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Abstract 
Stochastic process models play a prominent role in a range of application areas, 

including biology, chemistry, epidemiology, mechanics, microelectronics, 

economics, and finance. In mathematical modeling, if we use stochastic systems then 

we will assume that the system follows a probabilistic rule and the future behavior of 

the system will not be known for sure. Idea of modeling chemical reactions in terms of 

ordinary and stochastic differential equations can be exposed to a range of modern 

ideas in applied and computational mathematics. In this paper, we will introduce some 

fundamental concepts of stochastic processes and simulate them with R saftware. 

Also, we peresent a numerical solution of chemical Langevin equation as a stochastic 

differential system with applications in Chemistry and Physics. 
 

 

1  Introduction 

Stochastic process models play a prominent role in a range of application areas, including 

biology, chemistry, epidemiology, mechanics, microelectronics, economics, and finance. In 

mathematical modeling, if we use stochastic systems then we will assume that the system 

follows a probabilistic rule and the future behavior of the system will not be known for sure.  

First, we will introduce some fundamental concepts of stochastic processes such as Brownian 

Motion, Ornstein-Uhlenbeck (OU) process. Then we study Stochastic differential equations 

(SDEs) and Euler-Maruyama method as a numerical solution of the SDE and Langevin 

equation as an example of an Ornstein-Uhlenbeck process. This is a stochastic differential 

equation with application in Chemistry.  

Then we are concerned with a process that involves N different types of molecules, or chemical 

species. These molecules may take part in one or more of M types of chemical reactions; for 
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example, we may know that “a molecule of species A and a molecule of species B can combine 

to create a molecule of species C.” In principle, we could start with a position and a velocity for 

each molecule and let the system evolve under appropriate laws of physics, keeping track of 

collisions between molecules and the resulting interactions. However, this molecular dynamics 

approach is typically too expensive, computationally, when the overall number of molecules is 

large or the dynamics over a long time interval are of interest [8, 10]. 
 

2  Preliminaries 

In this section, some basic concepts of stochastic processes which are used in the next sections 

are reviewed briefly [5, 10]   

• Probability Space���Ω� �� ��: A probability space or a probability triple is a 

mathematical construct that models a real-world process (or "experiment") consisting 

of states that occur randomly.  

1. Ω (Sample Space): Sample space is the set of all possible outcomes.  

2. � (� ��algebra): A sigma-algebra is a collection of all and only events (not 

necessarily elementary) we would like to consider.  

3. � (Probability Measure): Is a function returning an event's probability.  

• With Probability 1: Also known as almost surely. The probability of an event occuring 

tends to 1 given some limit. Note that this differs from surely in that surely indicates 

that no other event is possible, while almost surely indicates that other events become 

less and less likely.  

• Random Variables: A random variable X  with values in the set E  is a function 

which assigns a value 	�
� in E  to each outcome 
 in�Ω.  

• Stochastic Process: A real valued stochastic process 	��� 
�� � � 
� 
 � Ω is just a 

sequence of real valued functions (random variables), 	�� � � 
 0},{ ≥tX t  on�Ω. 

       Essentially, the definition says that the outcomes of the experiment are all functions of 

time. Just as a random variable assigns a number to each outcome s  in a sample space�Ω, a 

stochastic process assigns a sample function to each outcome �.  

 

 Brief Introduction into Using R 

R is an integrated suite of software facilities for data manipulation, simulation, calculation and 

graphical display. It handles and analyzes data very effectively and it contains a suite of 

operators for calculations on arrays and matrices. In addition, it has the graphical capabilities 
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for very sophisticated graphs and data displays. Finally, it is an elegant, object-oriented 

programming language.  

R is an independent, open-source, and free implementation of the S programming language. 

Today, the commercial product is called S-PLUS and it is distributed by the Insightful 

Corporation. The S language, which was written in the mid-1970s, was a product of Bell Labs 

and was originally a program for the Unix operating system. R is available in Windows and 

Macintosh versions, as well as in various flavors of Unix and Linux. Although there are some 

minor differences between R and S-PLUS (mostly in the graphical user interface), they are 

essentially identical.  

The R project was started by  R obert Gentleman and  R oss Ihaka (that’s where the name "R" is 

derived) from the Statistics Department in the University of Auckland in 1995. The R project 

web page is  http://www.r-project.org The current version of R is 2.12.2. New versions are 

released periodically. There are a number of packages supplied with R (called "standard" 

packages) and many more are available through the CRAN family of Internet sites 

http://cran.um.ac.ir.  

 

3  Brownian Motion and Its Simulation 

The long studied model known as Brownian motion, also known as a Wiener process, is named 

after the English botanist Robert Brown. In 1827, Brown described the unusual motion 

exhibited by a small particle totally immersed in a liquid or a gas. In 1900, the French 

mathemetician Bachelier independently introduced Brownian motion to model the price 

movements of stocks and commodities. In 1905, Albert Einstein was able to explain this 

motion mathematically. He assumed that the immersed particle was continuously bombarded 

by molecules of the surrounding medium. In a series of papers originating in 1918, Norbert 

Wiener provided a mathematically concise definition and other mathematical properties of 

Brownian Motion.  

 

Definition 1 A stochastic process )(tW  is said to follow a standard Brownian motion on 

][0,T  if it satisfies the following:   

I.  0=(0)W  (with probability 1).  

II. For Tts ≤≤ <0  the random variable given by the increment )()( sWtW −  is 

normally distributed with mean zero and variance st − ; equivalently, 

-267-



(0,1) )()( NstsWtW −− : , where (0,1)N  denotes a normally distributed random 

variable with zero mean and unit variance.  

III. For Tvuts ≤≤ <<<0  the increments )()( sWtW −  and )()( uWvW −  are 

independent.  

IV. )(tW  is almost surely continuous.  
 

    For computational purposes it is useful to consider discretized Brownian motion, where 

)(tW  is specified at discrete t  values. We thus set NTt /=δ  for some positive integer N  

and let jW  denote )( jtW  with tjt j δ= . Condition 1 says 0=(0)W  with probability 1, and 

conditions 2 and 3 tell us that  

 
,,0,1,2,=     ,= 11 NjdWWW jjj ⋯++ +
 

(1) 

 where each jdW  is an independent random variable of the form (0,1) Ntδ . 

     In program 1, we use R software to simulate discretized Brownian motion over [0,1]  

with 500=N . Here, the random number generator rnorm is used, in fact, rnorm produces an 

independent "pseudorandom" number from the (0,1)N  distribution.  

 

Program 1.    

#   Brownian path simulation 

T = 1               #  T is the maturity ( time belongs to [0,T]) 

N = 500             #  N is the length of the sample path for Brownian Motion 

delta = T/N         #  delta is the increment of time period 

W = rep(0,times=N)  #  preallocate arrays for efficiency 

W[1]=0              #  first approximation outside the loop since W(0)=0 is not 

allowed 

t=rep(0,times=N) 

t[1]=0 

for (j in 1:N) 

{ 

W[j+1]=W[j]+sqrt(delta)*rnorm(1)    #  general increment 

t[j+1]=t[j]+delta 

} 

plot(t,W,type="l")                  #  plot W against t  

 

  Finally, the diffusion sample path can be plotted and results for four sample paths are 

displayed in Figure 1(a) using 500=N  and 1.0=T . In Figure 1(b), the variation of the fine 
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structure of the sample path is displayed, with time step size using subsets of the same random 

sample state. The sample paths in this case differ markedly since the sample subsets are quite 

different in quantity, being � � �


��

 and �
 random sample points for 23 ,1010= −−tδ  

and 
110−
, respectively. note that for the purpose of visualization, the discrete data has been 

joined by straight lines.  

 

 

  

Figure 1. (a) Diffusion sample paths using four    (b) Diffusion sample paths using three 

           random states.                           different time steps. 

   

4  Stochastic Differential Equations 

In recent years, the application of SDEs in different sciences has increased rapidly. Often the 

analytic solution of these differential equations is not available. The important difference 

between SDE and ordinary differential equation(ODE) is the existence of Wiener Process. 

Here we introduce a type of stochastic differential equations driven by Brownian motion. The 

general form of SDE is:  

 
,=(0)     ),())(,())(,(=)( 0XXtdWtXtdttXtbtdX σ+
 

(2) 

 which looks almost like an ODE. However, as usual, the “Itˆo differentials” are not sensible 

mathematical objects in themselves; rather, we should see this expression as suggestive 

notation for the Itˆo process  

 
).())(,())(,(=)(

00
0 sdWsXsdssXsbXtX

tt

σ∫∫ ++  (3) 

 If there exists a stochastic process )(tX  that satisfies this equation, we say that it solves the 

stochastic differential equation.  
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Definition 2 In a stochastic differential equation,  ))(,( tXtb  is  drift  coefficient and 

))(,( tXtσ  is  diffusion  coefficient. In  additive noise  stochastic differential equation, σ  is only 

depended on t  and in  multiplicative noise  stochastic differential equation, σ  is depended on 

t  and )(tX .  

 

Example 1.   

Consider the stochastic differential equation  

 1,=(0)      ),()(=)( XtdWtXtdX  (4) 

 where )(tW  is a scalar Wiener process. According to Ito's formula, the solution of the 

stochastic differential equation is  

 	��� � �
�����

�

� (5) 

 and not what might seem the obvious guess, namely  	���� � �����. 

Example 2.   

(scalar linear equation) Consider the scalar linear stochastic differential equation  

 0=(0)      ),()()(=)( XXtdWtbXdttaXtdX +  (6) 

 driven by a scalar Wiener process )(tW , with a  and b  constants. This stochastic 

differential equation is said to have  multiplicative noise. We can in fact analytically solve this 

equation, the solution is  

 )).()
2

1
((exp=)( 2

0 tbWtbaXtX +−  (7) 

 Definition 3. Let )(tX  be a solution to Equation ( 6) , is called a geometric Brownian motion.  

  

Example 3.   

(Stock prices) Let )(tX  denote the (random) price of a stock at time 0≥t . A standard model 

assumes that 
)(

)(

tX

tdX
, the relative change of price, evolves according to the SDE  

 ),(=
)(

)(
tdWdt

tX

tdX
µλ +  (8) 

 for certain constants 0>λ  and µ , called respectively the drift and the  volatility  of the 

stock. In other words,  

 ,=(0)      ),()()(=)( 0XXtdWtXdttXtdX µλ +  (9) 

 where 0X  is the starting price. Using once again Ito's formula we can check that the solution 

is  

 )).()0.5((exp=)( 2

0 tWtXtX µµλ +−  (10) 
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5  Examples and Simulations 

This section presents two famous examples of diffusions: Geometric Brownian motion and the 

Ornstein-Uhlenbeck process. The SDE is solved analytically, and numerical approximations 

are used to simulate and plot sample paths of the solution. 
 

5.1  Geometric Brownian Motion 

Definition 4 Let )(tW  be a standard Brownian motion. Then )(tWt µλ +  is a Brownian 

motion, and the stochastic process  

 )),((exp=)( tWttG µλ +  (11) 

 is called a geometric Brownian motion.  

 

Geometric Brownian motion )(tG  is an important model for stock prices. For each 0>t , the 

tG  has a lognormal distribution whose probability density function is  

 0  ),
2

)ln(
(exp

2

1
  =)(

2

2

≥
−

− z
t

tz

tz
z

µ
λ

πµ
φ  (12) 

 and has expected value and variance as follows:  

 /2),(exp=)]([ 2tttGE µλ +  

 ).(2exp)2?(2exp=)]([ 22 tttttGV µλµλ +−+  

 In addition, the first passage time that a geometric Brownian motion )(tG  reaches the barrier 

1>x  is just the time that the Brownian motion with drift λ  and diffusion µ  reaches lnx . 

In Program 2 we evaluate the stock model function  ))(( tWu , Equation ( 10)  in Example 3, 

along 1000=M  discretized Brownian paths with 
8

9
=λ  and 

2

1
=µ .  

Program 2.    

#   Function along a Brownian path 

T = 1; N = 500; dt = T/N; t = seq(dt,1,dt) 

M = 1000; mu=0.5; lambda=9/8; X0=1 

dW=sqrt(dt)*matrix(rnorm(M*N),nrow=M) 

S=rep(0,N) 

y=matrix(rep(0,6*(N+1)),nrow=6) 

for (j in 1:6) 

y[j,]=rep(0,N+1) 

k=ceiling(runif(5, min=0, max=1000)) 

for (j in 1:M)  

S=S+X0*exp((lambda-0.5*mu 2)*t+mu*cumsum(dW[j,])) 
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time=c(0,t) 

U=c(1,S/M) 

plot(time,U,type="s",col=1) 

y[1,]<-U 

for (i in 2:6) 

   {  

    y[i,]<-(c(1,X0*exp((lambda-0.5*mu 2)*t+mu*cumsum(dW[k[i],])))) 

    lines(time,yy[i,], type="l",lty=1,col=2) 

   }  

leg.names<-c("mean of 1000 paths","5 individual paths") 

legend(locator(1),leg.names) 
  

Since answer of the stochastic differential equation is a stochastic process we solve it with 

1000 different Wiener processes and use )(
1

=)(
1=

tW
M

tW i

M

i∑  to find the numerical solution 

of SDE.  

 

     

Figure 2. The function ))(( tWu  averaged over 1000 discretized Brownian paths and along 

5  individual paths. 

   

 The expected value of this solution can be seen as the center line with a smooth appearence (see 

Figure 2). Notice that although ))(( tWu  is nonsmooth along the individual paths, the expected 

value of the solution appears to be smooth. This can be established by noting that the properties 

of the Brownian motion require the expected value of )(tW  to be zero. Therefore, the 

expected value of ))(( tWu  is solely dependent on the drift and not the volatility. In this 

example, the expected value turns out to be 
/89te . The average of  ))(( tWu   over these paths is 

plotted with a solid black line. Five individual paths are also plotted using a dashed red line. 
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5.2  Ornstein-Uhlenbeck Process 

The Ornstein-Uhlenbeck process was proposed by Leonard Ornstein and George Eugene 

Uhlenbeck (1930) in a physical modelling context, as an alternative to Brownian Motion, 

where some kind of mean reverting tendency is called for in order to adequately describe the 

situation being modelled. Since the original paper appeared, the model has been used in a wide 

variety of applications areas. In Finance, it is best known in connection with the Vasicek (1977) 

interest rate model. However, to set the scene we will briefly discuss the standard (Gaussian) 

OU process, driven by Brownian Motion, and concentrate thereafter on some extensions that 

have recently attracted attention, especially in the financial modelling literature. In 

mathematics, the Ornstein-Uhlenbeck process, also known as the mean-reverting process, is a 

stochastic process )(tX  given by the following stochastic differential equation:  

 ,=(0)      ),()(=)( 0XXtdWdttcXtdX σ+−  (13) 

 where  0>c   and  0>σ   are parameters and  )(tW   denotes the Brownian motion. 

The Ornstein-Uhlenbeck process is one of several approaches used to model (with 

modifications) interest rates, currency exchange rates, and commodity prices stochastically. 

Here are some examples of OU process with different choices of  σ  ,  0.1=c  and   2=(0)X .  

Langevin equation is also an example of an Ornstein-Uhlenbeck process. This is a stochastic 

differential equation with application in Chemistry and Physics.  

 

Example 4 (Langevin equation) As we have seen, the Brownian motion of a pollen particle 

suspended in a fluid flow obeys the following equation of motion for its velocity )(tX :  

 ),()(=)( tdWbdttaXtdX +−  (14) 

 where a  and b  are constants, and )(tW  is a scalar Wiener process. This type of 

stochastic differential equation is said to have additive noise.  

  

Program 3   

#   Ornstein-Uhlenbeck path simulation 

T = 1               #  T is the maturity ( time belongs to [0,T]) 

N = 500             #  N is the length of the sample path for Ornstein-Uhlenbeck Process 

c=0.1 

sigma=0.5 

X = rep(0,N) 

X[1]=2 

   for (j in 1:N) 

   { 

    X[j+1]=X[j]-c*X[j]+sigma*rnorm(1)     #   general increment 

   } 

plot(X,type="l") 
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                  Figure 3. Sample path of OU process for 0.1=c , 0.5=σ  

 

 6  Chemical Reactions 

 In this section, chemical reactions between molecules are modeled in a stochastic manner. It is 

shown how an SDE model can be developed using the two modeling procedures. It is assumed 

that a fixed volume contains a uniform mixture of d different chemical species that interact 

through m different chemical reactions. The reaction rates are either proportional to the rates 

that the molecules collide or, if the reaction is spontaneous, the reaction rate is just proportional 

to the number of molecules of the particular chemical species. Given the initial numbers of 

molecules of the d different chemical species, the objective is to find the molecular population 

levels at a later time. To illustrate the modeling procedure for chemical reactions, it is useful to 

consider a specific problem. Therefore, suppose that there are three chemical species 1S , 2S  

and 3S  interacting through molecular collisions or spontaneously in the four ways described 

in Table 1 [13]. In Table 1 1µ , 2µ , 3µ  and 4µ  are reaction rate constants and 1X , 2X  and 

3X  are the number of molecules of species 1S , 2S  and 3S , respectively. Using the second 

modeling procedure gives the chemical Langevin systems [14]. 
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Table  2: Probabilities for reactions among three chemical species [13].  

  Reaction   Probability  

�� � �� � ��     � � !�	�	�"� 

�� � �� � ��   � � !�	�"� 

#�� � �� � #��    � � !�	�
�	�"�$# 

#�� � #�� � ��   % � !%	�
�"�$# 

 

6.1  A +K  channel 

Transformations of human ether a-go-go related gene (HERG) encoded +K  channels between 

three closed states );;( 321 CCC , one open state )(O  and one inactivation state )(I  [15]. It 

models as 5=n  chemical species );3;2;1;( IOCCC  reacting through 10=m  reaction 

channels (See Fig. 4)  

   

Figure  4: A +K  channel 

 

The chemical Langevin equation:  
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  For the purpose of illustration, the following parameters have been chosen: 

Rate constants:   &� � '&�( � 
)�, 

Initial state: ��

* +
* �

* +
* �

�  

Time horizon: ,
* +- , step size: 
)

+. 

 

   We simulate this example in R with the Euler Maruyama method. Numerical solution in 

final time is obtained as follow:  

	�+� � ��#).+� #/)�#� �
+)0+� #
)
�� 10)2#� 1�)3
��

 

7  Conclusion 

This article is designed to give readers a brief and practical introduction to the concept 

"Stochastic Processes" with a minimum of technical detail, also the usages of stochastic 

process discussed. Brownian motion, geometric Brownian motion, stochastic differential 

equations, stochastic integration, Ornstein-Uhlenbeck process and SDE were explained 

simply, also by using R, simulated them. Finally, we have stated numerical results of chemical 

Langevin equation that don't have any exact solution. 
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