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Abstract 
Recently a new version of Atom–Bond Connectivity Index defined by Graovac and Ghorbani 
( )2ABC , which is closely related to the vertex Szeged and second geometric-arithmetic indices. In 
this paper we give lower and upper bounds for the 2ABC  index of graphs. We also determine the n-
vertex trees with the minimum, well as the first and second maximum 2ABC indices.  
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1. Introduction 

Molecular descriptors play a significant role in mathematical chemistry especially in the 

QSPR/QSAR investigations. Among them, special place is reserved for so-called topological 

indices [2]. Nowadays, there exists a legion of topological indices that found some 

applications in chemistry [15]. Let G  is a simple undirected graph, with the vertex and edge-

sets of which are represented by ( )GV  and ( )GE , respectively. Also let nGV =)(  and 

mGE =)( . The topological index of the graph G  is a numeric quantity related to G . 

The atom–bond connectivity ( )ABC index ofG , proposed by Estrada et al. in [4], and is 

defined as  

( )
( )
∑
∈
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=

GEuv vu

vu

dd
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where the summation goes over all edges of G , ud  and vd are the degrees of the terminal 

vertices u and v of edge uv . It found applications in chemical research [4,5]. Upper bounds 

for the ABC  index of general graphs using some other graph parameters have been given in 

[22]. The properties of ABC index for trees have been studied in [ 6, 19,22]. More properties 

for the ABC index may be found in [2, 18]. 

The vertex PI index is another topological index and their definition is as follows [10, 11, 12 

,13]. 
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where un  is the number of vertices of graph G  lying closer to u  and vn  is the number of 

vertices of graph G  lying closer to v . Notice that vertices equidistance from u  and v  are not 

taken into account. 

The vertex Szeged index is another topological index introduced by Gutman [9, 14, 15]. The 

vertex Szeged index of the graph G  is defined as 

( ) [ ]
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Recently, a new class of topological descriptors, based on some properties of vertices of 

graph is presented. These indices are named as geometric-arithmetic indices ( )generalGA . The 

second member of this class is defined as [7, 21], 
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It found applications of geometric-arithmetic indices in chemical research [7, 17]. Upper and 

lower bounds for the geometric-arithmetic indices of general graphs, molecular graphs and 

molecular trees have been given in [7,17,21,20]. 

Recently, Graovac and Ghorbani, defined a new version of the atom–bond connectivity index 

[8], and we called second atom–bond connectivity index. 

( )
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Upper and lower bounds for the 2ABC  index of general graphs have been given in [8]. In this 

paper, we establish further bounds on the 2ABC index using other graph invariant, and 

determine the trees with the minimum and maximum 2ABC index. 
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2. Preliminaries   

Let nK , nC , nS  and nP  be the complete graph, cycle, star and path on n  vertices, respectively. 

Let mnK , be the complete bipartite graph on n  and m  vertices in its two partition sets, 

respectively. The hypercube nQ  is the graph whose vertices are the ordered −n tuples of ,0 s 

and ,1 s, two vertices being joined if and only if they differ in exactly one coordinate [1].  

 

3. Lower and upper bounds for the 2ABC  index 

In this section are given some basic mathematical features of second atom–bond connectivity 

index ( )2ABC . 

 

Example 1: Consider the cycle nC . Using a simple calculation, one can show that, 

( )2

2 2  , if n is even,

2 3  , if n is odd .
1

n

n

ABC C
n n
n

 −

= 

−
 −

 

Now consider complete bipartite graph mnK , . A simple calculation shows that mnnn vu == ,    

for each uv   of mnK , .  Then  

( ) ( )2 , 2  .n mABC K nm n m= + −  

As another example, consider hypercube graph.  For each edge uv  of hypercube graph ( ),nQ   

it is obtained 12 −== n
vu nn . Then the value of 2ABC   index for hypercube graph ( )nQ   is 

( )2 2 2  .n
nABC Q n= −  

 

Theorem 1: Let G  be a simple graph on n  vertices and m  edges, then 

( )20  .ABC G m≤ <  
Lower bound is achieved if and only if G  is a complete graph and upper bound does not 

happen. 

Proof: We know that 1≥un and 1≥vn  then 02
≥

−+

vu

vu

nn
nn . Therefore, 

( )2 0 .ABC G ≥  
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Above, equality occurs if and only if  1== vu nn  holds for all uve = , which implies nKG ≅ . 

For any uve =  of graph G , we have vuvu nnnn <−+ 2 . Therefore, 

2 1 u v
u v

n n
n n
+ −

<  

Which implies, ( ) mGABC <2 . Simple calculation shows that the Diophantine equation 

xyyx =−+ 2  does not have any solution in natural numbers set. So no graph exists 

with ( ) mGABC =2 . 
 

Theorem 2: Let G  be a simple graph on n  vertices and m  edges, then 

( ) ( )( )2 2  .uABC G m PI G m≤ −  

with equality if and only if graph G  is a complete graph. 

 

Proof: For all edges ( )GEuve ∈= , 1≥vunn  then 11
≤

vunn
. Therefore, 
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Applying the Cauchy-Schwarz inequality, 
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Above, equality occurs if and only if  1== vu nn  holds for all uve = , which implies nKG ≅ . 

 

Theorem 3: Let G  be a simple graph on n  vertices and m  edges, then 

( ) ( ) ( )( )2 2  .u uABC G Sz G PI G m≤ −  
with equality if and only if G  is a complete graph. 

 

Proof: For all edges ( )GEuve ∈= , 1≥vunn  then vu
vu

nn
nn

≤
1 . Therefore, 
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( )

( ) ( )
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Applying the Cauchy-Schwarz inequality, we conclude 

( ) ( )
( ) ( ) ( ) ( )
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So, 

( ) ( ) ( )( )2 2  .u uABC G Sz G PI G m≤ −  
Above, equality occurs if and only if  1== vu nn  holds for all uve = , which implies nKG ≅ . 
 

Theorem 4: Let G  be a simple graph on n  vertices and 2≥m  edges, then 

( ) ( ) ( )2 3  .uABC G PI G m m< + −  
upper bound does not happen. 
 

Proof: 

( )( )
( )

2
2

2 2 22  .u v u v u v
u v u v u vuv E G uv u v

n n n n n nABC G
n n n n n n

′ ′

′ ′′ ′∈ ≠

+ − + − + −
= +∑ ∑

 

For all edges ( )GEuve ∈= we know that 11
≤

vunn
and vuvu nnnn <−+ 2  then 12

<
−+

vu

vu

nn
nn . 

So 

( ) [ ]
( )

( ) ( )

( ) ( ) ( ) ( )
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2 2 2 1 . 1

1
2 2. 3  .
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uv E G uv u v
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ABC G n n
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PI G m PI G m m

′ ′∈ ≠

< + − +  

−
= − + = + −

∑ ∑

 

 

So, 

( ) ( ) ( )2 3  .uABC G PI G m m< + −  
Simple calculation shows that the Diophantine equation xyyx =−+ 2  dose not have solution 

in natural numbers set. So upper bound does not happen. 

Theorem 5: Let G  be a simple graph on n  vertices and m  edges, then 

( ) ( )2
2 2  .uABC G PI G m
n

> −  

lower bound does not happen. 
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Proof: Note that nnn vu ≤+  implies
4

2nnn vu ≤ .  So 
nnn vu

21
≥  and therefore 

( )
( ) ( )

2
2 2 2  u v

u v
u vuv E G uv E G

n n
ABC G n n

nn n
∈ ∈

+ −
= ≥ + −∑ ∑

 

Using a simple calculation, one can show that ,
11
∑∑
==

>
n

i
i

n

i
i aa  for positive real number. 

Then, 

( ) ( )
( )2 2 22 2 2  .u v u v u

uv E G uv E G
n n n n PI G m

n n n
∈ ∈

+ − > + − = −∑ ∑  

 

Theorem 6: Let G  be a connected bipartite graph with 2≥n vertices and m  edges, then 

( ) ( )
( )

3
2

2
 

u

m n
ABC G

Sz G
−

≥  

with equality if and only if vu nn .  is a constant for any ( )GEuv∈  .  

 

 

Proof: If G  is a connected bipartite graph with 2≥n vertices then for any edge 

,uv .nnn vu =+  So, 

( )
( )

2
12 .

uv E G u v

ABC G n
n n∈

= − ∑  

Applying the Cauchy-Schwarz inequality, we know that ,1

1

2

1 ∑
∑

=

=

≥ n

i
i

n

i i a

n
a

  and 

( ) ( ) ( )
( )1 .  .u v u v u

uv E G uv E G uv E G
n n n n m S z G

∈ ∈ ∈

  
   ≤ =  
   
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∑ ∑ ∑  

Therefore, 
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2 2
2

1 2 22  .
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So, 
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( ) ( )
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With equality if and only if vu nn . is a constant for all edges ( )GEuve ∈= . 
 

Theorem 7: Let G  be a complete bipartite graph with 4≥n vertices, then  

( ) ( )2 1, 1 2 2
,

2 2

 .n n nABC S ABC G ABC K−    
      

 
 ≤ ≤  
 
 

 

 

Proof: If G  is a connected complete bipartite graph with 4≥n vertices, then for any edge uv  

of graph G  we have nnn vu =+ . So,  

( )
( )

2
12  .
u vuv E G

ABC G n
n n

∈

= − ∑
 

Suppose the vertices set of graph G   partitioned into two sets 1V  and 2V .  We assume 11 nV =  

then 12 nnV −=  and nVV =+ 21 . The number of edges in graph G  is ( )11 nnn −  , and for 

any edge uv  we have  1nnu =   and   1nnnv −= where 11 1 −≤≤ nn . Then the second atom 

band connectivity index of complete bipartite graph with 4≥n vertices as follows,  

( ) ( ) ( ) ( )2 1 1 12  .ABC G n n n n f n= − − =  

The variable 1n  takes values between 1 and 1−n . By simple calculation in function ( )1nf  

we can show that the maximum and minimum value of ( )1nf   happened in 
21
nn =  and 11 =n  

respectively. Then,   

( ) ( )2 1, 1 2 2
,

2 2

 .n n nABC S ABC G ABC K−    
      

 
 ≤ ≤  
 
 

 

  

4. Trees with extremal 2ABC  index 

Let T  be a tree on n  vertices. For any edge uv of trees we have nnn vu =+ , then 2ABC is 

simplified as 

( )
( )

2
12  .
u vuv E T

ABC T n
n n

∈

= − ∑  
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Note that the summation on the right-hand side of the above formula goes over 1−n  terms. 

 

Theorem 8: The star nS is the −n vertex tree with the maximum second atom–bond 

connectivity index. 

 

Proof: The equality nnn vu =+  implies that the minimum value of vunn is 

( ) 111 −=−× nn therefore,   

( )
( ) ( )

( ) ( )2
1 12 2 2 1  .

1u vuv E T uv E T
ABC T n n n n

n n n
∈ ∈

= − ≤ − = − −
−∑ ∑  

The right hand side of the above inequality is the second atom–bond connectivity index of nS .  

Note that equality occurs if and only if 1=un  and 1−= nnv  holds for all ( )TEuv∈ , which 

implies the only such tree is star.  

In order to determine the tree with the minimum 2ABC -value, we need an auxiliary result. 

Consider the trees 1T  and 2T  depicted in Fig.1. These two trees differ only in the position of a 

terminal vertex. In tree 2T  the terminal vertex is moved from the b-branch to the a-branch. In 

what follows we assume that ba ≥ .  In the difference of the 2ABC -values of 1T  and 2T , 

namely in 

( ) ( )
( ) ( )1 2

2 1 2 2
1 12  .
u v u vu v E T u v E T

ABC T ABC T n
n n n n′ ′′ ′∈ ∈

 
 − = − − 
  
∑ ∑  

All terms cancel out except the terms pertaining to the edges indicated by arrows in Fig.1, in 

which, for edge uve =  of tree 1T  we have  ( ),. bnbnn vu −=  and for edge vue ′′=  of tree 2T  

we have  ( )( ).11. −−+=′′ anann vu   

From 

( ) ( ) ( ) ( ) ( )1 1 1 1  a n a b n b a b n a b+ − − − − = − + − − −  

 

we conclude that  

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1 11 1  .
1 1 1 1

a b n a b
b n b a n a b n b a n a

− + − − −
− =

− + − − − + − −
 

Therefore, 

-28-



( ) ( ) ( )
1 12 0 .

1 1
n

b n b a n a

 
 − − ≥
 − + − −  

 

For ba ≥ , implies that 

( ) ( )2 1 2 2  .ABC T ABC T>  

In other words, the transformation ,21 TT →  in which a vertex from a shorter branch is moved 

to a longer branch decreases the second atom–bond connectivity index. We are now ready to 

state and prove the following theorem. 

 
Fig. 1: The transformation 21 TT → decreases the 2ABC  index provided ba ≥  

 

Theorem 9: The path nP  is the n-vertex tree with the minimum second atom–bond 

connectivity index. 

 

Proof:  By continuing the above described transformation  21 TT →  we can move all vertices 

from the shorter branch to the longer branch, always decreasing the 2ABC - value. Repeating 

the transformation sufficiently many times, we necessarily arrive to the path nP . The value of 

the second atom–bond connectivity index for path nP  equals to: 

( )
( )

1

2
1

12  .
n

n
i

ABC P n
i n i

−

=

= −
−∑  

 

Corollary 1: Among all n-vertex trees with 5≥n , the tree formed by attaching two pendent 

vertices to a terminal vertex of the path 2−nP , is the unique tree with the second maximum 

2ABC -value. 
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5. Numerical examples  
Here is shown that the second atom–bond connectivity index is an appropriate and functional 

index in comparison to the geometric-arithmetic and vertex Szeged indices. 

In Table 1, are given the second geometric-arithmetic ( )2GA , vertex Szeged ( )uSz  and second 

atom–bond connectivity ( )2ABC  indices of the octane isomers. The correlation between uSz  

and 2ABC  also 2GA  and 2ABC  are shown in Fig.2.  

# Octanes vSz  2GA  2ABC  
1 n-Octane 84 5.9914 5.1431 
2 2-Metherl heptane 79 5.7868 5.3619 
3 3-Metherl heptane 76 5.6846 5.4365 
4 4-Metherl heptane 75 5.6546 5.4566 
5 3-Ethyl-hexane 72 5.5506 5.5312 
6 2,2-dimethyl-hexane 71 5.4800 5.6552 
7 2,3-dimethyl-hexane 70 5.4483 5.6753 
8 2,4-dimethyl-hexane 71 5.4800 5.6552 
9 2,5-dimethyl-hexane 74 5.5822 5.5806 
10 3,3-dimethyl-hexane 67 5.3460 5.7499 
11 3,4-dimethyl-hexane 68 5.3778 5.7299 
12 2-methyl-3-ethyl-pentane 67 5.3460 5.7499 
13 3-methyl-3-ethyl-pentane 64 4.2438 5.8246 
14 2,2,3-trimethyl-pentane 63 5.1732 5.9486 
15 2,2,4-trimethyl-pentane 66 5.2754 5.8739 
16 2,3,3-trimethyl-pentane 62 5.1415 5.9687 
17 2,3,4-trimethyl-pentane 65 5.2437 5.8940 
18 2,2,3,3-tetramethyl-butane 58 4.9686 6.1673 

Table 1: The 2ABC , 2GA and vSz  indices of the octane isomers. 

 

 
Fig.2: Graphs showing correlation between ( )22 ,GAABC  and ( )vSzABC ,2  indices respectively. 

 

The linear correlations between 2ABC and both 2GA  and uSz  are given below. 

 

2ABC

2GA vSz

2ABC
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( ) ( ) ( ) ( )2 0.038 0.102 8.315 0.001 , 0.9882,vABC G Sz G R= − ± + ± =  

and 

( ) ( ) ( ) ( )2 20.980 0.240 11.013 0.131 , 0.9952 .ABC G GA G R= − ± + ± =  

 

6. Conclusion 
It has been demonstrated that the Szeged and general geometrical-arithmetic indices have 

many applications in QSPR and QSAR research. The appropriate correlations between 

second atom–bond connectivity, Szeged and second geometrical-arithmetic indices 

mentioned in section 5 shows that second atom–bond connectivity index can be used in 

QSPR and QSAR research.  
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