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Abstract 

Ranking of chemicals is an important step in risk assessments. The hazard of chemicals exerted on 

human or on environments is not directly measurable, instead a set of indicators serve as proxy for this 

purpose. This so-called multi-indicator system is of high scientific value because it contains specific 

knowledge about chemicals. Often a ranking is obtained by aggregating this detailed information to 

get a scalar, the ranking index. Such an aggregation may be considered as subjective, at least up to 

certain extent. An alternative to aggregation is possible by applying simple elements of partial order 

theory. Instead of unique, linear orders, partial order theory can provide the so-called average heights 

from the concept of linear extensions. The calculation of average heights is of high interest because, 

once estimated, a weak order can be derived.  Once the weak order is found, (tied) ranks can be 

determined. This is why average heights are often called average ranks. The calculation of the needed 

average heights is most often computationally intractable and approximations are needed. The quality 

of the approximations cannot be checked because of the computational restrictions in calculating 

exactly all needed average heights. A possible way out of this conundrum is the definition of models 

of partially ordered sets – model-posets - which are simple enough to derive analytical formulas for 

the average heights and, at the same time, provide enough structural diversity to allow for 

generalizations. Once model-posets are set-up, the quality of approximations can be checked and the 

role of different parts of the graph, representing the partially ordered set, can be studied by sensitivity 

analysis. We start the analysis with an example taken from environmental chemistry, where persistent 

organic pollutants are ranked according to three indicators, namely persistence, bioaccumulation and 

toxicities.  

It is found that i) an approximation model, based on a local partial order concept, provides results in a 

satisfying coincidence with the exact values  and ii) that the structure parameters can be ranked with 

respect to their impact on the average height value.  
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1. Introduction 

One of the first and most important steps of chemicals’ evaluation is providing a ranking. The 

ranking of complex systems such as chemicals usually leads to a multi-indicator system 

(MIS) [1] which describes all the aspects that are important for evaluation. In order to get a 

ranking, most often weighted sums of the indicator values are computed leading to composite 

indicators. Hence composite indicators are the results of a series of subjective choices, 

transformation, normalization, weighting scheme to name only few, which may undermine 

the message they convey. An alternative to the numerical combination of indicators is the 

application of simple elements of partial order theory. Partial order theory does not require 

subjective decisions, but the tradeoff is that the resulting structure, the directed acyclic graph 

of order relations, does not lead to a unique ranking. Therefore the general attempts are 

nowadays oriented toward the use of partial order theory to support conventional multi-

criteria decision analysis tools, such as PROMETHEE [2] or the aforementioned composite 

indicators themselves. Instead of unique, linear orders, partial order theory can provide 

average heights [3]. Average heights are derived from the analysis of the linear extensions, as 

will be shortly shown. The calculation of average heights – hav - is of high interest because 

once estimated, a weak order and from them ranks can be derived (therefore in applications 

hav is often called “average rank”).  

The calculation of average heights is most often computationally impossible. Indeed the 

calculation of hav has the complexity measure of being #P-complete [4]. Approximations are 

then to be introduced in order to get estimated values [5-8]. Checking the quality of these 

estimates is difficult as well, because the exact solution is only available up to a certain 

number of objects. Our proposal is based on the following steps:  

1. defining classes of simple partially ordered sets, each class called “model-poset”, 

which are simple enough to analytically derive the exact average heights; 

2. introducing a set of parameters, “structure parameters”, which describe the model-

poset (see below); 

3. presenting formulas of the two approximations of average heights most often used, 

LPOM0 and LPOMext (for details of the Local Partial Order Model (LPOM) see 

below and [5-7].  

4. performing a global sensitivity analysis to check the single and interactive influence of 

structure parameters on average height values;  

5. assessing the quality of the estimates for in principle infinite number of posets, so far 

as they belong to one of the hitherto developed classes of model-posets. 
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In the following we refer e.g. to hav(LPOM0) to express that hav is calculated following the 

approximation model of LPOM0, similarly for hav(LPOMext) and hav(exact). We write 

hav(approx) to indicate that hav is calculated by approximations, such as LPOM0 or 

LPOMext. Furthermore we write hav(<method>, x) to indicate that one of the three models, 

LPOM0, LPOMext or exact is used to calculate the average height of object x. The outcomes 

of the study are: 

1. Identifying whether or not it can be established  

hav(LPOMext)  = hav( exact) and/or hav(LPOMext ) =  hav(LPOM0 ) and/or  

hav(LPOM0 ) = hav(exact)  

for all possible values of structure parameters or a restricted range of them. 

2. Empirical approximation quality, measured by mean( |hav(exact) - hav(approx)|). 

3. Assessment of which poset structures influence the average height and to what extent.  

4. Assessment of the interaction effect, if any, among the structure parameters. 

To this aim, we firstly introduce a leading example, then we explain the basics of partial order 

theory, the ideas concerning structure parameters and apply variance-based sensitivity method 

for some classes of partially ordered sets for which analytical formulas are derived.  

2. Introductory example 

In [9] a study of some persistent organic chemicals is described. Their multi-indicator-system 

comprises three indicators: persistence (P), bioaccumulation (B) and toxicity (T), quantities 

known as “PBT-characteristics”. The data set is shown in Table 1: 

Table 1. Some persistent organic chemicals and their PBT characteristics. Details, see [9]. 

Chemical abbr P B T 

p,p-DDT DDT 0.8361 4.226 58.8235 

p,p-DDE DDE 0.6033 3.962 9.8039 

p,p-DDD DDD 0.5758 3.639 10.4167 

Methoxychlor MEC 0.6611 3.019 6.3291 

Lindae LIN 0.659 2.399 0.4333 

Hexachlorbenzene HCB 0.7518 3.448 11.3636 

Chlordane CHL 3.6792 3.771 12.8205 

Heptachlor HCl 1.9026 3.276 6.4935 

Aldrin ALD 1.3941 3.956 37.037 

Dieldrin DIE 1.4852 3.098 2.8169 

Pentachlor phenol PCP 0.612 3.045 1.006 

Pentachlor nitrobenzene PCN 0.7441 2.728 2.0492 
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An analysis with Hassediagram technique (HDT) was carried out [9] and the Hassediagram is 

shown in Figure 1.  

 

Figure 1. Hassediagram of the 12 chemicals (Table 1) (software: PyHasse, see e.g. [10-12]).  

Their main goal in [9] was to decide the quality of different aggregation methods, all based on 

the technique of calculating a composite indicator (CI) from the three indicators of their 

multi-indicator system. It was shown with help of the average heights based on three different 

methods (two variants of the Local Partial Order Model (LPOM0 and LPOMext), and the 

exact method) that the different composite indicators show severe discrepancies with respect 

to the partial order derived orders. It is not claimed that partial order methods render more 

reliable methods, but a discrepancy should motivate a reconciliation between the weighting 

and the aggregation method itself. A necessary condition for performing this task is the ability 

to calculate -at least approximately- the average heights. 

The issue discussed here and which originally motivated the study is that the very simple 

LPOM0 method can yield better results than the more sophisticated LPOMext. For example, 

in [9] it was shown that hav(LPOM0, HCB) = 0.602, hav(LPOMext, HCB) = 0.592, but 

hav(exact, HCB) = 0.607. Taking a look at Figure 1 one can see that Hexachlorbenzene 

(HCB) has a striking side-arm, whereas all other chemicals are more or less connected with 

the others either up or downwards. Therefore the question arose, as to how far the structure of 

the graph of a partial order has an impact on the quality of approximations. 

We see in the analysis of more and more classes of model-posets a way to unfold the intricate 

relations between the order theoretical environment of an element x and the elements 

incomparable with x, the influence and interactions of parameters describing the environment 

on the average heights and the quality of the approximations.   
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3. Methods and Material 

3.1 Basics of Partial Order 

Partial order relations can be obtained in many different ways. Even, if the partial order is to 

be related to a data matrix we can define different partial order relations among objects. For 

example: 

Let X be the finite set of objects, and IB the set of indicators qi, (i = 1, … ,|IB|) then we define: 

x,y  X:  x  y :  qi(x)  qi(y) for all qi  IB,      (1)    

Equation (1) represents a partial order P, which we denote as P=(X, IB) to indicate the 

intricate relation between the order relation and the set of indicators. The set X together with 

the partial order structure is called a partially ordered set (poset).  

Instead of (1) for example the fuzzy concept can serve as a leading idea. Then another 

definition of partial order comes into play (see for instance [13]).  

Some notational remarks are needed: 

a) Objects, for which x  y , or x  y are called comparable, in sign: x  y. 

b) Objects, for which (1) does not hold, are called incomparable. The fact that  

object x is incomparable with y, is denoted as x || y.   

c) Let Y   X. Then Y is a downset of (X, IB) if x  Y and z ≤ x implies z  Y.    (2) 

d) When Y = {x}, a principal downset is obtained, this special set is called O(x, P) 

 (order ideal of x in the partial order P).       (3) 

e) Let Y   X. Then Y is a upset of (X, IB) if x  Y and z  x implies z  Y.   (4) 

f) Let x X, F(x, P): = {y  X: y  x in P} is an upset 

 (order filter generated by x in the partial order P).      (5)   

g) The set U(x, P): U(x, P):  = {y  X: y||x in P}      (6) 

h) Isolated elements Iso(X, P): Iso(X, P) = {x: x X, there is no yX, such 

 that x > y or x <y}.          (7) 

i) Chains: Let C  X, if all x, y  C obey (1) then C is called a chain.   (8) 

j) Antichain: Let AC  X, if for all x, y  AC is valid x || y, then AC is called an antichain 
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k) Cover relations: Let x, y, z  X, when x < y < z , then z “is between” x and y. If x < z 

without any element  X, which is between x and z then z “covers” x or x is covered by z. A 

cover relation is denoted by x <: z.  

l) An interval I(z,y) is the set of elements x  X such as z  x  y. 

m) Distance between x, y: If xy, then the distance is the minimal number of covering edges 

between x and y. If x || y, then the distance is set to . 

n) Connection: It is convenient to speak of x, y  X as being connected, when a path exists 

between both vertices, where the diagram of cover-relations is considered as an ordinary 

graph. 

o) A linear extension Li of a poset is a linear order, which preserves all order relations, found 

on the basis of (1). In a finite set X each linear extension has a bottom element. A height  

h(x, Li) of an object x with respect to the linear extension Li is the number of elements in Li 

within I[bottom element, x] (see l) in Li. 

p) An extension of a poset P is a poset P1, where all order -relations are preserved. Hence, 

the linear extension is the special case, where the extension of a poset is a linear order.  

q) A weak order is a binary relation which is reflexive, complete, and transitive. Because 

antisymmetry in not required, a sequence of objects may have ties, such as the weak ordered 

set {a, b, c, d} may be represented as a < b  c < d. 

3.2 Average height of x 

The calculation of a weak order of a MIS can formally done in three steps:: 

Step 1: Calculate the partial order relations according to equation (1).  

Step 2: Calculate all h(x, Li),see p) in section 3.1 

Step 3: The average height hav(x) is defined as follows: 

          (9) 

The quantity, LT is the number of all linear extensions of a poset. 

Inserting probabilities for getting a certain height prob(h(x,Li), equation (9) can also be 

written as: 
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and is the starting point for deriving explicit analytical expressions for hav. A weak order is 

obtained from hav(x) , x  X as follows: xi  xj:  hav(xi)  hav(xj)    (11) 

The study of appropriate approximations is of high interest in the theoretical, computationally 

oriented literature. One of the best exact methods is the lattice theoretical approach [14], other 

attempts are the method of cumulative rank frequencies [15]. A widely used approximation is 

that of [4], which is however time consuming (time complexity: O(n
3
*log(n)) with n=|X|). 

Therefore other approximations became more and more popular, which are based on the 

Local Partial Order Model (LPOM) and are the core of this paper. The time complexity for 

LPOM is O(n
2
) [8]. In section 3.3 a precise characterization of both approximations, LPOM0 

and LPOMext, is given. 

3.3 Structure parameters 

3.3.1 Partitioning X 

Definition: Environment of x  X: env(x) := {y  X: y  x} 

Observation 1: X = U(x)  env(x). I.e. By selecting an object x, the set X can be partitioned 

into env(x) and U(x). The proof can be easily performed and is suppressed here.  

Example: Let’sMEC be a generating element. From Figure 1, we find:  

env(MEC) = {MEC, HCL, CHL, HCB, ALD, DDT, LIN} and 

U(MEC) = {DDE, DDD, DIE, PCN, PCP}. 

3.3.2 Characterization of the two Local Partial Order Models 

1) LPOM0: All elements of U(x) are considered as isolated elements, i.e. they have  

distance to x and among each other; env(x) is a chain with the basic constituents, the principal 

downset O(x) and the principal upset F(x) (see d) and f) in section 3.1). The quantity 

hav(LPOM0,x) depends on the number of the elements of O(x) and F(x). Because n=|X| is 

related with |O(x)|, |F(x)| and  |U(x)| by |F(x)|+|O(x)|+|U(x)|=n+1, hav(LPOM0,x) can be 

either expressed in terms of |U(x)|, |O(x)| and |F(x)| or in terms of |U(x)|, |O(x)| and n (see 

[1,5]). 

2) LPOMext: For each element y  U(x), it is determined U(y)  O(x) and  

U(y)  F(x). Then approximately hav(x) can be calculated as follows: 


 




)x(y |)x()y(||)x()y(|

|)x()y(|
|)x(|)x,(

U FUOU

OU
OLPOMexthav     (12) 

For details, see [7]. 
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Remark: It should be clear that by evaluating equation (12) no attempt is done to take the 

graph-theoretical connections among the elements in U(x) and of env(x) into account. A 

major aim of this paper is to clarify the influence of possible order relations among the 

elements of U(x). In order to study the role of approximations in detail we introduce the 

“structure parameters” of a Hassediagram. 

3.3.3 Possibilities to obtain structure parameters of Hassediagrams 

Consider a specific element x  X in PO. Then, with respect to x, there are:  

 elements which are above x: 1=|F(x)-{x}|,  

 elements which are below x, 2=|O(x)-{x}|,  

 eventually elements which are isolated 3=|Iso(X)|,  

 elements which are connected with x in an ordinary graph-theoretical sense, which 

however are incomparable with x: 4.   

The set of parameters i is a simple example of “structure parameters” of the poset.  

Remark: We see the need of a rigorous theory of structure parameters of Hassediagrams. 

However such a theory is beyond the focus of this paper. Instead of i we need parameters 

describing different parts of a Hassediagram in a more detailed way. Hereto we take a 

pragmatic point of view and introduce the needed parameters heuristically (Figure 2).The idea 

is to identify the different chains (see i) in section 3,1) in a Hassediagram and to count the 

number of their elements.  

 

Figure 2. Schematic presentation of Hassediagrams. In all three cases: The black ellipse symbolizes 

the selected object x, the rectangles the “anchor points”[6], where a bifurcation appears. BP: 

Bifurcation poset, GZZ: Generalized zig-zag poset, (z0 is covering the anchor point), DBP: Double 

bifurcation poset (see text) with lower and upper anchor points.  

p 

a 
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m 

BP 

p 

a 

t 

m 

GZZ 

p 

a 

b 

t 

m2 
m1 

DBP 

z0 

-124-



The meaning of the structure parameters in Figure 2 is explained in Table 2.  

3.4 Model - posets 

The major difficulty is to assess the role of structure parameters in influencing hav(x). We 

then take the other way round: Defining simple but typical Hassediagrams (“model-posets”) 

and finding out the influence of structure parameters as shown in Table 2 on hav(x)= 

f(structure parameters). For example in Figure 2,”BP” the structure parameters p, a, b and m 

are those which can vary and influence hav(x). 

Table 2: Heuristically introduced structure parameters of three posets. We call the point where a 

branch appears, the anchor point “ap”  

 BP GZZ DBP 

p Number of elements > x Number of elements > x Number of elements > x 

a Number of elements < x 

and > ap  

Number of elements < x 

and > ap 

Number of elements < x 

and > upper ap 

b Number of elements < ap  Number of elements > lower 

ap and < upper ap 

t  Number of elements < ap Number of elements < lower 

ap 

m number of elements in the 

branch, || x 

Number of elements in the 

chain below z0 

m1, m2: number of elements in 

the two branches || x 

 

We can speak of a type of Hassediagram(s), by defining structure parameters as was done in 

Figure 2 and Table 2 and varying them. That means, Monte-Carlo simulations are perfomed 

by changing structure parameters but keeping unaffected the type of the Hassediagram) and 

which provide enough different structures to meet the needs of the empirical application of 

posets. Each model-poset can be characterized by a set of s structure parameters. Once 

analytical formulas are at hand, a whole class of posets characterized by a s-tuple of 

parameters can be evaluated, albeit most often the complex rhs of f(structure parameters) 

does not allow a direct inspection. The only exception of the model posets studied here is 

“BP”, which therefore will be used to exemplify the derivation of the rhs of the equation 

hav(x)=f(structure parameters). 

3.5 Variance based sensitivity analysis 

The term “sensitivity analysis” is used here in the context of model outputs. Our models are 

the analytical functions which relate hav(exact), hav(LPOM0) and hav(LPOMext) to the 

structure parameter set of certain classes of model-posets. In our case the outputs are the three 
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types of average heights and the goal is to assess the influence of structure parameters on their 

values.  

Variance-based sensitivity analysis, VB-SA, consists of a set of statistical methods to rank the 

structure parameters according to their contribution to the output variance. The parameters are 

varied according to pre-defined probability distributions and some statistics are computed on 

the model output. The higher the contribution of a parameter to the output variance, the more 

relevant its role in the estimation of the model output, that is average heights in our case.  

VB-SA allows for the estimation of the contribution of each single parameter to the output 

variance and also of its possible interactions with other parameters, thus instructing the 

analyst about cooperative behavior of parameters [16-18].  

VB-SA is substantially based on conditional variances and expected values. Let’s define a 

model of the form Y=f(X1, X2, … Xk), where Y is a scalar output and the Xi are the k 

parameters following certain probability distributions. Parameters Xi are assumed to be 

independent. 

The main, or first order, sensitivity index for parameter Xi , called Si, is the share of variance 

explained by the step-wise linear model which passes through all the points E(Y| Xi). In 

formula: 

)(

)|((

YV

XYEV
S i

i            (13) 

Si corresponds to the fraction of variance of the output that can be attributed to parameter Xi 

by itself. A high value of this statistics implies that the parameter is influent. 

A so-called total sensitivity index, STi ,is also introduced which takes into account the 

influence of Xi together with all its interactions with other parameters:   

)(

)|((
1 ~

YV

XYEV
ST i

i            (14) 

where      denotes all parameters but Xi. The total index STi corresponds to direct effect of Xi, 

as already accounted for by Si, plus the indirect effect which Xi has on V(Y) through its 

interactions with other parameters, if any. Main effects are always lower or equal to total 

effects and the quantity: 

i

ii
i

ST

SST
v


            (15) 
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is the measure of the intensity of interaction effects between parameter Xi and the other model 

parameters. To obtain Si and STi the estimation of k-dimensional integrals is needed, with k = 

number of parameters. Model’s values Y have to be evaluated at different points within the 

parameter space, whose dimensionality is equal to the number k of input factors. To explore 

the k-dimensional parameter space random or quasi-random numbers are generally adopted. 

Quasi-random numbers are specifically designed to generate samples from the space of input 

factors as uniformly as possible [19]. Convergence curves of sensitivity index estimates are 

usually computed in order to check for convergence of the estimates. Quasi-random numbers 

are here used for the estimation of sensitivity indexes. For computational details see [20,21]. 

4. Results 

4.1 Results for the bifurcation poset (BP) 

Structure parameters: 

For a representation of this type of model-poset and its structure parameters refer to Figure 2 

“BP”. The structure parameters are: a: number of elements in the chain below x and the 

anchor point, b: the number of elements below the anchor point, p: the number of elements 

above x and m: the number of elements in the side branch connected with env(x) at the anchor 

point. The elements of the branch are incomparable with x, however: yi, yj  U(x)  yi  yj 

(i,j = 1, …, m). m= |U(x)| 

Analytical results: 

The basic analytical formula is derived from the starting equation (10).  

Step 1: The number of all linear extensions of BP: Following [22] this number can be easily 

determined in dependence of the structure parameters: 








 


m

mpa
BPLT

)1(
)(          (16) 

Step 2: While constructing the linear extensions, elements of U(x) can get positions between 

the anchor point as well as below or above x. Let us enumerate the elements of U(x) by 

0,...,j,...,m. For the elements 0, …, j a position below x, for the elements j+1,...,m a position 

above x is found, while constructing the linear extensions. Because the elements of U(x) are 

themselves forming a chain, no additional factor is needed for their eventual permutations. 

Furthermore we neglect for the moment the “tail” b and the anchor point, so that the elements 
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of U(x) are merged into the chain given by the elements of part a, x itself and the elements of 

part p (see Figure 2). Following [22] we obtain the frequency freq(x,h=a+1+j) of linear 

extensions with the height a+1+j: 




















 


jm

pjm

j

ja
jahfreq )1,x(         (17) 

From equation (17) we can say that the number of linear extensions, where x gets the height 

a+1+j, depends not only on the number of linear extensions where elements y  U(x) are 

inserted below x but also how many realizations are possible for y to be positioned above x. 

Step 3: If the “tail” (b+1) is taken into regard, the final expression for hav(x) is given by 

equation (18):  








 




















 






m

pam

jba
jm

pjm

j

ja

)hav(exact

m

j

1

)2(

x,
0

     (18) 

The term: 








 




















 



m

pam

jm

pjm

j

ja

jbaLhprob i
1

))2(),x(,x(  

is the probability for having height (a+b+j+2) for the considered element x, taken all linear 

extensions Li (i = 1, ..., LT) into account (for the sake of simplicity denoted as: prob(x,h)). 

Step 4: Equation (18) can also be written as follows: 











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














 


m

j

m

j

BPLT

jm

pjm
j

j

ja

hprobbaexacthav
0

0

)(
),x()2()x,(    (19) 

The sum in the first term in equation (19) includes all probabilities, hence: 








 




















 

 m

pam

jm

pjm

j

jam

j

1

0

        (20) 

Equation (20) can be considered as a binomial identity and is very useful in all analytical 

derivations of hav(x). 
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In the second term in equation (19) the presence of  factor j does not allow for any immediate 

simplification. Some further steps are needed: 

Step 4: A new summation index k=j-1 is introduced, then the numerator in the second part of 

equation (19) (we call this part B) reads as follows: 


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Step 5: By the identity 
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         (21) 

and intermediate substitutions we arrive finally at: 

hav(exact,x) = (a+b+2) + m*(a+1)/(a+p+2)      (22) 

As a side result we add the following binomial identity, which so far we did not find in the 

corresponding combinatorial literature: 
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      (23) 

We want to compare equation (22) with the simplest approximation, LPOM0, therefore we 

derive first the hav(LPOM0) in terms of the structure parameters: 

hav(LPOM0,x) = (a+b+2)+ m*(a+b+2)/(a+b+p+3)     (24) 

and secondly we see that there is a discrepancy in comparison to the exact formula. The 

reason is the structure parameter b. Indeed, if the elements of U(x) are considered as isolated, 

they can be merged everywhere in env(x), while constructing the linear extensions. Now we 

compare equation (22) with the more involved approximation, LPOMext. In terms of the 

structure parameters we arrive at: 

hav(LPOMext,x) = (a+b+2) + m*(a+1)/(a+p+2)      (25) 

Hence for the BP-model we find: hav(LPOMext) = hav(exact). 

It may be of interest, how the part (a+b+2) can be explained. This term appears in every 

equation (22, 24, 25). The term (a+b) is the part of the downset O(x); the anchor point and 

object x itself count 1 in the final rank. Because the m elements of U(x) merge to different 

amount j into the downset O(x) the equation 18 additionally includes the term j. 
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Summarizing, and answering one of the questions mentioned above about LPOM0, 

LPOMext, and exact method: hav(exact) = hav(LPOMext)  hav(LPOM0) 

Approximation quality: 

From the analytical results it can be concluded that the larger b, the larger the deviation of 

hav(LPOM0) from hav(exact). 

Variance based sensitivity: 

The parameter set in the case of the bifurcation poset is                       .  

For the sensitivity analysis, all the parameters are assumed to follow a discrete uniform 

distribution Ud [1,30]. Convergence curves are computed for eight different sample sizes N 

which go from 2
5
 to 2

12
. Convergence curves for main and total sensitivity indexes are shown 

in Figures 3-6. the four parameters and both models, hav(exact) and hav(LPOM0). We recall 

that in this case hav(exact) = hav(LPOMext).  

 

 

Figure 3. Bifurcation Poset: convergence curves for parameter X1=p 
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Figure 4: Bifurcation Poset: convergence curves for parameter X2=a 

 

Figure 5. Bifurcation Poset: convergence curves for parameter X3=b 
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Figure 6. Bifurcation Poset: convergence curves for parameter X4= m 

At the maximum simulated sample size N=2
12

 convergence is reached for both models and all 

parameters. Main and total order sensitivity indexes are shown in Table 3.  

Table 3. Bifurcation Poset: estimated sensitivity indexes at convergence 
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Parameters can be ordered by their level of influence with respect to the output variance. For 

the bifurcation model sensitivity analysis shows that:  a > b > m > p. Interactions are 

generally low. Values of    (equation 15) indicate that at most 30% of the parameter influence 

is due to interactions, with parameter p being the most interactive one. Parameters can also be 

ranked according to their estimated level of interactions: the resulting order is p > m > a > b. 
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4.2 Results for the generalized zig-zag poset (GZZ) 

Structure parameters: 

The structure parameters of GZZ-posets can be seen in Figure 2, “GZZ” and in Table 2.  

Model posets of class GZZ provide examples where one of the subsets connected is a chain, 

but not all the members of the chain are comparable to the anchor point. Note, there are m+1 

elements in U(x). The analytical calculations (once again starting from equation (10)), are 

performed by taking care that -depending on the position of z0 in the resulting linear 

extension- some of the elements  U(x) may be positioned above and some others below x. It 

turned out that it is convenient to count element z0 separately.  

Analytical results: 

Although the rhs of hav(x) = f(structure parameters) could be presented, not much can be 

derived from them by inspection except that the expression (t+a) appears in f. We therefore 

omit most the formulas. The formulas corresponding to the approximations LPOM0 and 

LPOMext are: 

hav(x) = (a+t+2)+[(a+t+2)*(m+1)]/(a+t+p+3)    LPOM0  (26) 

hav(x) = (a+t+2) + (a+1)/(a+p+2) + m*(a+t+2)/(a+t+p+3) LPOMext  (27) 

The derivation of (26) and (27) is not difficult because the leading elements in LPOM0 and 

LPOMext, O(x), F(x), U(x), U(y) can be expressed in terms of the structure parameters. Once 

again there is the quantity (t+a) in common across all the expressions (26)-(27) as well as in 

the exact but unhandy expression for hav(x), meaning that all the heights in all the linear 

extensions will be not less than (t+a). Comparing (26) with (27) we note that:  hav(LPOM0)  

hav(LPOMext). It seems hopeless to “boil down” equation hav(exact)=f(structure parameter) 

to an expression by which a comparison with (26) and (27) can be directly carried out. Hence 

it is assumed:  hav(LPOM0)  hav(exact) and hav(LPOMext)  hav(exact) 

The three methods yield different formulations for hav(x). We will show that there are ranges 

of structure parameters where the deviation of hav(LPOM0) from hav(exact) is less than that 

of hav(LPOMext). 

Approximation quality: 

When a Monte Carlo simulation is performed in order to compare the three methods which 

each other, we find (Table 4): 
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Table 4. Approximation quality of GZZ-posets 

poset class structure 

parameters 

mean(|hav(exact)-

hav(LPOM0)|) 

mean(|hav(exact)-

hav(LPOMext)]) 

Generalized 

zig-zag GZZ a , t , p , m -0.035 0.132 

 

When the generalized zig-zag poset is considered, the LPOM0-model seems to be better than 

the more sophisticated LPOMext-model.  In the discussion an explanation is given. 

Variance-based sensitivity: 

The parameter set for the GZZ poset is                       . 

For the sensitivity analysis the four parameters are assumed to vary in a discrete uniform 

distribution Ud[1,30], as for the Bifurcation poset, and convergence curves are computed for 

sample sizes from N=2
5
 to N=2

14
 . We suppress here the graphics and report only the 

numerical results. Convergence is always reached within the highest sample size assigned. 

Sensitivity indexes at convergence are listed in Table 5.  

Table 5. GZZ Poset: estimated sensitivity indexes at convergence 

 hav(exact) hav(LPOM0) hav(LPOMext) 

  Si STi    Si STi    Si  STi     

X1=a 0.4126 0.4158 0.0077 0.4122 0.4154 0.0077 0.4183 0.4214 0.0074 

X2=t 0.4114 0.4146 0.0077 0.4122 0.4154 0.0077 0.4063 0.4093 0.0073 

X3=p 0.0189 0.0250 0.2440 0.0190 0.0250 0.2400 0.0193 0.0253 0.2372 

X4=m 0.1469 0.1554 0.0547 0.1463 0.1549 0.0555 0.1461 0.1546 0.0550 

 

The three methods (exact, LPOM0 and LPOMext) yield very similar values of main and total 

sensitivity indexes, therefore all the sequences found for the different methods do not 

contradict each other. The order of the parameters is a > t > m > p, so that m and p are 

detected as the least influencing ones as in the Bifurcation poset case. Also in this case the 

level of interactions is generally low. Parameter p is the most interactive one as for the 

previous case.  
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4.3 Results for the double – bifurcation poset (DBP) 

Remark: 

In the DBP poset model, whose graph is shown in Figure 2 and Table 2. Two sets of 

incomparable elements U1(x)  U(x) and U2(x)  U(x) are present. With y1  U1(x)  and  

y2  U2(x) and y1 || y2 a remarkable step to a generalization is done, although both subsets 

U1(x) and U2(x) are chains and are comparable with their upper and lower (resp.) anchor 

points.  

Structure parameters: 

The specificity of this model-poset is that two different systems of elements incomparable to 

x (the selected element) are considered. This class of posets is described by 6 structure 

parameters: m1, m2, t, p, a and b (see Figure 2 and Table 2). 

Analytical results: 

The height hav(x) depends on the 6 structure parameters; however no analytical information 

about the structure parameters can be derived. The effort of the analytical derivation of an 

equation for hav(x) is just the simplification for the Monte Carlo calculation, needed to get the 

variance based sensitivities. It is convenient to set |O(x)|= T, which is the minimum height, the 

element x can get. 

T= a+b+t+3          (28) 

LPOM0: 

4

3
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In this case we then have: 

hav(LPOM0)  hav(LPOMext), hav(LPOM0)  hav(exact), hav(LPOMext)  hav(exact) 

We see that in (29) the term (a+b+t) as well as the term (m1+m2) influence hav(x). As long 

these sums are equal, any variation in a, b, t on the one side and m1, m2 on the other side will 

not change the average height of x within the local partial order model LPOM0.  

In LPOMext and the exact method none of these two symmetries is kept.  

Approximation quality: 
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A Monte Carlo simulation is carried out with 2·10
5
 runs with structure parameters randomly 

sampled in a Discrete Uniform Ud[1,10]. The robustness of the MC-simulation was controlled 

by checking the results for 20, 200, 2000, 20000 and 200000 runs. I.e. the mean of 

|hav(exact)-hav(LPOM0)|  and of |hav(exact)-hav(LPOMext)| is checked for 20 to 200000 

runs. Results are converging (Table 6). 

Table 6. Approximation quality of Double-Bifurcation-posets 

poset class structure 

parameters 

mean(|hav(exact)-

hav(LPOM0)|) 

mean(|hav(exact)-

hav(LPOMext)]) 

Double 

bifurcation 

poset 

DBP 
m1, m2 , t , 

p, a, b 
2.037 0.2003 

Variance based sensitivity study (exact method): 

The parameter set for the DB poset is                                

  . 

For the sensitivity analysis the six parameters are assumed to vary in a discrete uniform 

distribution Ud[1,30], as for the previous cases, and convergence curves are computed for 

sample sizes from N=2
5
 to N=2

15
 . Once again, we only report the numerical results. 

Convergence is always reached within the highest sample size assigned. Sensitivity indexes at 

convergence are listed in Table 7.  

Table 7. DB Poset: estimated sensitivity indexes at convergence 

 hav(exact) hav(LPOM0) hav(LPOMext) 

  Si STi    Si STi    Si STi    

X1=m1 0.0411 0.0528 0.2216 0.1077 0.1138 0.0536 0.0476 0.0576 0.1736 

X2=m2 0.0755 0.0824 0.0837 0.1083 0.1135 0.0458 0.0861 0.0921 0.0651 

X3=t 0.1943 0.1959 0.0082 0.2469 0.2501 0.0128 0.1948 0.1963 0.0076 

X4=p 0.0435 0.0542 0.1974 0.0255 0.0330 0.2273 0.0446 0.0546 0.1832 

X5=a 0.3868 0.3976 0.0272 0.2465 0.2501 0.0144 0.3642 0.3723 0.0218 

X6=b 0.2330 0.2355 0.0106 0.2464 0.2501 0.0148 0.2415 0.2439 0.0098               

5. Discussion 

For the sake of clarity and in order to avoid repetitive explanations we summarize here the 

basic concepts used for the discussion. 

a) “merging”: The heights h(x, Li) are the final outcome of an extension process (see Section 

2, points o) and p)). For each incomparable element y  U(x) it has to be checked where y can 

be located and how many possibilities below and above x are available. The process of 

assigning y to one of these locations in the poset-extensions is called a merging process. 
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b) For y  U(x) a part of env(x) is accessible in order to construct poset-extensions.  

c) Combinatorial effect. Let m = |U(x)|, then there are two permutations to be taken into 

account: (i) Permutations of the elements of U(x): The selection of j elements of U(x) can be 

done in 








j

m
different ways, when elements of U(x) are forming an antichain. 

(ii) j elements of U(x) can be combined with parts of the environment. Let r be the number of 

elements in the considered part of the environment. Then the leading combinatorial equation 

is: 

m!r!

r)!(m
)envofLT(part))LT(U(on)LT(extensi


 )x(x    [22]. 

Therein the term LT(part of env(x)) represents the combinatorial effect, see also [7]. 

d) “Dilution”: Elements of U(x) can be merged above x and below x. When they are located 

above x, the height hav(x) is basically not affected because the height of x is influenced only 

by elements below x. However their influence is indirect because any element y  U(x) 

merged above x is a missing candidate for a position below x. The effect of elements of U(x) 

on hav(x) is “diluted” by the part of the environment of x which is above x.  

e) “Competition”: Let posb be  the number of positions below x and posa the number of 

positions above x, then the probability of y  U(x) to be merged below x is posb/(posb+posa). 

The greater the posa, the greater the competitive effect of the part above x with respect to the 

part below x. 

f) According to the basic idea of model-posets hav(x) is always a function f of structure 

parameters. Sometimes f can be simplified so that no sum-sign and no combinatorial 

expression such as in c) eventually appear. In this case it can be said that combinatorial effects 

are cancelling out. In some other cases, such as in GZZ or DBP, such a simplification seems 

not to be possible. We assume then that combinatorial effects do not cancel out and are 

influencing factors in the computation of hav(x). 

5.1 Bifurcation model-poset 

Approximation quality: 

The LPOM0 method necessarily deviates from the other two methods (exact and LPOMext). 

Due to the assumption of elements of U(x) being isolated (they belong to an antichain) they 

can be merged in the whole environment of x. However, as in reality the elements of U(x) are 

to be located above the anchor point, they can only be located above the elements in b in any 

extension the elements of U(x). 
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LPOMext and exact methods coincide and the function f can be simplified. This shows that 

the role of combinatorial effects cancels out and confirms the quality of LPOMext for those 

posets belonging to the BP-class of model-posets.  

Sensitivity analysis interpretation, models: hav(exact) and hav(LPOMext) 

The sensitivity analysis clearly shows that the structure parameter a has the highest impact. 

The elements of the a-part contribute directly to hav(x) and the elements of U(x) merged 

within the a-part while constructing poset-extensions contribute to hav(x) as well. Structure 

parameter b also contributes to the downset of element x, but the b-elements are not 

accessible by the elements in U(x) while constructing poset - extensions.  

The influence of parameter m depends on structure parameters a and p. The role of p is only 

indirect and can be interpreted as dilution.  

Sensitivity analysis interpretation, model: hav(LPOM0) 

a) main sensitivity indexes, Si:  

The m elements of U(x) are considered as isolated and a merging into all three parts of the 

poset, namely the parts b, a and p of the original poset is possible while constructing the 

poset-extensions. That means that the probability to be merged with the a-, b- and p-elements 

depends on m and on (a+b+p+1). The b-part and the a-part play the same role, while the p-

part is competing for the elements of U(x).  

b) total sensitivity indexes and interaction effects, STi and vi: 

Total and main sensitivity indexes are always not very different meaning that the contribution 

of interactions among the structure parameters is low. When the quantity vi (equation 15) is 

considered more closely, it can be seen that the order of parameters due to Si is completely 

reversed. The structure parameter having the highest direct impact on hav(x) contributes least 

to interactions.  

In the case of LPOM0, b and a both influence hav(x) because they belong to the environment 

of x. There is no difference between the effect of a and b. Structure parameter p has the least 

influence because it only acts by competing for the elements of U(x) without directly 

increasing hav(x).  

5.2 Generalized zig-zag model poset 

Approximation quality: 

The reason for the good results of LPOM0 can be explained qualitatively. Incomparable 

elements can be merged above the whole environment of x. The crucial assumption of the 
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LPOM0 model-poset can be fulfilled. As the formula for GZZ (exact) cannot be simplified to 

get a direct information about the status of LPOMext versus exact method, we must rely on 

numerical results which show that LPOMext and exact do not necessarily coincide. Obviously 

the role of combinatorial effects cannot be cancelled out in this case.  

Sensitivity analysis interpretation, all models - hav(LPOM0), hav(LPOMext) and hav(exact): 

As for the Bifurcation model-poset - BP - the parts which contribute to the downset of x have 

the highest impact while p has the least one. The reasons for this order of parameters are 

similar to those already discussed for the BP model-poset. 

The remarkable similar impact of a and t can be attributed to the general assumption of U(x) - 

{z0} as isolated points. With respect to the LPOM-approximations: a and t are 

interchangeable in the analytical expression for average heights.  

5.3 Double bifurcation model-poset 

Approximation quality: 

The model LPOMext is definitely better than LPOM0, which is not surprising because the 

accessibility of the vertices, described by the structure parameter t is not possible and that of 

the elements described by parameter b is only partially possible. In LPOM0 however there is 

made no distinction between the b- and t-elements.  

Sensitivity analysis interpretation (all models): 

a) main sensitivity indexes, Si: 

The order of importance of the parameters is not exactly the same among the three models to 

calculate hav. According to both Si and STi for the exact model we have a>b>t>m2>p>m1. In 

the LPOM0 model the order of importance is t>a≈b>m2≈m1>p while in the LPOMext case 

the order is a>b>t>m2>m1>p. The common feature of the three models is that parameters a, 

b and t are among the most important while m1 and p are always the least influencing ones.  

Once again the structure parameter a has the highest influence, because its variation causes 

not only a linear variation in T (equation 28), but also influences the number of positions for 

m1- and m2-elements to be located below x.  Similarly b contributes additively to T but is also 

influencing the positions of the m2 elements, below x. Finally t is a summand in T, however 

the m1 and m2-elements have no access to the corresponding positions because of preservation 

of order relations in constructing extensions.  

b) total sensitivity indexes and interaction effects, STi and vi: 
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Also in this case the level of interactions is generally low. The m1 and m2-elements do not 

contribute to T (equation 28) but only fractions of them, expressed by k1 and k2. Nevertheless 

their influence is definitely different: Si(m2) > Si(p) > Si(m1). Corresponding to the a- and b-

part of the downward chain of x the effect of a variation of m2 is higher than that of m1.  

Considering the interaction due to the structure parameter, it is clear that the parameter group 

(m2, p, m1) must be at the top: All three parameters do not appear in T (27) and their impact on 

hav(x) depends on the values of the structure parameters a and b. 

6. Conclusions 

Ranking of objects, such as persistent organic pollutants, according for instance to their risk 

level is an important task in chemical evaluation. When multiple indicators are 

simultaneously observed on a set of chemicals, there are two main approaches to get a rank of 

chemicals: a) computing an aggregated measure for each chemical based on the observed 

indicator set or b) applying partial order theory to estimate the average height (average rank) 

of each chemical from the concept of linear extensions. This latter option is our setting in this 

paper. We then focus on a specific object x in a set of chemicals and provide different 

estimates of its average height in the partial order – hav(x) - induced by the multi-indicator 

system observed on the chemicals under analysis. Three types of estimations, called models, 

are discussed in this paper: “exact”,  “LPOM0” and “LPOMext”. 

The example taken from environmental chemistry [9] is the motivating starting point. There 

the authors could compare the results of aggregations with hav(exact). They have shown the 

pretty good coincidence of hav(approx) with hav(exact) and that there are discrepancies to the 

rankings due to composite indicators. In general however, hav(exact) is not available and then 

the results of our study can be applied to the analysis on larger lists of chemicals or even 

generalized to general sets of objects characterized by a multi-indicator system. 

The graph-theoretical representation of partial order by directed, acyclic graphs motivates the 

concept of “structure parameters” of a poset. The concept “structure parameter” is in turn the 

outcome of the idea that a partial order can be considered by a system of “environment” and 

elements incomparable with x. 

To investigate the influence of poset structure parameters on the estimates of hav(x) it is 

extremely helpful to express hav explicit as a function of the structure parameters.  

Here, three different types of posets are considered: the Bifurcation Poset (BP), the 

Generalized Zig-Zag Poset (GZZ) and the Double-Bifurcation Poset (DB). These types are 
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posets are denoted model-posets. In fact, today there are 10 model-posets investigated [23]. 

For example, when the poset is described by a chain plus a set of isolated elements or by two 

chains then the analytical derivation of the exact value as well as  LPOMext and LPOM0 lead 

to coinciding formulas. Combinatorial effects cancel out.  

When the elements of U(x) are connected with x in the ordinary graph-theoretical sense, then 

the consequences are: 

 Need of a classification of U(x) (as done in DBP model-poset) . 

 The three models exact, LPOM0 and LPOMext begin to diverge, but LPOM0 is not 

necessarily the worst approximation, as shown by the GZZ model-poset case. 

A variance-based sensitivity analysis is carried out for all the three model-posets in order to 

assess the structure parameter importance with respect to different hav(x) estimates. The 

sensitivity analysis supports this environmental concept.  

We conclude that the concept of “environment” in application on posets seems to be useful 

and should be extended.  

Another aspect is important to be underlined. In chemistry molecular structures can be either 

characterized by quantum mechanical concepts or by graph-theoretical invariants, i.e. the  

topological indicators. There are for example concepts describing the branching, number of 

paths or diameters of a molecule (just to mention some few among thousands of such 

topological indicators, see [24, 25]). The usage of topological indicators is of great 

importance for forecasting properties of the chemicals. Topological indicators are 

methodologically considered as predictors in a statistical model. Similarly, quantities such as 

hav(x) may be possibly described by a system of graph-theoretical invariants for directed 

graphs, i.e. a rigorous theory of partial order structure parameters is needed. 
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