider )(xg  as a series in the rest of paper.  

We state and prove the following lemma which is about )(xg : 

Lemma 2 .  
5

9765432

21

23221
=)(

x

xxxxxxxx
xg




   

Proof. Clearly we have 1=0g , 2== 21 gg  and 1== 43 gg . By Theorem 1 we have 

15,7)(=45,7)((3,0)=))),...,((),(3( 1  kydkyddxxOyOd k  .  

Suppose that 15,7)(=  kydi  , 5i  . We have the following cases: 

    1.  ki 5=  . In this case tk =  , 6=y . 

    2.  15= ki  . In this case tk =  , 3=y . 

    3.  25= ki  . In this case tk =  , {2,4}y . 

    4.  35= ki  . In this case tk =  , {1,5}y . 

    5.  45= ki  . In this case tk =  , ,2))},...,(,1)),7(,...,({0,7( 11 tt xxOxxOy . 

  If ti 5=  or 15= ti  , then the number of possibilities of y  is 12 t , 

If 25= ti  or 35= ti  , then the number of possibilities of y  is t2  and 

If 45= ti  , then the number of possibilities of y  is )3(2 1t . Therefore 

...)322(12)322(1221=)( 432104325432  xxxxxxxxxxxxxxxg

 

We put 432 3221=)( xxxxxl   . So we have  

 ...))((2))((2))(()2)((=)( 15210543  xlxxlxxlxxxxxlxg  

...))(2)(2(2
2

)(
2)(= 3525543  xxx

xl
xxxxl  

)
21

2
(

2

)(
2)(=

5

5
43

x

xxl
xxxxl


  

5

9765432

21

23221
=

x

xxxxxxxx




    
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  Now we are ready to state and prove the main theorem of this paper. Observe that the 

statement in the following theorem is a polynomial, because we need to consider the 

coefficients ix  of )(xg  just for 6100  ni . 

  

Theorem 6 . Let l

l

n

l
xb

l
xnNSH 

910

1=2

1
=)],[(  and l

l

n

l
xa

l
xnSNH 




610

1=1

1
=)],[( . Then we have 

)))(()],[((2
1

=)],[( 2

12 xgxnSNlH
l

xnNSH   , where  

5

9765432

21

23221
=)(

x

xxxxxxxx
xg




. 

 Proof. By definition of Harary polynomial lb  is the number of pairs of vertices with distance 

l  in ][2 nNS . This pair can be in the one of the ][1 nSN  . Since in every ][1 nSN   the number of 

these kind of pairs is la  , we have la2  pairs of vertices with distance l  in one of the ][1 nSN  . 

Now we consider two vertices x  and y  such there are in different ][1 nSN  . If jOxd =)),3((  

and iOyd =)),3(( , then lij = . The number of these kind of vertices is the coefficient of 

lx  in 2))(( xg  . Therefore )))(()],[((2
1

=)],[( 2

12 xgxnSNlH
l

xnNSH  .   

Corollary 2 .  The Harary index of ][2 nNS  is 1=22 )],[(=])[( xxnNSHnNSH .  
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