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Abstract

Recently a new version of Atom-Bond Connectivity Index defined by Graovac and Ghorbani
(ABCZ), which is closely related to the vertex Szeged and second geometric-arithmetic indices. In

this paper we give lower and upper bounds for the ABC, index of graphs. We also determine the n-
vertex trees with the minimum, well as the first and second maximum ABC2 indices.

1. Introduction

Molecular descriptors play a significant role in mathematical chemistry especially in the
QSPR/QSAR investigations. Among them, special place is reserved for so-called topological
indices [2]. Nowadays, there exists a legion of topological indices that found some

applications in chemistry [15]. Let G is a simple undirected graph, with the vertex and edge-

sets of which are represented by V(G) and E(G), respectively. Also letl (G)|=n and
\E(G)\ = m . The topological index of the graph G is a numeric quantity related toG .

The atom-bond connectivity (ABC)index of G, proposed by Estrada et al. in [4], and is

d,+d, -2
ABC(G)= Y. }7“(1 |
uveE(G) uv

defined as
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where the summation goes over all edges of G, d, and d,are the degrees of the terminal

verticesu and vof edge uv. It found applications in chemical research [4,5]. Upper bounds
for the ABC index of general graphs using some other graph parameters have been given in
[22]. The properties of ABC index for trees have been studied in [ 6, 19,22]. More properties
for the ABC index may be found in [2, 18].
The vertex Pl index is another topological index and their definition is as follows [10, 11, 12
,13].

PIL(G)= Y [my+ny]

weE(G)
where n, is the number of vertices of graph G lying closer to u and n, is the number of
vertices of graph G lying closer to v. Notice that vertices equidistance fromu and v are not
taken into account.

The vertex Szeged index is another topological index introduced by Gutman [9, 14, 15]. The
vertex Szeged index of the graph G is defined as

s (6)= D [nuny] -
ueE(G)
Recently, a new class of topological descriptors, based on some properties of vertices of

graph is presented. These indices are named as geometric-arithmetic indices (GAg ) The

eneral
second member of this class is defined as [7, 21],

GR ()= Y inf“:V .

weE(G) YV

It found applications of geometric-arithmetic indices in chemical research [7, 17]. Upper and
lower bounds for the geometric-arithmetic indices of general graphs, molecular graphs and
molecular trees have been given in [7,17,21,20].
Recently, Graovac and Ghorbani, defined a new version of the atom-bond connectivity index
[8], and we called second atom-bond connectivity index.

ny+ny -2

ABC,(G)= -
u''v

ueE(G)
Upper and lower bounds for the ABC, index of general graphs have been given in [8]. In this
paper, we establish further bounds on the ABC,index using other graph invariant, and

determine the trees with the minimum and maximum ABC, index.
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2. Preliminaries

LetK,,C,,S, and P, be the complete graph, cycle, star and path on n vertices, respectively.
Let K, be the complete bipartite graph on n and m vertices in its two partition sets,
respectively. The hypercube Q, is the graph whose vertices are the ordered n—tuples of 0's

and 1's, two vertices being joined if and only if they differ in exactly one coordinate [1].

3. Lower and upper bounds for the ABc, index

In this section are given some basic mathematical features of second atom—bond connectivity
index (ABC,).

Example 1: Consider the cycle C,. Using a simple calculation, one can show that,

2n-2, if nis even,
ABC, (Cy) =
if nisodd.

2nvVn-3

n-1
Now consider complete bipartite graph K, . A simple calculation shows that n, =n, n, =m

for each uv of K, . Then

ABCy (Knm)=ymm(n+m-2).
As another example, consider hypercube graph. For each edge uv of hypercube graph (Qn )

it is obtained n, =n, = 2"*. Then the value of ABC, index for hypercube graph (Q,) is

ABC,(Qq)=nv2"-2.

Theorem 1: Let G be a simple graph on n vertices and m edges, then
0< ABCz(G)<m.
Lower bound is achieved if and only if G is a complete graph and upper bound does not

happen.

+N

Proof: We know that n, >1and n, 21 thenuz 0. Therefore,

Un\/

ABC,(G)>0.
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Above, equality occurs if and only if n, =n,=1 holds for all e = uv, which impliesG = K, .
For any e =uv of graph G, we haven, +n, —2 <n,n,. Therefore,

ny+ny -2
Nyny

<1

Which implies, ABC,(G)<m. Simple calculation shows that the Diophantine equation
X+Yy—2=xy does not have any solution in natural numbers set. So no graph exists

with ABC,(G)=

Theorem 2: Let G be a simple graph on n vertices and m edges, then

ABC, (G)<./m(PI,(G)-2m) .

with equality if and only if graph G is a complete graph.

Proof: For all edgese =uv € E(G),n,n, >1 then <1. Therefore,

F_

ABC2(G)= . 7\%r:1\,—2£ > -2
ueE(G) uv ueE(G)

Applying the Cauchy-Schwarz inequality,

> Jn,+n,-2= > 1 n,+n,-2 s\/[ > 1}[ > nu+nv—2j
uveE(G) uveE(G) uveE(G) uveE(G)

m(Pl,(G)-2m)

Above, equality occurs if and only if n, =n,=1 holds for all e = uv, which impliesG = K, .

Theorem 3: Let G be a simple graph on n vertices and m edges, then

ABCy(G)</Sz, (G)(Ply(G)-2m) .

with equality if and only if G is a complete graph.

Proof: For all edgese = uv e E(G),n,n, >1 then

Pty =

n,n, . Therefore,
n,n

u'v

ABC,(G)= ). "”\/ﬂ > Jmuny)(ny +ny-2) .

uveE(G) uveE(G)
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Applying the Cauchy-Schwarz inequality, we conclude

z (nyny )(ny +ny —2) = Z Jogny oy +ny -2 < [ Z nun\,J[ z nu+nv2J

uveE(G uveE(G) ueE(G) uveE(G)

=[Sz, (G)(P1y(G)-2m) .
So,

ABC;(G) <. /Szy (G)(PIy (G)-2m) .

Above, equality occurs if and only if n, =n,=1 holds for all e = uv, which impliesG = K, .

Theorem 4: Let G be a simple graph on n vertices and m > 2 edges, then

ABC, (G) <[Py (G)+m(m-3) .

upper bound does not happen.

Proof:
2 ny+ny -2 nu+nv—2 nur+nvr—2
(ABC2(G)) = D’ e Z - g
weg(G) UV uv¢uv U Uty
1 n,+n,-2
For all edgese =uv € E(G)we know that——<landn, +n,—2<n,n, then——— =<1,
nunv nUnV
So
[ABC,(G)]"< D [my+ny-2]+2 > (1)
uveE(G) uv£u'v'
=PIU(G)—2m+2.m(n;_l)=Plu(G)+m(m—3) .
So,

ABC;(G) < /Pl (G)+m(m-3) .
Simple calculation shows that the Diophantine equation X+ y —2 = xy dose not have solution

in natural numbers set. So upper bound does not happen.
Theorem 5: Let G be a simple graph on n vertices and m edges, then

ABCZ(G)>§4/PIU(G)—2m.

lower bound does not happen.
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- n? 1.2
Proof: Note that n, +n, <n impliesn,n, < e So — and therefore

=)

n,n

u'lv

2_2
ABC(G)= Y. 7% 2y ./nu+nv
weE(G) utv uveE(G

Using a simple calculation, one can show thatz fz for positive real number.
=1

Z nu+nv 2=7 JPlu(G)—2m
E

Theorem 6: Let G be a connected bipartite graph withn > 2 vertices and m edges, then

Then,

:s\l\)
:\N

Z
E

ABC, (G

with equality if and only if n,.n, is a constant for anyuv € E(G) .

Proof: If G is a connected bipartite graph with n>2vertices then for any edge

uv, n,+n, =n. g,

ABC,(G)=+n-2 >’ !

weE(G) v/ n,n,

Applying the Cauchy-Schwarz inequality, we know thatZ— >

i1 & Zai

uveE(G) uveE(G) )\ uveE(

Therefore,

1 m?Jn—2 S m’Jn—2
ABC) (G)= \/_UVEZE: m Z m_\/m.Szu(G).

uveE(G)

So,



ABC; (G)>

With equality if and only if n,.n, is a constant for all edgese = uv € E(G).

Theorem 7: Let G be a complete bipartite graph withn > 4 vertices, then

Al

ABCj(S1n-1)< ABC2(G)< ABCy| K 1n7 ] -

bk
Proof: If G is a connected complete bipartite graph with n > 4 vertices, then for any edge uv
of graph G we haven, +n, =n. So,

ABC;(G)=+/n-2 !

weE(G) nuny -

Suppose the vertices set of graph G partitioned into two sets V, andV,. We assume M\ =n

then V,|=n-n, and |V;|+\V,|=n. The number of edges in graph G isn,(n—n,) , and for

any edge uv we have n,=n, and n,=n-nwherel<n, <n-1. Then the second atom

band connectivity index of complete bipartite graph with n > 4 vertices as follows,
ABC3(G)=ym(n—n)(n-2)=f () .

The variable n, takes values between 1 and n—1. By simple calculation in function f(n,)

we can show that the maximum and minimum value of f(n,) happened in n, =g and n, =1

respectively. Then,

ABC;(S11)< ABC, (G) < ABCZ[KH NJ .

202

4, Trees with extremal ABC, index

Let T be a tree on n vertices. For any edgeuv of trees we haven, +n, =n, then ABC,is
simplified as

1

uve;(T) Jhury

ABC (T)=+n-2
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Note that the summation on the right-hand side of the above formula goes over n—1 terms.

Theorem 8: The star S is the n—vertex tree with the maximum second atom-bond

connectivity index.

Proof: The equality n,+n,=n implies that the minimum value of nyn,is

u v

1x(n—1)=n-1therefore,

mBcy(N)=z Y L<hz Y ll= - 2)(n-1).

The right hand side of the above inequality is the second atom-bond connectivity index of S, .
Note that equality occurs if and only if n, =1 and n, =n—1 holds for alluv € E(T), which

implies the only such tree is star.

In order to determine the tree with the minimum ABC,-value, we need an auxiliary result.
Consider the trees T, and T, depicted in Fig.1. These two trees differ only in the position of a
terminal vertex. In tree T, the terminal vertex is moved from the b-branch to the a-branch. In
what follows we assume thata>b. In the difference of the ABC,-values of T, andT,,

namely in

1 1
ABCy (T)-ABCy(Tp)=vh-2| D ——- > ——|.
u eE(Ty) VTl uv'eE(T,) V'

All terms cancel out except the terms pertaining to the edges indicated by arrows in Fig.1, in
which, for edge e =uv of tree T, we have n,.n, =b(n—b), and for edge e = u'v’ of tree T,
we have n,.n, =(a+1)n-a-1).
From

(a+1)(n-a-1)-b(n-b)=(a-b+1)(n-a-b-1)

we conclude that
1 1 (a-b+1)(n-a-b-1)

b(n-b) (a+l)(n-a-1) b(n-b)(a+1l)(n-a-1) "

Therefore,
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sl L 1 S
2 \/b(n—b) \/(a+l)(n—a—l) 0

Fora>b, implies that
ABC2 (Tl) > ABC2 (Tz) .
In other words, the transformation T, — T,, in which a vertex from a shorter branch is moved

to a longer branch decreases the second atom-bond connectivity index. We are now ready to
state and prove the following theorem.

a a+1
—_— f—A—\
A
s
b
m -1
L, ° T

Fig. 1: The transformation T, — T,decreases the ABC, index provided a>b

Theorem 9: The path P, is the n-vertex tree with the minimum second atom-bond

connectivity index.

Proof: By continuing the above described transformation T, — T, we can move all vertices
from the shorter branch to the longer branch, always decreasing the ABC, - value. Repeating
the transformation sufficiently many times, we necessarily arrive to the path P, . The value of

the second atom-bond connectivity index for path P, equals to:

n-1
ABCZ(Pn):mz\/i(;L__i) :
i=1

Corollary 1: Among all n-vertex trees withn >5, the tree formed by attaching two pendent

vertices to a terminal vertex of the path P, ,, is the unique tree with the second maximum

ABC, -value.
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Here is shown that the second atom-bond connectivity index is an appropriate and functional

index in comparison to the geometric-arithmetic and vertex Szeged indices.

In Table 1, are given the second geometric-arithmetic (GA, ), vertex Szeged (Sz,) and second

atom-bond connectivity (ABC, ) indices of the octane isomers. The correlation between Sz,

and ABC, also GA, and ABC, are shown in Fig.2.

6.2
6.0
5.8

ABC,
5.6

# Octanes Sz, GA, ABC,
1 n-Octane 84 5.9914 5.1431
2 2-Metherl heptane 79 5.7868 5.3619
3 3-Metherl heptane 76 5.6846 5.4365
4 4-Mether| heptane 75 5.6546 5.4566
5 3-Ethyl-hexane 72 5.5506 5.5312
6 2,2-dimethyl-hexane 71 5.4800 5.6552
7 2,3-dimethyl-hexane 70 5.4483 5.6753
8 2,4-dimethyl-hexane 71 5.4800 5.6552
9 2,5-dimethyl-hexane 74 5.5822 5.5806
10 | 3,3-dimethyl-hexane 67 5.3460 5.7499
11 | 3,4-dimethyl-hexane 68 5.3778 5.7299
12 | 2-methyl-3-ethyl-pentane 67 5.3460 5.7499
13 | 3-methyl-3-ethyl-pentane 64 4.2438 5.8246
14 | 2,2,3-trimethyl-pentane 63 5.1732 5.9486
15 | 2,2,4-trimethyl-pentane 66 5.2754 5.8739
16 | 2,3,3-trimethyl-pentane 62 5.1415 5.9687
17 | 2,3,4-trimethyl-pentane 65 5.2437 5.8940
18 | 2,2,3,3-tetramethyl-butane 58 4.9686 6.1673
Table 1: The ABC,, GA,and sz, indices of the octane isomers.
o 6.2
o 6.0 oo
:- . .'-
** e ABC, o
° 5.6 °
) L 5.4 e o
. 5.2 °
5.0
4!8 5‘.0 :'2 il4 S{b ils 6‘0 55‘.0 60‘.0 65‘.0 75.0 80.0 85‘.0
GA, Sz

Fig.2: Graphs showing correlation between(ABC,,GA, ) and (ABC,, Sz, ) indices respectively.

The linear correlations between ABC,and bothGA, and Sz, are given below.
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ABC, (G) = -0.038(+0.102) Sz, (G) +8.315(+0.001),  R=0.9882,

ABC, (G) = ~0.980(+0.240)GA, (G) +11.013(+0.131), R =0.9952

Conclusion

It has been demonstrated that the Szeged and general geometrical-arithmetic indices have

many applications in QSPR and QSAR research. The appropriate correlations between

second atom-bond connectivity, Szeged and second geometrical-arithmetic indices

mentioned in section 5 shows that second atom-bond connectivity index can be used in
QSPR and QSAR research.
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