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Abstract 

A new approach is developed for the study of the Michaelis-Menten kinetic equations in all 
times t, based on their solution in the limit of large t. The linear terms in concentration of the 
substrate and the intermediate complex are more dominant than their product in this limit and 
the quadratic term can therefore be treaded iteratively. The proper behavior of the analytical 
solutions we give, in the small and large time limit,  leads for the first time to a remarkable 
indistinguishability between  the analytical and the numerical results in all times and for a 
large region of the parameters of the problem. Enlargement of the region of imperceptibility 
is found going from the zeroth to the first order iteration. The analytical description of the 
steady state where the concentration of the intermediate complex becomes maximum, 
permits the exploration of the conditions of both fast and slow transient to this region.   
 

1.Introduction 
 The Michaelis-Menten mechanism [1,2] describes the transformation of a substrate S 

into the product P via the catalytic action of an enzyme E. The process passes through an 

intermediate state where the enzyme-substrate complex C is formed, and is schematically  

depicted as : 

S+E  
1

1

k

k

�

������ C 2k��� E+P   .     (1) 

The forward and the reverse rate constants of the complex formation are k1(in M-1s-1)  and k-1 

(in s-1) while k2(in s-1) is the rate of product formation and the recruiting of the enzyme. If we 

use the same symbols to describe the concentrations of the four species the four ordinary 

differential equations that describe the evolution of the system, based on the mass action, are:  

 

1 1
dS
dt k SE k C�
 � �            (2a)   
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1 1 2( )dE
dt k SE k k C�
 � � �           (2b) 

1 1 2( )dC
dt k SE k k C�
 � �           (2c) 

2
dP
dt k C
       .       (2d) 

 

While the fourth equation can lead to the determination of the product P from C the addition 

of the second with the third equation yields the conservation of the sum E+C of the two 

concentrations. With the assumption that no complex exists at the beginning of the reactions 

the complex concentration at t=0 can be taken equal to zero, leading to the relation E=E0-C, 

where E0 is the concentration of the enzyme at t=0. With the substitution of E with E0-C the 

following two independent differential equations are obtained which fully describe the 

evolution of the system:  

 

1 1 1o
dS
dt k SC k SE k C�
 � �           (3a) 

1 1 1 2( )o
dC
dt k SC k SE k k C�
 � � � �                          .      (3b) 

 

Differentiation with respect to time a further reduction of Eqs. (3) to only one nonlinear 

differential equation of the second order is also possible [3]. Equivalently a single integro-

differential equation can be obtained which has recently been used to study transient 

dynamics of the system [4]. After all the concentration of the substrate S0 has been catalyzed, 

S which starts with a value S0 at t=0 tends to zero at t��  decreasing in a monotonous way. 

The concentration of the complex C on the other hand, vanishes again in the limit of large 

times after the completion of the reaction, but since it starts at zero at t=0, it has to pass 

through a maximum at intermediate times. This general description is in accord with the 

numerical solution for all values of the initial concentrations E0, S0 and the rate constants  k1, 

k-1 and k2, see the graphs of Figs. 1 and 2. However, since analytical solutions of Eqs. (3), 

valid for all parameters in all times have  not been given yet, approximate description is very 

helpful in understanding the general behavior. 

 In the initial efforts to find the solution of Eqs. (2) and describe the behavior of the 

system the steady state(SS) assumption was used [2]. The concentration C of the intermediate 

complex has been considered to be constant after an initial time with its derivative dC/dt 
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equal to zero. Equating the second part of Eq.3b with zero, the concentration of the complex 

can  be  found ,   under  the  steady  state  assumption ,  equal  to    C= SEo/(S+KM)     with  

KM = (k-1+k2)/k1 the Michaelis-Menten constant which represents the ratio of the rates of 

consumption of C to that of its production. Employing C= SEo/(S+KM)  in Eq.3a, a 

differential equation is obtained leading to a transcendental equation for S. The function W(x) 

which obeys the transcendental equation W(x)Exp[W(x)]=x  has already been used in the 

study of the time evolution of the system [5,6]. The validity of steady state approximation is 

based on the existence of a substantial region where C remains constant but uncertainties 

attending the steady state assumption has been presented by means of computer investigation 

[7]. By means of perturbation theory in the small ratio Eo/So the SS assumption has been 

given as the limit of small Eo/So [8]. Furthermore conditions under which the SS assumption 

is valid have been examined and the declines have been found to be  small at low ratio of 

Eo/So or Eo/KM [9]. Further progress in the field has been achieved with the quasi-steady state 

approximation (QSSA) which assumes that the concentration C of the intermediate complex 

is almost constant in a quasi-steady state, with dC/dt approaching zero [10]. The QSSA has 

also been defined by means of perturbation expansion with the small parameter the ratio 

Eo/KM [11]. Conditions for validity of QSSA have also been studied when So>>Eo [12] but 

the QSSA condition dC/dt�0 has been challenged at high Eo [13]. An extension of the region 

of validity of QSSA by changing variables has also been given [14] and based on 

dimensionless parameters a convergence in a perturbation expansion is observed for any 

combination of the parameters [15]. As far as specific time regions are concerned analytical 

approximations have been given for the early stage of the reaction [16] but also for both 

regions at small and large times [5]. The present effort comes to support further the 

quantitative description of the solution of MM kinetic equations. We present an analytical 

solution based on the fact that at large times the product of the concentration of the 

intermediate complex C with the substrate concentration S is small. Starting with the solution 

at t ��with proper initial condition at t�0, we can incorporate the product of the two 

concentrations in an iterative scheme without the necessity to use extra small perturbation 

parameters. The analytical solution which we give describes the whole time region including 

the maximum of the concentration of the complex and its neighbourhood for a large region of 

the parameters of the problem. By means of the analytical solution conditions of validity of 

QSSA are also presented.  
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2.The Iterative Solution 
 Convenient for the study of the Michaelis-Menten equations (3) are the reduced 

dimensionless variables s=S/S0, c=C/E0, and the dimensionless constants k�=(k-1+k2)/(k1S0) = 

KM /S0, k� =k-1/(k1S0) and �=E0/S0 where S0 and E0 are  the initial concentrations of the 

substrate and enzyme respectively. By dividing Eqs. (3) with k1S0E0 we take that         

ds
d sc s k c

�� � �
            (4a) 

dc
d sc s k c

��� � � �
         ,                                    (4b) 

where the scaled time �=k1E0 t is a dimensionless variable. Easier to be handled are the 

second order differential equations (5), taken from Eqs. (4) after a differentiation with respect 

to � and proper eliminations. The quadratic term f=cs is a function of time and it is treated 

independently. 
2

2 ( ) ( ) ( )d s ds dfk s k k f k k
d d d� � � � �
� � �
� � �

� � � � 
 � � ,    f=cs  ,          (5a) 

2

2 ( ) ( )d c dc dfk c k k
d d d� � �
� �
� � �

� � � � 
 �           .       (5b) 

Notice that only the three constants �, k�, and k�  , remain to describe the system of the two 

differential equations, and that the reduced dimensionless concentration variables s=S/S0,  

and c=C/E0, vary from 0 to 1. The reduction of the initial five constants S0,E0,k1,k-1 and k2 to 

only three k� , k� and � together with the reduced variables c, s and �  permits the 

investigation in a large region of controlled values of the five  parameters of the system. 

Regions of small and large values of k� , k� and � of practical interest can properly be 

described. 

 In the limit t��  both s and c tend to zero so that the function f=sc becomes 

negligible at large times compared to the linear concentration terms and can be neglected. 

The auxiliary algebraic equation of the remaining second order differential equations (5), is 

��2+(�+k�)� +k�-k�=0 with its two solutions xp and xm given by 

 

2( ) ( ) 4 )
2p

k k k
x � � �� � �

333333
�

� � � � �

 ,        (6a) 

2( ) ( ) 4 )
2m

k k k
x � � �� � �

3
�

� � � � �

  .        (6b) 
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The quantities   xp and xm , used also before [4], will be central quantities in what follows. In 

terms of xp and xm Eqs. (5) can be written as: 

 

    4343s (� )� (x p � xm ) 43s (� )� x pxms(� ) 
 43f � x pxm f         (7a) 

 

    4343c (� )� (x p � xm ) 43c (� )� x pxmc(� ) 
 ���1 43f          (7b) 

 

which in their right parts include the function f  and its time derivative f ’. The values of the 

variables at time �=0 are s(0)=1, c(0)=0 while the values of their derivatives can be found 

from Eqs.4 and at time �=0 they are equal to  ds/d�(0)=-1 and dc/d�(0)=1/� respectively. 

Notice that xp and xm with xp>xm,  are both negative and lead to functions s and c of the 

structure Exp(-b�) with b positive constants independent of the time �. Therefore the solutions 

s and c die in the large time limit, as expected. An iterative scheme can be used to explore the 

solution of Eqs. (7). In the limit � ��  the f function and its derivative are negligible 

because f  is the product of the two vanishing functions s and c. We thus can start considering 

that f is zero in the large time limit and determine in this zeroth order approximation the 

solution so and co of Eqs. (7). Next we obtain fo=soco and employ it in the right parts of Eqs. 

(7) to determine in this first iteration the substrate and complex concentrations s1 and c1. 

Subsequently, f1=s1 c1 can be determined and used in the right part of Eqs. (7).  The 

concentrations  s2 and c2 of the second iteration can then be determined from Eqs. (7) and so 

on. This, can be repeated to higher order iterations. Of interest is that Eqs. (7) always yield 

exponential functions of � and are exactly soluble in all iterations. In the present effort the 

zeroth and first iterations are determined. In a comparison with numerical solution taken by 

means of the Mathematica program(http://www.wolfram.com/mathematica) a remarkable 

agreement is found in all times � and for a large region of the parameters of the problem. 

These regions of perfect matching are increased with the order of iteration.  

 Starting with the zeroth order iteration we consider the f function and its derivative 

zero, at ��� . In this limit  Eqs. (7) read as 

 

    4343s 0(� )� (x p � xm ) 43s 0(� )� x pxms0(� ) 
 0         (8a) 

    4343c 0(� )� (x p � xm ) 43c 0(� )� x pxmc0(� ) 
 0  .       (8b) 
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Proper initial conditions are also necessary for the determination of so(�) and co(�).  We use 

the boundary conditions at the limit of zero � where s0(0)= 1 , c0(0)=0 and ds0/d�(0)=-1, 

dc0/d�(0)=1/�. From Eqs. (8) we obtain the solution: 

 

( 1) [ ] ( 1) [ ]
( ) p m m p

0
p m

x Exp x x Exp x
s

x x
� �

�
� � �



�

        (9a) 

   
[ ] [ ]

( )
( )
p m

0
p m

Exp x Exp x
c

x x
� �

�
�

�



�
   .                                              (9b) 

These two expressions tie the approximate and numerical solutions in the two ends of the 

time, the beginning at ��0 and the infinity at �� �  bringing closer the approximate 

solution with the exact one for all times. Even in this zeroth order iteration with the solution 

given in Eqs. (9) which has the right behavior in the �� �  limit and the proper boundary 

condition at � = 0, the whole region of time is exactly described for certain values of the 

parameters k�, k� and �. In Figs. 1 and 2 we depict both c0 of Eq. (9b) but also that from the 

numerical determination of c  from  Eqs. (4). The cases with large k� but also small k� are 

drawn in Figs.1a, 2a, and 1b, 2b respectively in order to show that interesting cases can be 

studied in both regions. 

-976-



  
 
 

0 1 2
0,0

0,1

0,2

ì

 

 

ë=0.1=0.1

15

10

5
k

ô

C

1a

ók

0 5 10
0,0

0,1

0,2

C

 

 

ë=5k  =0.01

0.20

0.25

0.15

1b

k

ô

ó
ì

Fig.1. Plots of the concentrations c0(Eq. (9b), solid), c1(Eq. (18b), dash) and the numerical 
solution c(dot) of equations (4), as a function of the reduced time variable �=k1�0t for various 
a)large and b)small values of k�=(k-1+k2)/(k1S0). The values of the rest constants are written in 
the figures. Notice the approach and the indistinguishability of the numerical  c(dot) and the 
first iteration c1(dash) lines in both Figs.1 and 2 for many values of the parameters. 
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 From Fig. 1a it is clear that for larger values of k� the agreement of numerical 

results(dot lines) and those of c0 from the expression Eq. (9b) (solid lines) is larger. For the 

values  k�=0.1, �=0.1 of Fig. 1a and for k� larger than 15 the two families of graphs become 

indistinguishable. This proves the appropriateness even of the zeroth iteration solution Eq. 

(9b) to describe the evolution of the system for a large region of the constants of the problem. 

Important to notice from the graphs of Fig. 1a is that larger values of k� give smaller times �m 

where the concentrations of the complex become maximum. Less negative gradients of the 

graphs for  � > �m, are also observed in Fig. 1a for larger k� and for a small value of �. In 

Fig.1b smaller values of k� are used in order to show that the method applies to both regions 

of interest where KM is larger or smaller than S0. 

 In Fig. 2a we vary � while we keep k� and k�  constant. Again larger values of � yield 

better agreement.  For the example of Fig. 2a the graphs become indistinguishable for �>13. 

It is worth to notice though, from all graphs that �m is a good approximation for the time 

where the maxima of the concentrations occur, even for the cases with different values of the 

maxima of the concentrations. This observation and the analytical expression of �m from the 

zeroth iteration solution , Eq. (11),  permit the study of the  reaction in the next first iteration 

stage for a wider region of the parameters. In Fig. 2b we vary k� and we see that though the 

solution is less sensitive on the variation of k� smaller values of k� give better matching in 

larger time extensions. The dependence of the behavior of the concentrations on the three 

parameters k�, k� and �  can be understood from the structure  of the differential equation (5b) 

as well.  The effect from the right part of Eq. (5b) is smaller when the value of this part is 

smaller than the left part of the equation. The iterative solutions will then be more successful 

when the left part becomes more dominant than the right one. Both k� and � appear twice in 

the left part of Eq. (5b) and make their contribution to the left part larger when they become 

larger. Unlikely, k� appears with a negative sign that explains the opposite character to the 

perturbation than those of k� and �. It appears though only once in the left part of the equation 

which makes weaker the effects of its variation.  Another thing to notice from the graphs of 

Fig. 2b is that larger values of k� lead to smaller negative gradients for � > �m, approaching in 

this way easier the steady state. Similar approaches to those of the three concentrations of the 

complex  are observed among the substrate concentration as well. 
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Fig.2. Plots of the concentrations c0(Eq. (9b), solid), c1(Eq. (18b), dash) and the numerical 
solution c(dot) of equations (4), as a function of the reduced time variable �=k1�0t for various 
values of a) �=E0/S0, b) k�=(k-1/(k1S0). The values of the rest constants are written in the 
figures. Notice the approach and in most of the cases the indistinguishability of the numerical  
c(dot) and the first iteration c1(dash) lines.   
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3. The time �m of the maximum c0 and the gradient of c0 after �m. The limit 
of quasi steady approximation(QSSA) 
 
 From Eq. (9b) the time � = �m where the maximum of the concentration c0 of the 

intermediate complex takes place can analytically be determined.  The derivative  

 

0 p p m m

p m

x Exp[ x ] x Exp[ x ]dc
d x x )

� �
3 3

� ��
�



�

 ,        (10) 

vanishes at this point and we take that 

[ / ]p m
m

m p

Ln x x
x x

� 

�

  .          (11) 

The analytical expression of the derivative of c0, Eq. (10), permits the exploration of the 

general behavior of the gradient in all times in various regions of the rest parameters where 

the overall approximation applies. The value of the derivative  

 

F=dc0/d�(1.1�m)   ,         (12) 

     

at time � =1.1�m, a bit larger than the time of the maximum of c0, reveals how close to the 

vanishing of F we are and whether  a quasi steady state can be reached, where  F tends to 

zero and c0 to a constant. By means of the expressions of xm and xp, Eqs. (6), and the 

functions �m and  F  a study of the way  the parameters k� and � affect the approach to the 

steady state can be done. 

 We present some plots of the time �m of the maximum of c0 and the gradient F at times 

1.1�m just after �m. In Fig. 3a we plot both quantities as a function of the parameter k� under 

constant values of � and k�. Both quantities tend to zero, �m being always positive while the 

derivative F being always negative, as expected. 
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Fig.3. The dependence of the time �m of maximum c0 , and the derivative F after �m , as a 
function of  a) k� , b) � . The constant values of the rest parameters are written in the figures.  
 

The simultaneous vanishing of these two quantities for large k� reveals the approach of a 

quasi steady state at small times �m, and this is in accord with the previous assumption that 

faster reactions reach quickly a quasi steady like state where c0 stays almost constant. This 

quasi-steady state is only an ideal limit which according to Fig. 3a takes place in the limit of 

k� tending to infinity. This limit can analytically be described by means of the expressions 

Eqs. (11) and (12). The relations of both �m and the function F, in this limit, are:  
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2( [ ] [ ]) 10[ ]m

Ln k Ln
k k

�

� �

� �
�

�

 �          (13) 

0.1
2

1.1

1 10[ ]F
k k k� � �

�

 � � �    .       (14) 

 

We see that both quantities reduce absolutely and tend to zero for k� �� , the one from 

positive and the other from negative values, as expected and in accord with the graphs of Fig. 

1a. Indeed, it is seen in the graphs of c0(solid lines) but also of the numerical solution(dot 

lines) that at the limit of large k� both �m and the derivative F after �m get absolutely smaller.  

 In Fig. 3b another class of a general behavior is presented. Plotting the two quantities 

as a function of � we see that though �m reduces in the limit of small �, the gradient F 

increases absolutely going  to a constant value. Such behavior is also seen in the graphs of 

Fig. 2a and it reveals another behavior where the reach of a quasi state where F tends to zero, 

takes place at larger times �m.The exact limits of these two functions at small and large � are 

given by  

[ ] 0[ ]m

Ln
k�

� �� �
 � �            (15a) 

2

( )
0[ ]

k k
F

k
� �

�

�
�


 � �   ,  for   0� �       (15b)  

 

[ ][ ] 0[ ]m

LnLn �� �
�


 �            (16a) 

2 2.1

( ) 10[ ]
k k

F � �

� �
�


 � �  ,      for      � ��      (16b) 

 

which are the quantitative expressions of the behaviors at the two limits of small and large �. 

After the quantitative description of �m and F which reveal the fastness and the gradient of c0 

after its maximum, we proceed and study under what conditions several assumptions hold.  

When E0<< S0 , is the approach to the steady state faster? For E0<< S0 , �=E0/S0 tends to zero 

and according to the limit (Eq. (15a)) and the graphs of Figs. 2a and 3b , �m tends indeed to 

zero which means faster reactions. However, the gradient after �m is not always small and 

only when k� is very large both �m and F get absolutely reduced. Under these circumstances, 
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the approach to a constant c0 and the steady state is possible. Of interest though is that F is 

absolutely smaller considered as a function of x=�/(1+k�) which is always smaller than �,  

approaching faster the steady state. This is in accord with the result that the condition E0<<S0 

or �<<1 can be amended with the condition of E0<< S0 +kM or x<<1 as far as the approach to 

the steady state is concerned [14,17,18].   

 

4. First order iteration solution 
 Having found the zeroth iteration solutions c0 and s0, Eqs. (9),  the product f0 = s0 c0  

can be determined and following the iteration scheme explained in Section 2, we write for the 

first iteration differential equations the expressions: 

 

1 1 1 0 0( ) ( ) ( ) ( ) ( ) ( )p m p m p ms x x s x x s f x x f� � � � �44 4 4� � � 
 �      (17a)  

1
1 1 1 0( ) ( ) ( ) ( ) ( )p m p mc x x c x x c f� � � � ��44 4 4� � � 
 �       (17b) 

 

These equations with the proper boundary conditions at �=0 with s1(0)=1, c1(0) =0 but also 

those of their first derivatives ds1/d�(0)=-1,dc1/d�(0)=1/� are soluble and  give the solutions 

Eqs. (18). Before proceeding to the study of this first iteration solution we have to notice that 

it is the result of not only a strong tying at the two ends but also takes care of the quadratic 

term s0 c0 which is important at intermediate times. It is expected to amend the zeroth order 

solution. The solutions of first iteration include simple exponential functions of time and they 

are given in terms of xp and xm by: 

1 1 1 2

2 3 4

{ ( , ) [ ] ( , ) [ ] ( , ) [2 ]

( , ) [2 ] ( , ) [ ]}/ ( , )
p m p m p m p m p

m p m p m p m p m

s a x x Exp x a x x Exp x a x x Exp x
a x x Exp x a x x Exp x x a x x

� � �

33333333 � � �


 � �

� � �      (18a) 

1 1 1 2

2 3 4

{ ( , ) [ ] ( , ) [ ] ( , ) [2 ]

( , ) [2 ] ( , ) [ ]}/ ( , )
p m p m p m p m p

m p m p m p m p m

c b x x Exp x b x x Exp x b x x Exp x
b x x Exp x b x x Exp x x b x x

� � �

33333333 � � �


 � �

� � �    (18b) 

4 2 3 3 2 4 5 4 3 2 2 3 4
1

4 3 2 2 3 4 4 3 2 2 3 3 2 2

( , ) ( 2 7 7 2 2 7 7 2 )

2 5 2 2 5 11 4 4 6 2
p m p m p m p m p m p m p m p m p m

p m p m p m p m p p m p m p m p p m p m

a x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

�
 � � � � � � � �

� � � � � � � � � � �
    

2 3 2 2 2 4 3 2
2 p m p m p m p m p m p m p ma (x ,x )=-x x -3x x -2x x +2x x +6x x +4x x       

4 4 3 2 3 3 2 3 2 2
3 p m p m p p m p m p p m p m

2 4 3 2 4 3
p m p m p m p m m m 3 m p

a (x ,x )=2x x +2x -3x x +3x x +4x -3x x -16x x

                   -6x x +2x x +3x x -6x x +2x +4x =a (x ,x )
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)5 4 2 3 3 2 4 5
4 p m p m p m p m p m p m 4 m pa (x ,x )= (2x x -9x x +14x x -9x x +2x x a (x ,x )� 
     

4 3 2 2 3 4 2
1

3 2 2 2 3 3 4

( , ) ( 2 7 7 2 ) 2

2 6 5 4 2
p m m p m p m p m p m p

m p m p m p p m p p

b x x x x x x x x x x x x

x x x x x x x x x x

�

3333333333333333333


 � � � � �

� � � � � �
    

2 3 2 2 2
2 ( , ) 4 4 2 2p m m p m p m p m pb x x x x x x x x x x
 � � � �      

3 4 2 3 2
3

2 2 3 3 4

( , ) 4 2 6 6

6 4 2
p m m m m p m p m p

m p p m p p

b x x x x x x x x x x

x x x x x x3333333333333333333


 � � � � �

� � � �
     

2 5 4 2 3 3 2 4 5
4 ( , ) (2 9 14 9 2 )p m m p m p m p m p m pb x x x x x x x x x x x x�
 � � � �  . 

 

An interesting outcome of this solution is its coincidence with the numerical solution based 

on Mathematica. We plot c1 in Figs. 1 and 2 (dash lines), together with the zeroth order 

solution c0 (solid lines) and we observe that indeed its indistingushability from the numerical 

solution c(dot lines) of Eqs. (4) is extended to a larger region of the parameters of the 

problem. We see again that larger values of �, k� and smaller values of k� lead to a better 

agreement of the first iteration solution and numerical results.  This can be explained by 

means of Eq. (5b) where we see that larger � and k� but smaller k� make the left terms of Eq. 

(5b) larger and increase the dominance over the right terms of the differential equation. 

Second and higher iterations are expected to increase the region of the values where the 

analytical and numerical results coincide.  

 

5. Conclusions 
 An iterative scheme for the solution of Michaelis-Menten kinetic equations in all times 

t is given, based on the solution in the long time limit. Tying the time dependent expressions 

at the two time regions of small and large times a solution is presented which hardly differs 

from the numerical results at any t, in a large region of the parameters of the problem. Higher 

order iterations increase further this indistinguishability. Based on the zeroth iteration 

solution the time where the maximum of the concentration c of the intermediate complex 

occurs is determined and is used to find the fastness of the approach to the steady state 

studied also before. The gradient of the concentration of the intermediate complex at times 

just after the time of the maximum reveals the way the steady like state is approached which 

can occur at small or larger times. The first iteration solution is also found and plotted, 

confirming the amendments to the zeroth order iteration solution. The method and results of 
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the present study provide new ways to literally describe the solution of MM kinetic 

equations. Therefore, it can be used for the quantitative exploration of certain regularities in 

real problems.    
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