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Abstract 

In this paper, the Wiener and Wiener polarity indices of a class of fullerenes with 

exactly 12n carbon atoms is computed. It is shown that the possibility of labeling 

of the fullerene molecule such that the resulting molecular graph is 

centrosymmetric plays a central role in our method. Some open questions are also 

presented. 

 

1. Introduction  

A molecular graph is a simple graph modeled a molecule M. In this graph atoms are vertices 

and chemical bonds are edges of the graph. In such a graph, it is convenient to omit hydrogen 

atoms. A fullerene graph is the molecular graph of a fullerene molecule. It is a cubic planar 

graph having pentagonal or hexagonal faces. It is well-known that an nvertex fullerene 

graph has exactly 12 pentagonal and (n/2 – 10) hexagonal faces, where 20  n ( 22) is an 
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even integer.  

The most applicable fullerene is the Buckminsterfullerene C60. It is the smallest 

fullerene in which no two pentagons share an edge. The buckminsterfullerene was discovered 

experimentally by Kroto et al. in 1985. It is no doubt that this was the most impressive events 

in carbon chemistry during the last 25 years [1,2]. When a new material is discovered, one of 

the fundamental works is the development of the necessary mathematics. The most important 

works on mathematics of fullerenes was done by Patrick Fowler [37]. We encourage the 

interested readers to consult [812] for more information on the mathematical properties of 

fullerene graphs as well as its computational techniques. 

Suppose G is a connected graph and x, y  V(G), where V(G) denotes the set of all 

vertices in G. The distance d(x,y) between x and y is defined as the length of a minimal path 

connecting x and y. The maximum distance between two vertices of G is called the diameter 

of G, denoted by diam(G). The Wiener index of G, W(G), is defined as the summation of all 

distances between vertices of G [13].  

The polynomial H(G,x) = xyx
d(x,y)

 is called the Hosoya polynomial of G. The name is 

used in honor of Haruo Hosoya, who discovered a new formula for the Wiener index in terms 

of graph distance [14]. We refer the interested readers to papers [1521] for more information 

on this topic.  

 

Figure 1. The Schelegel Diagram of a C12n Fullerene Molecule. 
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2. Computational Details 

Suppose F is the molecular graph of C12n fullerene, as shown in Figure 1. The adjacency 

matrix of F is an n  n matrix A = [aij] defined by aij = 1, if vertices i and j are connected by 

an edge and, aij = 0, otherwise. The distance matrix D = [dij] of F is another n  n matrix in 

which dij is equal to the distance between vertices i and j for i  j, and zero otherwise.  

To compute the Wiener index of F, we first draw F by HyperChem [22] and then 

apply TopoCluj software [23] of Diudea and his team to compute the adjacency and distance 

matrices of this graph. Finally, we provide a MATLAB program [24] to calculate the number 

of pair of vertices in a given distance. This program is accessible from authors upon request. 

By these numbers and in a simple way, one can compute the Wiener index and Hosoya 

polynomial of the molecular graph under consideration. We begin with a labeling of F, which 

is important in our calculations. We label a C12n fullerene by the method given in the Figure 2. 

 

Figure 1. A Labeling of C108 Fullerene. 

 

In an earlier paper, two of the present authors computed the Wiener index of a class of 
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fullerenes with exactly 10n carbon atoms [25]. In this paper, we continue this program to 

compute the Wiener index of a class of fullerenes with exactly 12n carbon atoms, say C12n. In 

[26, Theorem 2], it is proved that diam(C12n) = 2n  1, when n  5. Moreover, diam(C24) = 5, 

diam(C36) = 7, diam(C48) = 8 and diam(C60) = 10. 

To proceed further, we need some algebraic notions. Suppose that A = [ai,j] is an n × n 

matrix. A is called symmetric if aij = aji and centrosymmetric if aij = a(ni+1)(nj+1), for 1 ≤ i,j ≤ 

n. By considering above labeling, one can see that the distance matrix of our C12n fullerene is 

centrosymmetric. In the next section, this fact helps us to partition the distance matrix of F in 

such a way that to compute its Hosoya polynomial.  

 

3. Main Results and Discussion 

Suppose F denotes the molecular graph of our C12n fullerene and k is a positive integer such 

that 1  k  diam(G), where diam(G) is defined as the maximum distance between vertices of 

F. The aim of this section is to compute the Wiener index of F. To do this, we first introduce 

some notions, which are crucial in this paper. The number of unordered pairs of vertices u and 

v of F such that dF(u, v) = k is denoted by d(F,k). It is clear that (d/dx)H(F,x)|x=1 = W(F) = 

∑k[kd(F,k)]. Suppose ][][ k
ijakF  , 1 ≤ k ≤ diam(F), such that ,kak

ij   when k = dF(i,j), and, 

0; otherwise. In what follows twenty-one 6  6 matrices are presented by which it is possible to partition 

the distance matrix of F. In fact, those are the building blocks of D[F].  
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Table 1: The Building Blocks of D[F], when 1  k  diam(F). 

 

Consider the 2n  2n block matrix D[F] = [Aij], where Aij is a zero 6  6 matrix or one 

of the matrices presented in Table 1. If 12  k  diam(F), then Aij = 0, 1  i, j  k, and Ak+1,1 = 

Ak+2,2 = ... = A2n,2n-k =k  J and the other blocks are zero. Since the matrix is symmetric, A1,k+1 

= A2,k+2 =… = A2n-k,2n = k  J. We have, 
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There are (2n  k) block J. Thus,  

D(k,C12n) = 36(2n  k) = 72n  36k.                                     (1) 
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Table 2: The Building Blocks of D[F], when k = 10 or 11.
 

 

Suppose k = 11. Then Aij = 0, for 1  i, j  11, and A12,1 = A13,2 = … = A2n,2n11 = 11J. 

Also, A12,3 = A14,5 = … = A2n2,2n11 = 11E1 and the other blocks are zero. So, the number of 

J,s are 2n11 and number of E1
,
s are n6. Hence, 

D(11,C12n) = 36(2n11) + 6(n6) = 78n  432.                      (2) 

Suppose k=10. Then Aij = 0, for 1  i,j  9, and A10,1 =A10,2= A11,3 =A12,4= … = A2n-

1,2n9 =A2n,2n-9= 10E1. Also, A11,1 = A12,2 = … = A2n,2n10 = 10J and the other blocks are zero. 

So, the number of J,s are 2n10 and number of E1,s are 2n8. Hence, 

D(10,C12n) = 36(2n10) + 6(2n8) = 84n  408.                      (3) 
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Table 3: Building Blocks of D[F], when k = 7, 8 or 9.
 

 

Suppose k=9. Then Aij = 0, for 1  i,j  7, andA8,3=A10,5=…A2n-3,2n-7=9E2 and  A9,1 = 

A9,2 =A11,4=A13,6= … = A2n,2n8=A2n-1,2n-8 = 9E1. Also, A10,3 = A12,5 = … = A2n2,2n9 = 9B1 and 

A10,1=A12,3 =…=A2n,2n-9 =9J1 and A11,2=A13,4=…=A2n-1,2n-10=9J  other blocks are zero. So, the 

number of J,s are (n5) and number of J1,s are (n4)and the number of B1,s are (n-5).and the 

number of E1,s are (n-2) and the number of E2,s are (n-4) Hence, 
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D(9,C12n) = 36(n5) + 30(n4)+12(n-5)+6(n-2)+6(n-4) = 90n  396.                      (4) 

 

Suppose k=8. Then Aij = 0, for 1  i, j  5, andA6,2=A7,3=…A2n-1,2n-5=8E2 and  A8,1 = 

A8,2 =A9,3=A10,4= … = A2n,2n7=A2n-1,2n-7 = 8B1. Also, A9,1 = A10,2 = … = A2n,2n8 = 8J1 other 

blocks are zero. So, the number of J1’s are (2n8), the number of B1’s are (2n6)  and the 

number of E2’s are (2n-6). Hence, 

 

D(8,C12n) = 30(2n8) + 12(2n6)+6(2n-6) = 96n  348.               (5) 

 

Suppose k=7. Then Aij = 0, for 1  i, j  3, and A4,3=A6,5=…A2n-2,2n-3=7E3 and  A5,2 = 

A7,4 =A9,6=A11,8= … = A2n-2,2n4=A6,1 =A2n,2n-5= 7E2. Also, A6,3 = A8,5 = … = A2n3,2n5 = 7B2,  

A7,1=A7,2=A9,4=A11,6=…=A2n,2n-6=A2n-1,2n-6=7B1, A8,3=A10,5=A12,7=…=A2n-2,2n-7=7B5, 

A8,1=A10,3=A12,5=…=A2n,2n-7=7C1, A9,2=A11,4=…=A2n-1,2n-8=7J1,  other blocks are zero. So, the 

number of J1’s are (n4), the number of B1’s are (n1) and the number of C1’s are (n-3). 

Moreover, the number of E2’s are (n), the number of B5’s are (n-4), the number of B2’s are (n-

3) and the number of E3’s are (n-2). Hence, 

 

D(7,C12n) = 30(n4) + 12(n1)+24(n-3)+6(n)+12(n-4)+12(n-3)+6(n-2) = 102n  300   (6). 

 

If k = 6 then Aij = 0, 1  i,j  2, A3,3 = A4,4 = A5,5 = A6,6 = … = A2n2,2n2 = 6E3, A4,2 = 

A5,3 = A6,4 = A7,5 = … = A2n1,2n3 = 6B2,and A5,1=A2n,2n-4=6E2 and  A6,1 = A6,2 = A7,3 =A8,4= … 

= A2n,2n5=A2n-1,2n-5 = 6B5 and A7,1=A8,2=…=A2n,2n-6=6C1  the other blocks are zero. On the 

other hand, the number of E3,s , B2,s , E2,s , B5,s  and C1,s  are (n-2),(2n4),( (2) , (2n-4) and 

(2n6), respectively. Therefore,  

 

D(6,C12n) = 6(n-2)+12(2n-4)+2(6)+12(2n-4)+24(2n-6)=102n-240.             (7) 

 

Suppose k = 5. Then A2,2 =An-1,n-1 =E3  ,A3,2 =A5,4 =A7,6 =…=A2n-1,2n-2 =B2 , A4,1 =A2n,2n-

4 =B2 , A4,3 =A6,5 =A8,7 =…=A2n-3,2n-4=B6, A5,2 =A7,4=A9,6=…=A2n-1,2n-5=B5 , A5,1=A2n,2n-5=B5 , 

A6,3=A8,5=A10,7=…=A2n-3,2n-6=B8 , A6,1=A8,3=A10,5=…=A2n,2n-5=G1 and A7,2 = A9,4 = A11,6 = … 

= A2n1,2n6 = C1, and the other blocks are zero. Also, the number of E3, B2, B6, B5, B8,G1 and 

C1 are (1), (n+1), (n2), (n), (n3), (n-2) and (n-3), respectively. Therefore  

 

-368-



D(5,C12n) =6(1)+12(n+1)+12(n-2)+12(n)+12(n-3)+18(n-2)+24(n-3)=90n-150   (8) 

 





















































000000

000000.

0....0..

0........

0.........

........00.

0.........00

0..........0

..........0

.........0

........0

....00

000000

00000

6)6(

251

25

32

33

43

77

21

51

55

22

32

2733

273

274

EBC

BB

EB

BE

EB

BB

CC

BC

BB

BE

EB

CBBE

CBB

CBE

F

 





















































0000......0

00......

........

0.........

...00...

...00..

0....000.

0....000

.....000

....00

...000

.0.000

.0000

0..00000

5)5(

251

3251

68

1

321

7751

281

2251

681

96255

27362

2962

2733

273

BBG

EBBC

BB

C

BIG

BBDBC

GBG

CBBC

BBG

BBBBB

CBBBB

GBBB

CBBE

GBB

F

 









































00...0

00.....

0.......

........

0.......0

0.....00

0..0...0

0.0.0.00

0..0.00

0...00

4)4(

3281

368

36

99

2

81

88

962

963

2933

EBBG

EBB

BB

BB

G

BG

BB

BBB

BBE

GBBE

F
 

Table 4: Building Blocks of D[F], when k = 4, 5 or 6.
 

 

Finally, we assume that k = 4. Then A11 = 0, A2,2 = A3,3 = A4,4 = A5,5 = … = A2n1,2n1 = 

4B6, A2,1=An,n-1=E3, A3,1=An,n-2=B2,  A4,1=A4,2 = A5,3 = A6,4 = … = A2n1,2n4 = A2n,2n4 = 4B8, 

A5,1 = A6,2 = A7,3 = … = A2n,2n5 = 4G1 and the other blocks are zero. On the other hand, the 

number of B6, E3, B2 , B8 and G1 are (n-1), (2), (2) and (2n-4), respectively. Therefore,  

 

D(4,C12n) = 12(n1) + 6(2) + 12(2) + 18(2n-4) = 72n72.             (9) 
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The Wiener polarity index of the molecular graph G, WP(G), is defined as Wp(G) = 

d(G,3) [13,28]. In the best of our knowledge, the Wiener had some information about the 

applicability of this topological index. We now apply our calculations to compute the Wiener 

and Wiener polarity index of the fullerene graph C12n. 

 

Theorem. The Wiener and Wiener polarity indices of C12n, n >5, are computed as follows: 

.3054)(&163282848)( 12
3

12  nCWnnCW nPn  

Proof. By Eq. (1), the well-known relation W(F) = ∑k[k  d(F,k)] and the fact that diam(C12n) 

= 2n – 1, we deduce that  

  .182164764483672),( 312
10

12
12 12  



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 nniniCiDi n

i
ni

i n  

On the other hand, D(1,C12n) = 18n, D(2,C12n) = 36n and D(3,C12n) = 54n30, where n ≥ 2.
 
 

Also, by Eqs. (2) (9), we obtain .198485592),(11
1 12   nCiDii n  This completes our 

proof.           ▼ 

 

4. Concluding Remarks 

In the MCC 2009, P. W. Fowler asked about formula for computing Wiener index of 

fullerenes. In this paper, a class of fullerene graphs with exactly 10n vertices is considered. A 

matrix method is presented by which it is possible to compute the Hosoya polynomial and 

then the Wiener index of this class of Fullerenes. We believe that our matrix method is general 

and can be applied to other class of fullerenes. By our calculation, one can easily compute the 

Hosoya polynomial of C12n fullerenes. Moreover, our calculations suggest the following 

conjectures: 

 

Conjecture 1: The adjacency matrix of fullerene graphs is centrosymmetric. 

 

Conjecture 2: If Xn is an infinite sequence of fullerenes then W(Xn) is a cubic polynomial. 
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