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Abstract 

 DNA origami nanostructures were selected as research subject, a discussion about how 

two dimensional links assemble into three dimensional links was given and DNA polyhedral 

links were constructed by a series of Hamilton circles through dual operation. Our results 

provide further insight into the molecular designing and theoretical characterization of the 

new DNA nanostructures.  

Introduction 

In 1991, Seeman reported his most important paper in Nature which shows how to fold 

DNA strands into a cube shape artificially [1]. It is a milestone of the DNA nanometer era 

that based on the special character of DNA that two helical chains of nucleotides held 

together by the specific hydrogen-bonded base pairs. In the following years, scientists have 

synthesized various DNA shapes which riches the library of DNA nanostructures [2–7]. In 

2006, Rothemund produced some two-dimensional DNA structures with the strategy called 

“origami” [8], for example, DNA smile faces, five point stars and rectangles [8]. The 

principle of origami strategy is like this. A long scaffold DNA strand is folded into the desired 

shape back and forth and some short strands are used to pair with the scaffold at particular 
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positions, then a stable DNA geometry is produced. With the stimulus of DNA origami, 

scientists have made a lot of three and two dimensional DNA structures, for instance, DNA 

cube [9–10], tetrahedron [11], triangular prism [12] and Mobius band [13] and so on [14–23]. 

The synthesis of DNA polyhedra have accumulated massive and novel experimental 

results that need more work to explain them, then a lot of theoretical scientists are attracted 

and join in this emerging field and have reached great achievements. The methods that 

calculate components number of DNA polyhedra are reported by N. Jonoska and R. Twarock 

[24–25]; professor Slavik V. Jablan have discussed the intrinsic properties of DNA structures 

by graph theory [26–27]; professor Qiu and his group have paid a lot of efforts to describe 

these structures with polyhedra links [28–31] and proposed many theoretical models to design 

DNA polyhedra [32–35]. But unfortunately, all these works focused on edges and vertexes of 

polyhedra to organize their design. Face is a very important element of geometry but it is 

ignored. As far back as in 1994, Adleman tried to seek Hamilton paths in molecular design to 

understand how do macromolecular fold with aid of computer experiments [36]. His works 

inspire us to design DNA nanostructures with origami strategy that begin on a face by 

Hamilton circles. The idea of this paper is derived from here. 

The constructed two dimensional links (2D-links) are nested together as sewing pieces of 

cloth together with a needle, then a three dimensional links (3D-links) is produced. In this 

paper, we will not only discuss how to sew 2-D links into 3-D links, but also give a 

discussion about constructing DNA three dimensional links with Hamilton circles. The results 

show that any connected plane, curved surface or three-dimensional space, can be constructed 

by Hamilton circles. 

Assemble 2-D links into 3-D links 

For assigned two dimensional links, we can assemble them into a three dimensional links 

with sewing their common edges together. If the 2-D links are chained together in different 

ways, the results are not the same. So we divided them into two kinds: direct embedding and 

embedding with additional rings. Here, for convenience we select 2-D links as shown in 

figure 1 to discuss. Before the discussion, we must have a common view: for any polyhedron 

P, the number of vertexes, faces and edges are V, F, E and the component number of the ith 

face Fi is Ci. 

-186-



Direct embedding 

If 2-D links is embedded together directly, then common boundary between two 2-D 

links will be edge of 3-D links and vertexes are points that some 2-D links gather. For 

convenience of discussion, all edges and vertexes are topological on a plane shown in figure1. 

The arcs embedded together maybe on entirely different components or some of them on 

same one. However, each arc must be part of a component of 2-D links. Here, we must 

consider the crossing number n is even or odd, because the results are different. 

 

 
Figure 1: Direct embedding 2-D links into 3-D links. 

 

If the crossing number n is even but not 0, as shown in area A of figure 1, the elliptic 

region B and the rest of area A are mirror image. As everyone knows, the component number 

Cp has nothing to do with n while n is even. Therefore, Cp is equal to the sum of component 

numbers of all 2-D links; we can calculate it by formula (1). 
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(1) 

If the crossing number n is odd, is shown in area C of figure1, the elliptic region D and 

the rest of area C are mirror image. We can find that two components belong to two 2-D links 

are merged into one. Nevertheless, if there are m (m≥0 and m is integer) pairs of arcs on 

boundary, if m is even (include 0), then two components will not merge to one; but if m is odd, 

the number of components will reduce 1. We can calculate Cp by formula (2). 

( )
F

p i
i

C C C m  
                                                     

(2) 

-187-



Here, C(m) indicates the function that whether two components combined to one. If two 

components combined to one, C(m)= -1; otherwise, C(m)=0, and ∑C(m) is the total number 

of reduced components. 

 

Embedding with additional rings 

If we add a series of rings between edges, vertexes as shown in figure 2. The cross 

between rings and arcs maybe alternate cross, unalternate cross or these two coexist. The 

crossing number n is even or odd will determine that whether Cp reduces. If n is even and the 

number of components will not change. So the components number of polyhedra link can be 

calculated by formula (3). 

F

p i
i

C C V E  
                                                           

(3) 

If we define the number of additional rings C+ satisfies C+= V + E, then formula (3) can 

be rewritten to formula (4). 

F

p i
i

C C C 
                                                           

 (4) 

If the number of crossings n between additional rings and arcs is even, crossings number 

between additional rings is all odd, all even or these two coexist, C+ is not equal to the total 

of V and E but is determined by q, which is the number of odd crossings between each two 

rings. 

1,

0,q

q is odd
C

q is even

    
                                                  

    (5) 

Then, the formula (4) can be revised to formula (6). 

( )
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i

C C V E C q                           (6) 
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Construct 3-D origami links by Hamilton circles 

Hamilton paths were sought to understand how macromolecule strands fold can be traced 

back to 1994, Adleman tried to find the Hamilton paths in molecular designing with aid of 

computer. We are motivated by his work and determine to construct 3-D links by Hamilton 

circles. Our design idea as follows: start from one face of a polyhedron, cross edges and 

travel to adjacent faces until all faces are traveled and go back to the starting face to get a 

loop circuit. Repeat this operation and we will get a series of Hamilton circles, and make 

them intertwine together and a 3-D link is produced. Then, replace all crossings with tangles 

and we can get polyhedron origami links. The problem that Hamilton paths travel all faces of 

polyhedra is similar to the problem that Hamilton paths travel all vertexes of polyhedra. 

Therefore, we can set up bridge between the two problems through dual operation. The 

Platonic polyhedral are most beautiful convexes and cube was first synthesized with DNA 

strands in Seaman’s lab. Research about Hamilton paths of Platonic polyhedra is maturity, so 

in the following we will cite Platonic polyhedra examples to carry out our idea. 

 

 
Figure 2: Embedding 2-D links into 3-D links with additional rings. 

 

Construct Platonic origami polyhedra links 

Tetrahedron origami links 

We all know that tetrahedron is a self-dual polyhedron, so we can discuss the Hamilton 

paths that travel all its vertexes instead of that travel all faces. For tetrahedron, we can find 

several different Hamilton circles that travel all vertexes, see full lines in figure 3a, b. But all 

vertexes are same for they do not distinguish from symmetry, so the Hamilton circles also can 
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be coincided with symmetry operation which is shown by full line and dot dash line in figure 

3c. All Hamilton circles in figure 3c are on a plan. Two different Hamilton circles that travel 

all faces cross one common edge, this means that two Hamilton circles share one edge in the 

dual graph of tetrahedron.  

First, a bunch of parallel Hamilton circles are used to travel all faces of tetrahedral only 

once as shown in figure 3c. All these Hamilton circles compose a “Cluster”. The circles in a 

cluster are not inserted with each other, namely they are parallel. A Hamilton cluster can be 

found in figure 3c that covers all faces of tetrahedron entirely. If two clusters of Hamilton 

circles inserted with each other, which leads to a series of points with degree 4. Replace all 4 

degree points with tangles and a tetrahedron link is gotten.  

 

 

Figure 3: Construct tetrahedron origami links (gray indicates inner, black indicates outer). 

 

The component number Cp of tetrahedron links has no reference to E, V and tangle 

number. It is determined by two factors: the number of Hamilton circles Ci (i can be 1 or 2) 

and the parity of tangles. As discussed in the preceding section, Cp is a constant if tangles 

with even crossings, but the Hamilton circles are changed and more badly the preconditions 

of Hamilton circles are not available. The number of tangles T that replace all 4 degree points 

can be figured out by formula (7). 

1 2=2T C C                                                                (7)  

 Here, 2 means that two Hamilton circles in two clusters that inserted with each other are 

sure to have 2 points with 4 degree and therefore they must be replaced by 2 tangles. If the 

crossing number of ith tangle is ki, then no matter tangles are same or not that the total 
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number of crossings N can be calculated by formula (8).  

n

i
i

N k                                                                   (8) 

Hexahedron and octahedron links 

To analysis Hamilton circles that travel all faces of hexahedra, we need begin at its dual 

polyhedra, octahedra. Based on different edges, the Hamilton circles that travel all vertexes of 

a octahedron can be divided into two parts as follows: 

The first is that any two edges adjacent which Hamilton circles travel with no chirality 

are belong to one triangle（find in figure 4a）. Rotate with the fourth axis and there will be 

four cases, one of them is shown with full lines in figure 4a. As our definition, there is one 

“Family” with four “Clusters”. In the second Hamilton circles, two adjacent edges that travel 

two vertexes (as shown in figure 4b, c) are not edges of any triangle but a square, we definite 

these vertexes as “Singular-points”. The Hamilton circles in the left of figure 4b and c are 

enantiomer, each of them is a “Sub-family”. 

If a cluster of paralleled Hamilton circles are used to cover all faces, then we can 

transform vertexes traveling of octahedra to be faces traveling of hexahedra. To ensure to 

form vertex covering, other different clusters must be added to. There are two methods to add 

clusters in the first kind. One is a cluster of Hamilton circles are used and some other circles 

are needed too. Then crossings are produced and cover the full hexahedron, for example, in 

the middle of figure 4a, circles shown with single point lines are introduced in hexahedron. 

All these introduced circles form two “Clusters” satisfying rotation symmetry which belong 

to a “Family”. Four clusters of Hamilton circles with four axes are needed in the other 

method. Two parallel paths from a cluster and two from another cluster form one group and 

travel two edges with two rotational axes of hexahedron. Then, six groups cover all edges of 

hexahedron to ensure that the centers of faces with same density of crossing. However, only 

two clusters with two rotational symmetries are needed to make crossings that cover the 

whole hexahedron (in the middle of figure 4b). In the end, all crossings are 4 degree, so 

hexahedra links can be got by replacing crossings with tangles of 4 degree. 

If the broken-lines are replaced by straight lines, there will be some novel results (shown 
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in the right of figure 4a, b). In the first family, four clusters with four rotational axes are 

needed, each Hamilton circle of a cluster is on an identical plane and all these planes are 

parallel with each other. But the area that every cluster can cover is limited, for example, the 

Hamilton circles that figured by heavy lines can only exist in the area between double dot 

lines. Areas covered by the four clusters interlap with each other, and then all 4 degree 

crossings cover all faces precisely. The hexahedra links can be made by replacing crossings 

with 4 degree tangles. For the second family, although four clusters Hamilton circles with 

four axes are needed to construct links as well in the same sub-family, there are still some 

differences, as shown in the left of figure 4b. Firstly segmental arcs in any Hamilton circle 

that traveling faces of a hexahedron are not in identical plane. Second, Hamilton circles travel 

adjacent edges of face with four axes are corresponding to singular points of octahedra. 

However, these faces will be covered by 6 degree tangles[33] to construct links. 

 

 

Figure 4: Building 3-D links of hexahedron and octahedron. 
 

If employ four clusters from the different sub-family to construct links, there should be 

that the two of them are adopted from one sub-family and satisfy with two rotational axes, as 

well as the remains. At the same time, the faces corresponding singular-points must be 

coincident otherwise there are no crossings on the other two faces. After then on the faces, 

one cluster of a sub-family is parallel to one from the other sub-family and intersectant with 
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the other one from the latter.  

It is easier to construct octahedron links（in figure 4d）. There is only one family of 

Hamilton circles in constructing octahedron links because there is one kind of Hamilton 

circles covering vertexes of hexahedron. That is still only needed two clusters with two axes 

to construct links. 

 

The feasibility of constructing dodecahedron and icosahedron 
origami links 

For dodecahedra and icosahedra, not only “cluster” and “family” are more complexity, 

but also the situations of Hamilton circles are more. So, we give feasibility analysis about 

constructing here. 

 The research about Hamilton circles of icosahedra is a troublesome problem. In view of 

that the Hamiltonian path problem is an N-P complete problem. Here, we use the enumeration 

method and the results are shown in figure 5a. The Hamilton circles of an icosahedron are so 

complex that we use its plane to have a discussion. In figure 5a, different Hamilton circles 

family are figured by full lines and dot dash lines. 

 

 

Figure 5: Origami links schemes of dodecahedron and icosahedron. 

 

Here, we can search Hamilton links by some rules as follows: 

1. First, calculate the number edges in a Hamilton circle which share a vertex and in a 

triangle; 
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2. If 1 is available, we need to estimate that all triangles share edges, share vertexes or 

disjoint. 

3. If 2 is available, the number of continuous triangles with common edges need to be 

calculated. 

A preliminary judgment can be made by the above methods. If all these are fulfilled, its 

chirality cannot be determined until by symmetry operation. In middle and right of figure 5a, 

we can find many families of Hamilton circles. The areas between full lines, between dot 

dashed lines indicate different Hamilton families. 

The families of enumerated Hamilton circles will form crossings with 4 degree, replace 

them by tangles and then get 3-D links. However, the folding of Hamilton circles is a 

complex system because each face of an icosahedron is a pentagon, see figure5. Any cluster 

of Hamilton circles cannot cover the whole of a pentagon. We can conclude that there are two 

cases of travelling a vertex from travelling vertexes of its dual graph: a Hamilton circle 

travels edges which share a common vertex is continuous or discontinuous, they are figured 

in figure 5c with full lines and dot dashed lines, respectively. Therefore, the number of cluster 

must greater than 2 for constructing dodecahedron links. We conjecture the number is 4 at 

least. 

The Hamilton circles that travel all faces of an icosahedron are easier for its dual 

polyhedron dodecahedron only has one family of Hamilton circles. Meanwhile, each face of 

an icosahedron is a triangle. The two intersected Hamilton circles cover all faces and replace 

them with tangles, we will get links. 

The formulas of tetrahedron origami links also satisfy other Platonic polyhedra origami 

links. If the number of Hamilton circles that construct links is even and greater than 2, we can 

make two clusters as a group to compute and then summate them. 

 

Discussion 

For any polyhedron P, its dual polyhedron P* can be got by dual algorithm. But whether 

Hamilton circles can travel all vertexes of P*, there is no effective methods to proof. For 

polyhedra with such Hamilton circles, it can be construct by this method. The polyhedra 
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without such Hamilton circles cannot be constructed directly, but we can make a modification 

as follows: in the plane of P*, there is a Hamilton circle that travels the most vertexes as a big 

circle and construct a series of rings intersect with the big circle based on the rest of vertexes 

not with repeat edges. The idea has been used in constructing hexahedron links, but the 

chosen big circle is Hamilton circle. 

From above and previous work [33], for any connected area, no matter it is plane, curve 

or 3-dimensional, it can be covered by a dot matrix or a series of regular points and finally we 

can get a 2-regular graph. Then, utilizing the Eulerian graph theorem[37], Hamilton circles 

and tangles, an origami links can be obtained ultimately.   

Conclusion 

In this paper, we are focus on how to fold 2-D links into 3-D links. First, we discuss 

about constructing polyhedra links with two dimensional links by direct embedding and 

embedding with additional rings, then we calculated the number of components number Cp 

and the number of crossings n. 

Second, we build a bridge between Hamilton circles travel vertexes and faces by dual 

operation. Then we constructed tetrahedral, hexahedra and octahedra origami links with 

Hamilton circles and give a feasibility analysis about constructing dodecahedra and 

icosahedra origami links. 

Third, we gave a further discussion about producing origami links by Hamilton circles. 

For any connected graph, the corresponding links can be constructed if its dual graph has 

Hamilton circles; otherwise, the corresponding links can be produced through a series of 

modification. 

Although our discussions of how 2-D links were transformed into the origami polyhedra 

origami links is preliminary, the problem still needs a lot of in-depth research. We hope that 

the results can provide some theoretical support for the design and synthesis of DNA 

polyhedron. 
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