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Abstract 

The Harary index of a simple connected graph G, H(G), is defined as the summation of d(u,v|G)-1 over 

non-ordered pairs of vertices, where d(u,v|G) denotes the distance between vertices u and v of G. In 

this paper, we suggest a method for computing the Harary index of the Cartesian product of graphs. 

Then as our main purpose of this paper, we apply this result to compute the Harary index of some 

molecular graphs related to polyomino structures and nanostructures. 

1 Introduction 

Throughout the paper, all of graphs are considered to be simple and connected. A simple 

graph is an undirected graph without any loops or multiple edges. Let G  be a graph with the 

vertex set )(GV  and the edge set )(GE . The distance between the vertices u  and v  of G  is 

denoted by ),( Gvud  and defined as the number of edges in a shortest path connecting them. 

The diameter of G  is the maximum of distance among all pairs of vertices of G  and denoted 

by )(Gdiam . Also, we use S  to denote the cardinality of a set S  and we denote by )(][ qfqi , 

the coefficient of iq  in a polynomial )(qf . 

A chemical graph or a molecular graph is a graph related to the structure of a chemical 

compound. Each vertex of this graph represented an atom of the molecule and covalent bonds 

between atoms are represented by edges between the corresponding vertices. In theoretical 

chemistry, the physico-chemical properties of chemical compounds are often modeled by the 

molecular graph based molecular structure descriptors, which are also referred to as 

topological indices [1]. Among the variety of those indices, which are designed to capture the 
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different aspects of molecular structure, Wiener index is the best known one. Wiener index is 

the first reported distance-based topological index which was introduced by the Chemist, 

Harold Wiener, in 1947 [2,3]. Wiener used his index, for the calculation of the boiling points 

of alkanes. From graph-theoretical point of view, Wiener index of G  is defined as 
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In [4], the Wiener polynomial of G , was introduced. If q is a 

parameter, the Wiener polynomial of G  is denoted by );( qGW and defined as 
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),();( , where ),( iGd  is the number of all 

pairs of vertices of G , which are at distance i. It is clear that, the first derivative of the 

Wiener polynomial of G  in 1=q , is equal to the Wiener index of G , i.e.,  )()1;( GWGW =′ .  

Harary index was introduced in 1993, by Plavšić et al. in honor of Professor Frank Harary, 

due to his influence in development of graph theory and especially to its application in 

Chemistry. Harary index of G  is denoted by )(GH  and defined as follows [5]:  
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For more details on the Harary index and its applications in Chemistry see [6-8]. Now, 

let us recall the definition of the Cartesian product of graphs. Let 1G  and 2G  be two graphs 

with the set of vertices )( 1GV  and )( 2GV  and the set of edges )( 1GE  and )( 2GE , respectively . 

The Cartesian product of 1G  and 2G  denoted by 21 GG × , is a graph with the vertex set 

)()( 21 GVGV ×  and two vertices ),( 21 uu  and ),( 21 vv  of 21 GG × , are adjacent if and only if 

)]([ 22211 GEvuandvu ∈=  or )]([ 11122 GEvuandvu ∈= .  

According to the proof of Theorem 1 in [9], the distance between the vertices ),( 21 uu  and 

),( 21 vv  of 21 GG × , is equal to ),(),()),(),,(( 222111212121 GvudGvudGGvvuud +=× .  

Therefore, )()()( 2121 GdiamGdiamGGdiam +=× .  

The Harary index of some graph operations containing join, composition, disjunction and 

symmetric difference have been computed previously [10]. But the Harary index of the 

Cartesian product of graphs has not been considered yet. In this paper, we suggest a method 

for computing the Harary index of the Cartesian product of graphs. Then as our main purpose 

of this paper, we apply our results to compute the Harary index of some molecular graphs 

related to polyomino chains and some nanotubes and nanotori. .The interested readers for 

-374-



 

    

more information on computing topological indices of graph operations can be referred to [11-

13].  

2 Discussion and results 

In this section, we present a method to find the Harary index of the Cartesian product of 

graphs.  

Theorem 2.1. Let 1G  and 2G be two graphs with the set of vertices )( 1GV  and )( 2GV , 

respectively. Then );()();()();();(2);( 21122121 qGWGVqGWGVqGWqGWqGGW ++=× . 

Proof. See Proposition 1.4 in [4]. □ 

Lemma 2.2.  Let nP  and nC  be the n-vertex path and cycle, respectively. We have: 

(i) 12 ...)2()1();( −++−+−= n

n qqnqnqPW ; 

(ii) nn

n nqqqqnqCW ++++= − )...(2);( 12

2 ; 

(iii) )...)(12();( 2

12

n

n qqqnqCW ++++=+ . 

Proof. See Theorem 1.2 in [4].□ 

By definition of the Wiener polynomial, it is clear that ),( iGd  is the coefficient of iq  

in );( qGW . So the Harary index of G  can also be defined in terms of ),( iGd , as follows: 

Definition 2.3.  The Harary index of G  is defined as follows: 
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From now on, for any positive integern , let ∑
=

=
n

i
n

i1

1
ϕ .  

Lemma 2.4. We have the following specific Harary indices. 

(i) nnPH nn −= ϕ)( ; 

(ii) 12)( 2 −= nn nCH ϕ ; 

(iii) nn nCH ϕ)12()( 12 +=+ . 

Proof. By Lemma 2.2 and definition 2.3, the proof is obvious.□ 

Lemma 2.5. Let 1G  and 2G  be two graphs with the set of vertices )( 1GV  and )( 2GV , 

respectively. Then ),()(),()());();(2]([),( 21122121 iGdGViGdGVqGWqGWqiGGd i ++=× . 

-375-



 

    

 

Proof. By Theorem 2.1, we have: 

=++=×=× ));()();()();();(2]([);(][),( 2112212121 qGWGVqGWGVqGWqGWqqGGWqiGGd ii

=++ ));(]([)());(]([)());();(2]([ 211221 qGWqGVqGWqGVqGWqGWq iii

),()(),()());();(2]([ 211221 iGdGViGdGVqGWqGWqi ++ .     □  

Theorem 2.6. Let 1G  and 2G  be two graphs. Then 
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Proof. By definition 2.3 and the previous Lemma, we have:   
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Since for every )( 1Gdiami > , 0),( 1 =iGd  and similarly for every )( 2Gdiami > , 0),( 2 =iGd , 

we have:  
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3 Main results 

In this section, we use Theorem 2.6 to find the Harary index of linear polyomino chain, −4C

nanotubes and −4C nanotori. 

Harary index of linear polyomino chain 

In Figure 1, you can see the graph nm PP × .  
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Figure 1. The graph nm PP × . 

In the following Theorem, we find the Harary index of nm PP × .  

Theorem 3.1.  Let nm PPG ×= . Then 

+−+−−+−−−−−−−+= mn nmm
m

nmn
n

nmmnnmmnGH ϕϕ )13(
3

)13(
3

)1)1()1()(2(
3

1
)( 22222

2

2 )1)((
3

−+−+
+

nmmn
mn

ϕ . 

Proof. Without lost of generality, let mn ≤  and ));();(]([ qPWqPWq nm

i

i =α . By Theorem 

2.6, we should find iα  for 2)()(1 −+=+≤≤ nmPdiamPdiami nm . So we have: 

(i) If  ni ≤≤1 , then nmi
mnnm

i
nmi

ijnjm
i

j
i −

−++
+

+
−=−+−=∑

−

= 6

1336

26
)()( 2

31

1

α ; 

(ii) If min ≤≤+1 , then 
6

)13)(1(

2

)1(
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1

1

++−
+

−
−=−+−=∑

−

=

mnnn
i

nn
ijmjn
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j
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(iii) If 21 −+≤≤+ nmim , then  
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i
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i

nmi
jinmj
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+−+
+
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+
+−=−−+= ∑

+−+

=

α  

Now, by Lemma 2.4 and Theorem 2.6, the proof is straightforward.□ 

Note that, the graph 12 +× nPP  made by n  squares is called ladder graph with 22 +n

vertices and denoted by nL (see figure 2). Also, this graph is the molecular graph related to 

the polyomino structures and called the linear polyomino chain. 
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Figure 2. Linear polyomino chain nL . 

Corollary 3.2.  Harary index of the linear polyomino chain nL  is as follows: 

).1(5)64()( 1 +−+= + nnLH nn ϕ  

Proof. Using the previous Theorem, the proof is obvious.□ 

Harary index of −4C nanotubes 

Let nm CPG ×= , then ),(4 mnTUCG =  is a −4C nanotube (see figure 3) [14].  

 
Figure 3. A 4C -nanotube. 

In the following Theorem, we find the Harary index of −4C nanotubes. 

Theorem 3.3.  Let ),12(412 mnTUCCPG nm +=×= + , then  

+−+++−+−+= mn mmnnmnnmnnGH ϕϕ 22 )2(1)(12()( ))1)(( 1−++++ nmmnmn ϕ . 

Proof. Let ));();(]([ 12 qCWqPWq nm

i

i +=α . According to the Theorem 2.6, we should find  iα  

for 1)()(1 12 −+=+≤≤ + nmCdiamPdiami nm . So we consider two following cases: 

Case I: Let mn ≤ . 
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Case II: Let nm ≤ . 

(i) If mi ≤≤1 , then )12(
2

)12)(12(

2

12
)()12( 2

1

1
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Now, by Lemma 2.4 and Theorem 2.6, we can obtain the desire result.□ 

Theorem 3.4.  Let ),2(42 mnTUCCPG nm =×= , then  

1

2222 )(22)2(2)12()1(2)( −+++−+−−+−= mnmn mnnnmmnnnmmnGH ϕϕϕ . 

Proof. Let ));();(]([ 2 qCWqPWq nm

i

i =α . To find )11( −+≤≤ nmiiα , we consider two 

following cases: 

Case I: Let mn ≤ . 

(i) If ni ≤≤1 , then nmimnnijmn
i

j
i 2)12()(2 2

1

1

−++−=−= ∑
−

=

α ; 

(ii) If min ≤≤+1 , then )2()21()()(2 2
1

1

mnmnninnimnnjmn
i

nij
i −++−=−++−= ∑

−

−+=

α ; 

(iii) If 11 −+≤≤+ nmim , then 

22
1

1

)()(2)()(2 mnnimnnniimnnjmn
m

nij
i +++−=−++−= ∑

−

−+=

α . 

Case II: Let nm ≤ .  

(i) If mi ≤≤1 , then nmimnnijmn
i

j
i 2)12()(2 2

1

1

−++−=−= ∑
−

=

α ; 

(ii) If nim ≤≤+1 , then )1()(2
1

1

−=−= ∑
−

=

mnmjmn
m

j
iα ; 

(iii) If 11 −+≤≤+ mnin , then 
22

)1(

1

)()(2)(2 mnnimnnniimnnjn
inm

j
i +++−=−++= ∑

+−+

=

α . 

Now, by Lemma 2.4 and Theorem 2.6, the proof is straightforward.□ 

Harary index of −4C nanotori 

Let nm CCG ×= , then ),(4 mnTCG =  is a −4C nanotorus (see figure 4) [15]. In the following  
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Theorem, we find the Harary index of −4C nanotori. 

 
Figure 4. A 4C -nanotorus. 

 

Theorem 3.5.  Let )2,12(4122 mnTCCCG nm +=×= + , then 

))122(24)12(21)(12()( 2

mnmn mnmmnmnGH +++−++++−= ϕϕϕ . 

Proof. Let ));();(]([ 122 qCWqCWq nm

i

i +=α . By Theorem 2.6, we should find iα  for 

nmCdiamCdiami nm +=+≤≤ + )()(1 122 . So we consider two following cases: 

Case I: Let mn ≤ .  

(i) If ni ≤≤1 , then )1)(12(2 −+= inmiα ; 

(ii) If min ≤≤+1 , then )12(2 += nmniα ; 

(iii) If mnim +≤≤+1 , then )1222)(12( +−++= imnnmiα . 

Case II: Let nm ≤ .  

(i) If mi ≤≤1 , then )1)(12(2 −+= inmiα ; 

(ii) If nim ≤≤+1 , then )12)(12( −+= mnmiα ; 

(iii) If mnin +≤≤+1 , then )1222)(12( +−++= imnnmiα . 

Now, the result can be obtained by easy calculation.□ 

Theorem 3.6.  Let )2,2(422 mnTCCCG nm =×= , then 

mnmn mnnmnmmn
mn

nmmn
GH +++−−

+

++−
= ϕϕϕ )(888

)(2
)( 22

22

. 

Proof. Without lost of generality, let mn ≤  and set ));();(]([ 22 qCWqCWq nm

i

i =α . We have: 

(i) If ni ≤≤1 , then )1(4 −= imniα ; 

(ii) If min ≤≤+1 , then )12(2 −= nmniα ; 

(iii) If 11 −+≤≤+ nmim , then )(4 imnnmi −+=α ; 

(iv) nmnm =+α .  
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Now, by Lemma 2.4 and Theorem 2.6, the proof is straightforward.□ 

Theorem 3.7.  Let )12,12(41212 ++=×= ++ mnTCCCG nm , then 

))1(2)12()12)((12)(12()( mnmn mnmnmnGH +++−+++++−= ϕϕϕ . 

Proof. Without lost of generality, let mn ≤  and set ));();(]([ 1212 qCWqCWq nm

i

i ++=α . We 

have the following cases: 

(i) If ni ≤≤1 , then )1)(12)(12( −++= imniα ; 

(ii) If min ≤≤+1 , then )12)(12( ++= mnniα ; 

(iii) If mnim +≤≤+1 , then )1)(12)(12( imnmni −++++=α . 

Now, using Lemma 2.4 and Theorem 2.6, the proof is completed.□ 
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