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Abstract

A fullerene graph is said to be centrosymmetric if it has a vertex labelling for which
its adjacency matrix is centrosymmetric. A recent conjecture that all fullerenes
are centrosymmetric is disproved; in fact, it turns out that most fullerenes are not
centrosymmetric. Necessary and sufficient conditions are stated in terms of the 28
possible fullerene automorphism groups: if the group is C1 or C3 the fullerene is not
centrosymmetric; for C3h, C3v or Cs the fullerene is centrosymmetric unless some ver-
tex is fixed by a mirror plane; for all other groups, the fullerene is centrosymmetric.
Most fullerenes have trivial C1 symmetry and hence are not centrosymmetric.

A fullerene graph is cubic, polyhedral, has 12 faces of size five, and all other faces of

size six. [1] It is the skeleton of a member of the family of all–carbon molecules to which

the experimentally characterised C60 [2] and C70 [3] species belong. The n× n adjacency

matrix A of a graph on n vertices is said to be centrosymmetric [4, 5] if its entries obey

ai,j = an+1−i,n+1−j (1)

for all 1 ≤ i, j ≤ n, which implies

ai,j = aj,i = an+1−i,n+1−j = an+1−j,n+1−i, (2)
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as adjacency matrices are symmetric. Centrosymmetric matrices have many applica-

tions [4, 5, 7, 8] and in particular have been used to prove properties of special classes of

fullerenes. [6]

A recently published conjecture [6] states that every fullerene has a vertex labelling

such that its adjacency matrix is centrosymmetric, or, in short, ‘All fullerenes are cen-

trosymmetric’. However, although many fullerenes including the experimental isomers of

C60 and C70 are centrosymmetric in the sense of (2), the conjecture is in fact false. Most

fullerenes are not centrosymmetric.

The disproof of the conjecture is straightforward. Equation (2) amounts to specifica-

tion of an automorphism of the graph: a graph has a centrosymmetric labelling, if and

only if there is a permutation π of the vertex labels such that i→ n+1−i for all 1 ≤ i ≤ n

and π preserves all edges, i.e., π is an automorphism. The list of automorphisms of a

fullerene graph can be constructed efficiently, e.g., with a special breadth-first search [9],

and once an automorphism satisfying the above conditions is found, a labelling yield-

ing a centrosymmetric adjacency matrix is immediately available. However, it is well

known that many (apparently, most) fullerene isomers have only the trivial automor-

phism group, [11, 12] and hence cannot have a centrosymmetric adjacency matrix. The

conjecture is falsified by the existence of small fullerenes with trivial symmetry, starting

at n = 36.

We can be more precise about the conditions under which a fullerene has a centrosym-

metric adjacency matrix. By Mani’s theorem, [10] any polyhedral graph can be embedded

in 3D space so that all of its automorphisms correspond to point-group symmetry oper-

ations. The automorphism specified by the permutation π is of order two and fixes no

vertex. There are therefore three candidates for the corresponding symmetry operation:

it may be the inversion (i) (which fixes no vertex of a polyhedron), a two-fold rotation

(C2) (which fixes no vertex of odd degree), or a reflection (σ) in a plane that contains no

vertices. The necessary and sufficient condition for a fullerene to have a centrosymmet-

ric adjacency matrix is that its point group contains at least one of the three specified

operations. Extension to other polyhedra is straightforward, if we note that when there

is an odd number of vertices the automorphism implied by a centrosymmetric adjacency

matrix fixes exactly one vertex and is therefore either a C2 rotation or a σ reflection.

There are 28 point groups possible for fullerene graphs. [11, 12] Two (C1 and C3)
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contain no operations of type i, C2 or σ; three (C3h C3v, Cs) contain σ operations but not

i or C2; the remaining 23 (Ih, I, Th, Td, T , D6h, D6d, D6, D5h, D5d, D5, D3h, D3d, D3,

D2h, D2d, D2, C2h, C2v, C2, S6, S4, Ci) contain at least one of i and C2. Hence there are

three cases: (i) if the group is C1 or C3 the fullerene is not centrosymmetric; (ii) if the

group is C3h, C3v or Cs the fullerene is not centrosymmetric if there is a vertex is fixed

by a mirror plane, but centrosymmetric otherwise; (iii) for any other fullerene group, the

fullerene is centrosymmetric. As more fullerenes belong to C1 than to all other groups

taken together, a centrosymmetric adjacency matrix is guaranteed for the majority of

fullerene point groups, but is ruled out for the majority of fullerene graphs.

In principle, there is an ‘experimental’ fingerprint of adjacency matrix centrosymmetry

for a fullerene in the tricky middle case, where vertices may or may not be fixed by

reflection plane. In ideal circumstances, the 13C NMR spectrum of a fullerene consists

of a number of distinct peaks, one for each set of symmetry-equivalent nuclei (orbit of

vertices), with intensities proportional to the set size. [1] Vertices of a fullerene graph

have site symmetries (orbit sizes) C3v (|G|/6), C3 (|G|/3), Cs (|G|/2), or C1 (|G|), where |G|

is the order of the fullerene point group. C3v and C3 orbits are mutually exclusive. [1] For

point groups C3h, C3v and Cs, the only orbits without vertices fixed by a reflection plane

are those with the trivial C1 site symmetry. Such orbits are present for all fullerenes in

these groups, but if vertices fixed by reflection, orbits of other sizes will also be present.

Thus, if a fullerene is already known to belong to one of the three groups C3h, C3v or

Cs, presence of more than one peak height in the idealised spectrum implies that it is

non-centrosymmetric.

Figure 1: The three smallest non-centrosymmetric fullerenes, all with n = 34, drawn as
3D structures to display their respective Cs, Cs and C3v symmetries.
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Tables of NMR signatures [1] or programs that embody calculations of site symmetry

(e.g., FuiGui [13] and Fullerene [14]) can therefore be used to compile the list of non-

centrosymmetric fullerenes. Inspection of point groups shows that all fullerenes with 20

to 32 vertices are centrosymmetric. The first non-centrosymmetric fullerene isomers have

34 vertices: of the six fullerene isomers with n = 34, three (34 : 2(Cs), 34 : 3(Cs) and

34 : 6(C3v) in spiral ordering [1]) are non-centrosymmetric (Figure 1). Examples of non-

centrosymmetric fullerenes continue with C36 (2× Cs, 2× C1), C38 (1× C3v, 7× C1), C40

(1× C3v, 1× C3, 7× Cs, 8× C1) and reach a majority of isomers by C42 (6× Cs, 23× C1),

where 29 out of 45 fullerene isomers are non-centosymmetric.

In the class of general cubic polyhedra, non-centrosymmetric examples also occur

early: the cubic polyhedra with n = 4 (1 isomer), n = 6 (1), n = 8 (2) are all centrosym-

metric, but at n = 10 two (both C3v) of the five isomers are non-centrosymmetric, at

n = 12 six (4 × Cs, 2 × Cs) of the 14 isomers are non-centrosymmetric, and by n = 16,

C1 isomers are already in the majority. [15] The two smallest non-centrosymmetric cubic

polyhedra are shown in Figure 2.

Figure 2: The two smallest non-centrosymmetric cubic polyhedra both have with n = 10
and are drawn here as Schlegel diagrams to display their C3v symmetry.
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