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Abstract 

In this paper, multiple linear regression (MLR) and partial least squares regression (PLS) models are 

used to estimate critical micelle concentration of anionic surfactants. RHF/6-31G
*
 level of theory is 

used for collecting quantum chemical descriptors. In addition, a small number of topological 

descriptors are also utilized. The best descriptors are selected by PLS, the stepwise and Enter methods 

of MLR. The determination coefficient (R
2
) and mean square of error (MSE), for the best model of 

training set are 0.989 and 0.007, respectively. Validation is guaranteed by calculation of determination 

coefficient for prediction set (R
2
pred), that is higher than 0.98. In addition to the above gas phase model, 

conductor–like polarizable continuum model (CPCM) is also used to calculate all descriptors in the 

solution phase. This new model has R
2
 0.981.  

 

Introduction   

Surfactants are versatile products used in variety industries such as detergents, emulsifiers, 

drilling muds and the flotation agents. Nowadays, these are applied in high-technology areas 

such as micro-electronics [1, 2] and nanotechnology [3]. At a critical concentration named as 
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CMC, surfactants aggregate to form micelles. Micelles are in equilibrium whit smaller cluster 

sites and monomers [1,2].
 

One particular important point in industry is CMC 

determination/prediction. 

One of the methods for the prediction of chemical properties such as CMC based only on 

molecular structural information is quantitative structure–activity/property relationships 

(QSAR/QSPR) modeling. QSAR/QSPR models are mathematical equations relate chemical 

structure to a property. QSAR/QSPR modeling is found to be extremely helpful in prediction 

of activity/property of new chemical compounds. For a QSAR or QSPR modeling following 

items should be done: (1) descriptor generation, (2) splitting data to training and prediction (or 

validation) sets, (3) variable selection, (4) finding appropriate model between selected 

variables and activity/property and (5) model validation. A large number of descriptors can be 

generated by existing codes. These parameters categorized as geometrical, topological, 

physicochemical and electronic descriptors [4,5]. Choosing adequate descriptors for 

QSAR/QSPR studies is difficult and challenging. To overcome this problem a powerful 

variable selection technique is needed [6,7].
 
 

In the present work, the best variables among electronic and topological descriptors are 

selected using PLS and MLR and then a linear MLR model is developed to predict the 

LogCMC of some surfactants. Our method shows a considerable improvement for regression 

models. 

 

Methods 

Six steps are used for estimation LogCMC of anionic surfactants by QSPR modeling. These 

contain 1) generation of the files containing the chemical structures in a computer- readable 

format, 2) optimization of molecule geometries with an ab initio method, 3) computing 

electronic and topological descriptors, 4) selection of descriptors by PLS and MLR to study 

the relationship between structural features and the LogCMC, and 6) building of the model. 

 

Software 

HyperChem version 7. 0 program [8]  is used to draw the molecular structures. The structures 

of the compounds are pre-optimized by the semi-empirical method PM3. The descriptors are 

then calculated by the Gaussian 98 software [9].
 
MLR regression is performed by the SPSS 

15.0 package [10],  and PLS is performed by Minitab 15.0 program [11].
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Data set 

CMC values of anionic surfactants, are taken from References 1, 12 and 13. The compounds 

contain different types of structures rather than represent particular class of molecules. Table 

1 shows the list of compounds in which long and short, straight chain and branched, aliphatic 

and aromatic and unsaturated carboxylate, sulfonate and sulfate surfactants are present. The 

data set is split into a training set and a prediction set. The prediction set of 10 surfactants is 

selected randomly. The training set of 31 compounds, with LogCMC values in the range of 

 -0.333 to -3.635, is used to adjust the parameters of the model [12,13].  

 

Molecular modeling and structural descriptors 

Standard ab initio molecular orbital calculation is carried out using the Gaussian 98 software. 

All geometries of the species are fully optimized at the RHF/6-31G(d) level of theory. The 

electronic descriptors for each species are calculated in both gas and solution phases. 

However, gas and solution phases descriptors are considered separately by defining two 

different models. Conductor-like polarizable continuum model (CPCM) is used to calculate 

properties in solution [14]. These calculations are done using SCRF=CPCM keyword.  

 

PLS modeling 

In partial least squares regression (PLS) a multivariate approach is used by which molecular 

properties (variables) are shown by a X-matrix, which is then related to a response matrix, Y. 

PLS uses an approach to reduce the number of independent variables by linear combinations 

of original x-values. By this trick, collinearity problem is solved and better regression 

equations are obtained. The matrix consisting of the A scores (number of principal 

components)  is denoted by T and the corresponding matrix of loadings is denoted by P. Set 

of input matrices can be written as [5, 6]: 

 

 tX TP E                  (1) 

 

 y Tq f  .  (2) 
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Table 1. Comparison between experimental and calculated LogCMC values the for training set with equation 

(15). Experimental data are for 40 
º
C. 

Residuals LogCMC(Pred.) LogCMC(Exp.) Formula No 

-0.039 -0.294 -0.333 n-C8H17COO
-
K

+ 
 1 

0.024 -0.96 -0.936 n-C10H21COO
-
K

+ 
 2 

0.022 -1.56 -1.538 n-C12H25COO
-
K

+ 
 3 

0.023 -2.160 -2.137 n-C14H29COO
-
K

+ 
 4 

0.125 -0.915 -0.79 n-C8H17SO3
-
Na

+ 
 5 

-0.083 -1.317 -1.4 n-C10H21SO3
-
Na

+ 
 6 

-0.008 -1.935 -1.943 n-C12H25SO3
-
Na

+ 
 7 

0.083 -2.685 -2.602 n-C14H29SO3
-
Na

+ 
 8 

-0.155 -2.984 -3.139 n-C15H31SO3
-
Na

+ 
 9 

0.044 -0.898 -0.866 n-C8H17SO4
-
Na

+ 
 10 

 0.004 -1.485 -1.481 n-C10H21SO4
-
Na

+ 
 11 

-0.003 -1.780 -1.783 n-C11H23SO4
-
Na

+ 
 12 

0.014 -2.077 -2.063 n-C12H25SO4
-
Na

+ 
 13 

0.007 -2.374 -2.367 n-C13H27SO4
-
Na

+ 
 14 

0.052 -2.672 -2.620 n-C14H29SO4
-
Na

+ 
 15 

0.106 -1.418   -1.312 n-C8H17OOC(CH2)2SO3
-
Na

+
  16 

0.03 -1.913  -1.883 n-C10H21OOC(CH2)2SO3
-
Na

+ 
 17 

-0.071 -2.452  -2.523 n-C12H25OOC(CH2)2SO3
-
Na

+ 
 18 

0.122 -1.949 -1.827 C10H21CH(CH3)SO3
-
Na

+ 
 19 

-0.042 -1.593 -1.635 C8H17CH(C3H7)SO3
-
Na

+ 
 20 

-0.027 -1.521 -1.548 C7H15CH(C4H9)SO3
-
Na

+ 
 21 

0.027 -1.469 -1.442 C6H13CH(C5H11)SO3
-
Na

+ 
 22 

0.119 -2.263 -2.144 C7H15CH(C7H15)SO3
-
Na

+ 
 23 

-0.152 - 0.593 -0.745 C6H13CH(CH3)SO4
-
Na

+ 
 24 

-0.171 -1.134 -1.305 C8H17CH(CH3)SO4
-
Na

+ 
 25 

0.048 -1.129 -1.081 C5H11CH(C5H11)SO4
-
Na

+ 
 26 

-0.072 -2.115 -2.187 C11H23CH(CH3)SO4
-
Na

+ 
 27 

0.028 -1.914 -1.886 C9H20CH=CHCH2SO3
-
Na

+ 
 28 

-0.059 -2.51 -2.569 C11H24CH=CHCH2SO3
-
Na

+ 
 29 

0.062 -1.969 -1.907 C8H17C6H4SO3
-
Na

+
 Para  30 

-0.054 -3.581 -3.635 C17H35SO3
-
Na

+ 
 31 

  

The matrix E and vector f contain residuals for X and y, respectively, and vector q is loading 

for y. PLS regression is obtained by maximizing the covariance between y and all possible 

linear functions of X. The regression coefficient vector used in the linear PLS predictor can be 

computed using the equation: 

 1ˆ ˆ ˆˆ ˆ( ) Tb w P w q . (3) 
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where the ŵ is the matrix of loading weights(5, 6). 

 

MLR modeling 

Multiple linear regression (MLR) is another model that considers the relation between 

descriptors (x) and response variable (y) to be shown by linear equation [5, 6]: 

 0 1 1 2 2 ... k k iy x x x e                (4) 

β’s are unknown constants named as regression coefficients that should be estimated during 

modeling and ei is residual. If errors are normal with constant variance and independent, the 

best regression coefficients will obtain by the method of Least squares [15]. The regression 

coefficients may be made comparable with each other by standardizing appropriately.  

Evaluation of MLR model is done by cross-validation techniques. Two main cross-validation 

methods consist of leave-one-out (LOO) and leave-more-out (LMO). In these methods 

training set is modified by removing random small group molecules in each step and then the 

model is evaluated by measuring its accuracy in predicting the responses of the deleted group. 

A successful model must have an ability to predict not only the property of internal molecules 

(internal validation) but also of the external sources (external validation). So, applying only 

LOO-CV or LMO-CV is not sufficient to evaluate the predictive ability of a model [16].  

Besides above cases, an important point in a statistical model is outliers. There is a criterion 

for identity outliers. The ie  is computed and examined for each compound. If the absolute 

value of any ie  is greater than 3 MSE ,this indicates that the sample "i" observation should 

be carefully scrutinized as a possible outlier [15]. 

 

Statistical parameters 

For the constructed models, eight general statistical parameters are selected to evaluate the 

ability of the models. The PRESS (predicted residual sum of squares) statistic appears to be 

the most important parameter for a good estimate of the real predictive error of the models. Its 

small value indicates that the model predicts better than chance and can be considered 

statistically significant. It is calculated by following equation [15]: 

 

2

2

( )

1 1

ˆ( )
n n

i i i

i i

PRESS e y y
 

      . (5) 
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where yi is the experimental LogCMC of the anionic surfactant in the sample i, ˆ
iy represented 

the predicted LogCMC of the anionic surfactant in the sample i, and n is the total number of 

samples used in the prediction set.  

Cross-validated R
2

CV (or R
2

pred) explains variance in prediction:  

  2 2

2

1

( )
CV pred n

i

i

PRESS
R R

y y


 


. (6) 

y , is the mean of experimental LogCMC in the prediction set. The coefficient of 

determination (R
2
) indicates the quality of fit and is calculated as: 

 

2

2 1

2

1

ˆ( )

1

( )

n

i

i

n

total
i

i

y y
SSE

R
S

y y







  






. (7) 

The fourth statistical parameter is the adjusted R
2
: 

 2 2 2/( ) 1
1 1 (1 )Adj

total

SSE n p n
R R R

S n p

 
     


. (8) 

where, n is the number of members of the training set and p is the number of parameters 

involved in the correlation. R
2 

increases with additional predictors and is somewhat sensitive 

to changes in n and p. In particular, in small samples, if p is large relative to n, there is a 

tendency for R
2
 to be artificially high. The adjusted R

2
 corrects for the artificiality introduced 

when p approaches n through the use of a penalty function which scales the result [15].
 

The next statistical parameter is mean of squares error (MSE):  

 

2

1

ˆ( )
n

i i

i

y y
SSE

MSE
n p n p





 
 


. (9) 

MSE represents the standard distance data values far from the regression line. For a given 

study, the better the equation predicts the response, the lower MSE. F-ratio test is the most 

well-known statistical tests, this is defined as the ratio between the MSR and the MSE: 

 
MSR

F
MSE

 . (10) 

F is compared to the critical value Fcrit for the corresponding degrees of freedom. High values 

of the F-ratio test indicate reliable models. Associated with each predictor variable xj is a 

number denoted by VIFj, called the variance inflation factor for xj, which is defined as [17]:
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2

1

1
j

j

x

VIF
r




. (11) 

where r is the correlation coefficient of one independent variable against others. Large VIFj 

values imply strong correlation. It has been suggested, as a rule of thumb, that values of VIFj 

greater than 10.0 may be considered large enough to suspect serious multicollinearity [9]. 

The next statistical parameter is Durbin-Watson that indicate residuals are independent or not. 

'Independent' means that the individual eij are randomly distributed and not influenced by an 

external factor.  

Increasing the number of measurements increases the precision of the prediction. According 

to equation (12), increasing the number of measurements (n) decreases SSE and increase R
2
 

and F according to equations (7) and (10). 

 



n

i

ii yySSE
1

2)ˆ(  (12) 

This is not always the best approach. Since for large samples the time and cost increase. 

When using smaller sample sizes and the broader distribution, we have more precision: the 

standard deviation x is larger and residuals variance is smaller in equations (13) and (14). 

 
2

2

1 2
( ) ,       c

x

Var onst
S


    (13) 

 1 2( ) ( )Var X X   (14) 

where S
2

x, σ 2
 and 1( )Var  , are standard deviation x, residuals variance and coefficients 

variance respectively. 

 

Results and discussion 

PLS analysis  

Figure 1 shows R
2
 and R

2
LOO as a function principle components (PCs). It shows that 

minimum six PCs needed to obtain accurate PLS model. The statistical parameters of models 

are given in Table 2. The score plot, Figure 2, is a scatterplot of the x-scores from the sixth 

and fifth components in the model. The sixth components explain most of the variance in the 

predictors, then the configuration of the points on this plot reflects the original 

multidimensional configuration of our data. In this study, the score plot reveals that samples 5 

and 26 may have high leverage values. These samples may appear as outliers or leverage 

points on other plots. The coefficient plot, Figure 3, displays the relative importance of the 
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variables for modeling the response. As seen in Figure 3, the most important variables used 

for modeling the LogCMC in PC6 are: the total dipole moment (μ(g)) [18], the polarizability 

(α) [19],
 
 softness (S) [20], the minimum natural atomic orbital taken from the results of 

natural population analysis (NAOmin) [21] all in gas phase, the total dipole moment (μ(aq)) in 

aqueous phase, the bond number (B) and the number of atoms (A) which are all negatively 

correlated to the response. It is interesting to note that ELUMO, [22] the Gibbs energy (ΔG), the 

maximum atomic charge on the atom C taken from the results of natural population analysis 

(qC
+
nbo) [23], the atomic charge on the atom C 1 taken from the results of population analysis 

based on molecular electrostatic potential (mepC1) [24] and the HOMO/LUMO energy 

fraction (fH/L) in the gas phase, the electronegativity (χ) [25], the maximum atomic charge on 

the atom C based on Mulliken population analysis (qC
+
(aq)) in aqueous phase and the total 

change in the Gibbs free energy (ΔGtotal) display a positive correlation to the response. A high 

value of these variables denotes a large response. 

 

Table 2. Results from the PLS analysis 
R

2
LOO PRESS R

2 
x variance Components 

0.4016 9.4907 0.5822 0.3377 1 

0 23.9825 0.8950 0.5085 2 

0 64.3433 0.9702 0.6191 3 

0 31.5275 0.9837 0.7504 4 

0.2996 11.1089 0.9864 0.8690 5 

0.9736 0.4178 0.9883 0.9226 6 
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Figure 1. The model selection plot that is a scatterplot of the R
2
 and R

2
LOO values as a function of the number of 

components. 
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Figure 2. The score plot that is a scatterplot of the x-scores from the sixth and fifth components in the model 

  

PC6 predicts cross-validated value (R
2

LOO) of 97.36%, of variances in the LogCMC of the 

studied molecules, see Table 2. This indicates that variables are sufficient for modeling the 

response, as is visualized in Figure 4. Also low PRESS value indicates that PC6 is excellent, 

see Table 2. 

 

MLR analysis 

As a first check, we investigate the normal distribution of residuals. In Figure 5 frequency is 

drown against standardized residuals and Figure 6 shows standardized predicted values 

LogCMC plotted against standardized residuals. Based on Figure 5, it is clear that the 

residuals have normal distribution. In Figure 6, the data in this plot are randomly scattered 

about the horizontal line showing that the residuals variance is constant. 

An aberration in stepwise regression is obtaining chance correlation models. This is occurred 

when the ratio of the number of samples (or molecules) to the number of original variables (or 

descriptors) is very low. To develop QSPR models, a new approach is used. In this approach 

the common descriptors between PLS and stepwise MLR methods are considered as inputs 

for ENTER MLR method. Five descriptors are common between two methods containing 

total dipole moment (μ(g)), the minimum natural atomic orbital between carbon atoms taken 

from the results of natural population analysis (NAOmin) both in the gas phase, total dipole 

moment (μ(aq)), the maximum atomic charge on the atom C based on Mulliken population 

analysis (qC
+
(aq)) in aqueous phase and the bond number (B). NAOmin is the sum of core, 

valence and Rydberg natural orbitals calculated with the keyword POP=NPA in Gaussian 98. 

These five descriptors are used as inputs of a new ENTER MLR analysis.  

Following equation is a result of ENTER method: 

 LogCMC=3.978-0.031μ(g)-0.344NAOmin (g)-0.069B. (15) 
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Figure3. The coefficient plot that is a projected scatterplot showing the standardized coefficients for each 

predictor. 
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Figure 4. Calculated versus observed LogCMC values in PLS model. 
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Figure 5. Frequency against standardized residuals. 
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Figure 6. Standardized predicted values of LogCMC against standardized residuals. 
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Figure 7. the plot of experimental LogCMC values versus predicted LogCMC values with equation (15). 

 

The standardized coefficients, VIF and the p-values for above model are all presented in Table 

3. The usual limit used in the interpretation of a p-value is 0.05 (or 5%). If p-value is less than 

0.05, it is reasonable to believe that the observed results are not due to random variations. 

Furthermore, Table 3 shows that the VIFs are less than 2. This means that the variables are 

weakly correlated to each other. 

The standardized coefficients of the model corresponding to the three dependent variables 

allow comparing the relative weight of the variables in the model. As seen, the resulting 

model has three significant descriptors. As is obvious, the B and the total dipole moment and 

the NAOmin have a negative coefficients. These show that the LogCMC increases with 

decreasing B, dipole moment and NAOmin. 

According to the standardized coefficients (see Table 3), the most significant descriptor 

appearing in regression equation (15) is the descriptor B , which is the simplest variable, 
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defined as the number of bonds in the molecule. The next important descriptor is the total 

dipole moment, μ(g). Dipole moment is the measure of polarity of a polar covalent bond. It is 

defined as the product of charge on the atoms and the distance between the two bonded atoms. 

The total dipole moment, however, reflects only the global polarity of a molecule. The next 

important descriptor is the natural atomic orbitals (NAOmin) which is obtained from the 

diagonalization of density matrix of a given molecule. 

It is clear that the micellization process occurs in a solution phase. However, our above model 

relates two variable calculated in the gas phase to the CMC. To obtain a model with aqueous 

phase calculated descriptors, we repeat previous approach except that all quantum variables 

are calculated from keyword SCRF=CPCM. This keyword models solvent molecules as a 

conductor-like polarizable continuum model [14].
 
All parameters for CPCM have the default 

values in the Gaussian 98 program. After searching the common descriptor between PLS and 

stepwise-MLR, following model is obtained based on ENTER-MLR and the common 

descriptors:  

 

Table 3. The standardized coefficients, VIF and the p-values for the MLR model based on descriptors of 

equation (15) 

Upper bound 

(95%) 

Lower bound 

(95%) 

VIF P-value Value 

standardized 

Source 

-0.063 

-0.027 

-0.28 

-0.408 

-0.036 

-0.075 

1.812 

1.845 

1.243 

0.00 

0.00 

0.00 

-0.659 

-0.404 

-0.253 

B 
μ (g) 

NAOmin 

 

 LogCMC=1.956-0.0290μ(aq)+0.426q
+

C(aq)-0.0700B.  (16) 

Analyzing equation (16) it’s observed that the maximum atomic charge on the atom C based 

on Mulliken population analysis (qC
+
(aq)) in aqueous phase has a positive coefficient for Log 

CMC. The qC
+
(aq) is indicating an influence of the interactions of molecules and polar 

compounds increase CMC. The standardized coefficients, VIF and the p-values are all 

presented in Table 5.  

We employed a two-step validation protocol. The data set was divided into training and test 

sets. The model is first validated internally using the training set. The training set was applied 

for fitting of the line, whereas test set for which its molecules have no role in model building 

was used for the evaluation of the prediction ability of the model. MLR model was developed 

for anionic surfactants using the SPSS version 15.0 software. The training set consisted of 31 

molecules and the test set consisted of 10 molecules. The statistical results (R
2
, R

2
Adj, F, MSE, 

PRESS and D. W.) are summarized in Table 7. Our statistical analysis gives excellent results 
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based on three descriptors for these LogCMC and the model with 3 descriptors has no outliers 

with absolute deviation exceeding 3 MSE , see Table 1. 

 

Table 4. The values of total bond number, B, the dipole moment in gas, μ(g) the dipole moment in aqueous 

phase, μ(aq), the minimum natural atomic orbitals NAOmin and maximum net atomic charges on C atom, q
+

C(aq) 

q
+

C(aq) NAOmin μ(aq) μ(g) B No 

0.752 5.0389 24.105 21.488 27  1 

0.752 5.0387 30.07 27.325 34  2 

0.759 5.0386 36.4312 33.243 40  3 

0.756 5.0392 42.3577 39.219 46  4 

-0.3 6.4217 22.4652 19.532 30  5 

-0.298 6.4173 19.6619 19.187 36  6 

-0.3 6.4208 26.5388 25.640 42  7 

-0.3 6.4212 39.2674 36.340 48  8 

-0.3 6.4213 42.1605 39.243 51  9 

0.016 6.0236 22.892 21.140 31  10 

0.016 6.0233 28.482 26.660 37  11 

0.017 6.0234 31.3009 29.476 40  12 

0.017 6.0232 34.1623 32.323 43  13 

0.017 6.0229 37.0421 35.188 46  14 

0.017 6.0232 39.8952 38.084 49  15 

0.84 4.9946 31.7342 29.209 40  16 

0.804 4.9994 34.0295 31.703 46  17 

0.818 5.0132 36.6377 35.519 52  18 

-0.3 6.4208 29.6932 26.092 42  19 

-0.296 6.4180 15.5748 14.776 42  20 

-0.294 6.4157 13.105 12.506 42  21 

-0.303 6.4165 13.6726 10.844 42  22 

-0.299 6.4155 19.1761 16.360 51  23 

0.169 5.8413 16.209 13.444 31  24 

0.142 5.8484 19.5305 17.401 37  25 

0.146 5.8402 13.3957 10.738 40  26 

0.148 5.8473 31.404 28.868 46  27 

-0.189 6.1642 33.3476 29.987 41  28 

-0.188 6.1639 39.106 35.766 47  29 

0.031 6.0496 30.2347 26.394 44  30 

---- 6.42124 ---- 45.087 57  31 
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Table 5. The standardized coefficients, VIF and the p-values for the MLR model based on descriptors of 

equation (16) 

Upper bound 

(95%) 

Lower bound 

(95%) 

VIF P-value Value 

standardized 

Source 

-0.063 

-0.024 

0.523 

-0.077 

-0.034 

0.329 

1.520 

1.653 

1.241 

0.00 

0.00 

0.00 

-0.694 

-0.402 

0.273 

B 
μ (aq) 

q
+

C(aq) 

 

Table 6. Coefficient of correlation of Log CMC and selected descriptors. 

q
+

C(aq) μ(aq) B NAOmin μ(g) LogCMC  

     1 LogCMC 

    1 -0.736 μ(g) 
   1 -0.222 -0.281 NAOmin 

  1 0.178 0.590 -0.942 B 

 1 0.509 -0.317 0.995 -0.673 μ(aq) 
1 0.305 -0.119 -0.998 0.300 0.223 q

+
C(aq) 

  

Calculation of prediction ability 

Validation is a crucial aspect of any QSPR modeling. The most popular validation criteria are 

leave-one-out (R
2

LOO) and leave-five-out (R
2

LFO). The results are presented in Table 7. The 

proposed models are evaluated for prediction by cross-validation as well as using an external 

test set. The test set consisted of 10 anionic surfactants. The results are presented in Table 8 

for equations (15) and (16). A chance model has low ability to reproduce y variable of the 

external test set molecules. The models show high external prediction ability. Figure 7 shows 

the plot of experimental LogCMC values versus predicted LogCMC values with equation (15).  

 

Previous works on anionic surfactants 

There are reports of QSPR models to predict the LogCMC of anionic surfactants. Katritzky et 

al. correlated the LogCMC for a data set of 119 sulfates and sulfonates with QSPR approach. 

The regression equation (equation (17)) included three descriptors (i) t-sum-KH is the sum of 

Kier and Hall index of zero order over all hydrophobic tails, (ii) TDM is the AM1 calculated 

total dipole moment of the molecule, (iii) h-sum RNC is the sum of the relative number of 

carbon atoms over all hydrophilic heads. The determination coefficient R
2
 = 0.94, Fisher 

criterion F = 597, and MSE= 0.0472 [13]. 

 LogCMC=−0.314(± 0.010)t-sum 

KH−0.034(±0.003)TDM−1.45(±0.18)h-sum-RNC+ 1.89(±0.11). 

  (17)  

Zhang et al. modeled 98 LogCMC values for carboxylate, sulfates and sulfonates surfactants 

and found the regression equation (equation (18)) with three descriptors (R
2 

= 0.980, F = 
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1505.23, MSE = 0.0107, R
2

CV = 0.978). In equation (18) NT represents the total atom number, 

μ is the ab initio calculated total dipole moment of the molecule and QC max represents the 

maximum net atomic charges on C atom [12]. 

LogCMC=1.89(±0.0671)–0.0697(±0.00151)NT–0.0323(± 0.0015)μ+0.381(±0.0305)QCmax      . 

  )18) 

 

Table 7. Statistical parameters obtained by applying the MLR method to the training set. 

R
2

LFO R
2

LOO D.W. PRESS MSE F R
2
 Adj R

2 
Eq 

97 98.44 2.445 0.247 0.007 778.274 0.987 0.989 15 

97 97.26 2.52 0.338 0.009 439.568 0.978 0.981 16 

 

 

Table 8. Comparison between experimental and predicted LogCMC values of external test set for the MLR 

model based on descriptors of equations (15) and (16). 

Residuals Predicted values LogCMC(pred.)  

LogCMC 

(exp.) 

 

Formula 

 

No 
Eq(16) Eq(15) Eq(16) Eq(15) 

-0.164  -0.166 -0.332 -0.330 -0.496 C6H13SO3
-
Na

+ 
1 

-0.053  -0.049 -2.368 -2.372 -2.421 C13H27SO3
-
Na

+ 
2 

-0.007  -0.027 -1.723 -1.703 -1.730 C9H19CH(C2H5)SO3
-
Na

+ 
3 

0.004  -0.042 -1.718 -1.672 -1.714 C6H13CH(C6H13)SO4
-
Na

+ 
4 

-0.05  -0.098 -1.963 -1.915 -2.013 C7H15CH(C6H13)SO4
-
Na

+
 5 

-0.236  -0.274 -1.935 -1.897 -2.171 C9H19CH(C4H9)SO
-
4Na

+
 6 

-0.267  -0.295 -2.021 -1.993 -2.288 C10H21CH(C3H7)SO4
-
 Na

+
 7 

-0.103  -0.118 -2.264 -2.249 -2.367 C11H23CH(C2H5)SO4
-
 Na

+
 8 

-0.227  -0.238 -2.254 -2.243 2.481 C12H25CH(CH3)SO4
-
 Na

+
 9 

-0.125  -0.093 -1.707 -1.675 -1.582 ParaC7H15C6H4SO3
-
 Na

+
 10 

Comparison of equation (15) with equations (17) and (18) suggests that our QSPR equation 

has a better statistics in comparison with previous results, because the R
2

Pred and
 
R

2
 values of 

equation (15) are larger than that of previous results, and the MSE value is obviously lower 

than that of previous results. 

 

Conclusions 

We have mixed PLS and stepwise-MLR techniques to select descriptors for ENTER-MLR 

modeling. This approach has been repeated for the calculation of descriptors in two gas and 

solution phases. The results showed that the models in both above phases can accurately 

predict the CMCs. 
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