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Abstract.   

A novel “hard-modeling” computational approach is proposed to analyse the kinetic 
data monitored spectrometrically acquired to multiwavelength (MW). It is based in a robust 
mathematical optimization algorithm AGDC(MW) that allows the simultaneous 
determination of the values of the rate constants (kr) of the r-th reaction and of the molar 
absorption coefficients (�j,�) of all the chemical species (j-th) involved in the reaction kinetic 
system at the wavelength��. The approach is the result of combining 3 different 
methodologies of mathematical optimization and an evident improvement in the values of the 
optimized parameters has been obtained in comparison with the application of a single 
method. The procedure consists in the sequential application of the optimization methods 
where the optimized parameters determined by each one of the methods are taken like the set 
of the initial estimates of the next method to be applied to the objective function 

A comparative study was performed between the results obtained from the application 
of each method with those obtained from the combining approach of 3 optimization methods. 
The results of this approach reveal the correct mathematical optimization of complex kinetic 
system involving a large number of parameters of very different orders of magnitude.  
 
1. Introduction 
 Kinetic reactions monitored spectrometrically have been classically treated using 
“hard-modeling” computational approaches where the parameters are optimized from the 
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objective function which is the solution of the ordinary differential equations (ODE) of the 
kinetic system. The parameters include the rate constants (kr) of the r-th reaction and of the 

molar absorption coefficients (�j,�) of all the chemical species (j-th) involved in the reaction 

kinetic system at the wavelength��. The simultaneous determination of the rate constants and 
the molar absorption coefficients is a difficult task for classic mathematical optimization 
methods due to the large number of parameters to optimize and the very different order of 
magnitude of both types of parameters.   

We propose a robust methodology of unconstrained mathematical optimization that 
permits the simultaneous computational determination of a high number of parameters of 
different orders of magnitude, based on the superposition and combining of different 
optimization methods. It is especially designed for the simultaneous optimization of the rate 
constants and molar absorption coefficients of all the species involved in the kinetic process 
by monitoring the absorbance measured at MW. The optimization methods that we apply in 
this paper use the updated version of the mathematical optimization algorithm AGDC [1], 
which we modified suitably for application to the treatment of absorbance data monitored at 
multiwavelength named AGDC(MW) [2,3]. It is a robust algorithm of gradient of second 
order that can be used with success for such purposes, both in a Regression analysis and in 
any other different one as long as the aim is to search for the minimum of a function in the 
hyperspace defined by the parameters to be optimized.  We designed and applied it for the 
first time and with excellent results in the MACROTER and MICROTER [4,5] programs for 
the determination of Thermodynamic Ionization Constants (macroscopic and microscopic) of 
polyfunctional substances. Our team [6,7] determined the corresponding apparent ionization 
constants of several substances of pharmacological interest, computing spectrophotometric 
and potentiometric data acquired simultaneously in a continuous flow system. We have 
applied this successfully in the field of Chemical Kinetis computing of kinetic experimental 
results on absorbance monitored at a single wavelength [8] and at multiwavelength [9]. A 
series of papers, under the generic title of “Computation in Kinetics”[10-13] kinetic data from 
potentiometric and spectrophotometric techniques [KILET-MINUIT] were computed, 
obtaining kinetic and Activation thermodynamic parameters in simple systems with good 
results. AGDC(MW) has been applied for the determination of concentrations of 
multicomponent mixtures [14] and initial concentrations and rate constants in kinetic analysis 
of homogeneous mixtures [15]. This robust algorithm has been applied for the resolution of 
both, static and dynamic multicomponent mixtures obtaining excellent results. [16,17] 

The literature contains some works about the computational kinetic treatment using 
different methodologies. Application of methods based on Artificial Neural Networks (ANN) 
techniques in their different types [18-21]; the use of curve resolution techniques (CR), a self-
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modeling extension (SMCR) and with the addition of the Dynamic Monte Carlo search 
(DMC-SMCR) [22]. Other versions of CR are also applied for purely kinetic aims (modelling 
and determination of kinetic parameters), as is the case with MCR-ALS, in which there is also 
a Alternative Least Squares (ALS) [23,24]. Other applications in Chemical Kinetics are the 
OPKINE-2 algorithm [25], whose treatment determines sensitivity coefficients, and the so-
called Kalman filter algorithm [26-28], which evaluates spectrophotometric data, allowing the 
prediction of concentrations and reaction rate constants.   

2. Optimization Methods 
 The classic procedure used in optimization techniques consists in performing the joint 
and simultaneous optimization of all the parameters in a single process. This procedure 
derives from the mathematical condition imposed by the sum of quadratic deviations (SQD) 
function, according to which its partial derivatives with respect to each of the parameters must 
be zero, giving rise to a single homogeneous set of equations from whose solution one obtains 
the complete set of parameters to be optimized. For the minimization of the SQD function, we 
used in this paper the mathematical optimization algorithm AGDC(MW), which permits the 
treatment of absorbance data monitored at MW. We apply this using several procedures, 
obtaining different optimization methods whose behavior and results we wished to assess and 
which will be detailed below. 
 The study carried out with data acquired at MW provided much broader experimental 
information than the corresponding study carried out with data acquired at a single 
wavelength (SW). However, MW data treatment for the joint and simultaneous optimization 

of k and � is very complex owing to the high number of parameters and the difference in the 
order of magnitude among them. With a view to clarifying this issue, we considered a kinetic 
model of first-order consecutive reaction: B1� B2�B3. If the treatment is carried out at SW it 

is necessary to optimize 5 parameters (2 values of kr and 3 of �) while when performed at 
MW (for example, at 10 wavelengths) the number of parameters to be optimized rises to 32 (2 

values of kr and 30 of �). When the number of parameters is very high and, additionally, their 

orders of magnitude are very different (in our case k=10–3 and �=104) the treatment involves 
matrices and vectors of large dimensions (32 x 32 for the previous case), formed by elements 
of very different orders of magnitude and hence with many risks of error in performing the 
numerous mathematical calculations to be carried out later. When such complex calculations 
are not performed rigorously, erroneous results are obtained that lead the overall optimization 
process to fail. 
 To circumvent these difficulties, we addressed the problem by adopting a criterion 
often used in scientific methodology (especially in the field of Physics and Physical 
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Chemistry), according to which the overall treatment of a complex system can be decomposed 
into the superposition of simplified individualized treatments applied to simpler systems 
whose overall behavior is identical to that of the original system. The individualized 

treatments will correspond to each of the groups having similar characteristics (k and �). This 
was ideal in our case, since the experimental measurements of the absorbance values at each 
wavelength are independent; i.e., there is no mutual interaction between the measurements of 
absorbance values at each wavelength. 
 In the previous example (B1� B2� B3), the classic model of treatment considers the 
global problem, which involves performing a single optimization process of 32 parameters.  
On applying the above treatment criterion, the procedure is broken down into 2 stages; as 
many as there are classes of parameters. In one of them we optimized 2 parameters (k) in a 
single process and in the other we performed 10 individual processes of optimization on 3 

parameters (the � values of each of the 3 species for each wavelength). The order and 
sequence of performing these processes determined the type of method. Let us consider the 
following: 
 

Method 1 (M1). All the parameters (k and �) are optimized jointly and simultaneously in a 
single process (classic methodology). The motion vector defining the parameters in each 
iteration is the one defined in the AGDC(MW) algorithm, determining a single Hessian 
matrix and a single gradient vector. 
Method II. The optimization process is split into two individual processes, one for the values 

of k and the other for the values of �. This dual process introduces a series of particularities in 
the identity of the gradient vectors and of the Hessian matrices that must be taken into 
account. 
 
Method II.A.(M2A). Here one carries out a first optimization process of the rate constants, 
maintaining the values of the molar absorption coefficients invariable. The process ends when 
the convergence criterion is reached. When divergence has been detected, a second 
optimization process is carried out without modifying the values of the rate constants obtained 
in the preceding optimization process. 
 
Method II.B. (M2B). Two consecutive individual process are performed, one for each groups 
of parameters, initially performing a single iteration with a view to approximating the value of 
k to its final optimum value. Following this, the second process is developed aimed at 

improving the values of �, starting in the same way with a single iteration. This dual 
sequential process of individual iterations is repeated as many times as is necessary until the 
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criteria of convergence imposed for both groups of parameters are reached. At this moment, 

the dual consecutive process ends, thus obtaining the final optimized values of k and �. 

 

3. Theoretical Aspects   
Let us consider a chemical system formed by nr chemical reactions where ns chemical 

species can be involved. According to IUPAC's norms [29], the r-th chemical reaction can be 
expressed by the generic equation, 

                          (1) 

where,  Bj  a chemical species involved in the system of reactions, r (1,…, nr ), the number of 

chemical reaction, j (1,…, ns ) number of chemical species,� the stoichiometric coefficient of 

the species Bj  in the r-th reaction, ��j,r< 0 when Bj  plays only the role of reactant in the r-th 

reaction and �j,r> 0�when Bj  plays only the role of product in the r-th reaction.��When the 

reaction is an elementary or concerted one, the absolute values of the kinetic order ( ) and 

stoichiometric coefficient of Bj coincide, that is . The rate differential equation of 

the chemical species Bj in the r-th is given by 

                   (2) 

where  are the species playing only the role of reactants in the r-th reaction < 0) and kr 

the kinetic rate constant of the r-th reaction. Each chemical species can take part in several 
reactions and the rate differential equations will be the sum extended over those reactions 
where the reactant  appears, obtaining a system of ordinary differential equations (ODE) 
according to the generic equation, 

              (3) 

The general solution of the system of rate ordinary differential equations give the 
explicit function of the concentrations of the all species with the time . 

The chemical system constituted by 2 first order consecutive reactions has been 
studied in the present work and can be represented as  

 

 

Considering  ������������–1�and��������������1, we have�

   
According this, the system of ordinary differential equations can be expressed using matrix 
notation as  

-955-



 

 

                  (4)                                

 

When �B1�0≠0 and �B2�0=�B3�0=0, the integration of the ODE gives the following 
expressions of the concentrations for B1, B2 and B3 

  

                                                                    (5)  

     

 

 
Serious problems arise as regards indistinguishability and /or non-unique 

identifiability, which lead to ambiguities in the solution of ODE system, where the function 
has 2 identical mathematical solutions that sometimes lead any curve-fitting method to fail. 
Since the experimental data correspond to the monitoring of the total absorbance of the 

sample (Ai���, it must be the magnitude that participates directly in the process of 
mathematical minimization, expressed as the sum of contribution of all species showing 
absorption at that wavelength. The mathematical optimization consists of the minimization of 
the numerical function of the Sum of Quadratic Deviations (SQD), extended for a nt number 
of data, nw number of wavelengths, and ns number of species, is given by the expression:  

 

� � ��           (6) 

 
 To determine the SQD function it is necessary to know the concentration of all the 

species ci,j within the time interval considered from the set of exact solutions (5) for the 
kinetic system of 2 first order consecutive reactions. Nevertheless, in order to generalize the 
validity of application of the method to any kinetic system, we have performed the 
mathematical resolution of the set of differential equations by a numerical method. The 
solution of this type of differential equation is sometimes difficult, owing both to the 
characteristics of the systems and to the values taken by the rate constants, occasionally 
leading to “stiff” problems. The proposed treatment uses the Gear algorithm to solve the sets 
of differential equations and affords excellent results even in the case of complex systems 
with notable “stiff” characteristics. Next, the actual optimization process is begun; this is 
carried out by application of the AGDC(MW) algorithm. It consists of the minimization of 
SQD through the development of an iterative process in which the vector of movement is 
determined and at all times is subject to strict control. A rigorous analysis is made of its 
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elements, being suitably corrected in the event of detecting any errors, thereby ensuring that 
the minimum will be reached. 

 

4. Computational Aspects 
 KINAGDC(MW) [1] is the common generic program used by us in all the above 
methodologies (M1, M2A and M2B) and is based on computational application of the 
AGDC(MW) algorithm. Each optimization method has a particular version of that algorithm 
arising from its adaptation to the peculiarities of the method, which we have denoted by 
adding to the generic name of the KINADGC(MW) program the letters that identify the 
version (M1, M2A and M2B) corresponding to each method.  When the program computes 
using the combining of all methods, the name of the approach is  KINADGC(MW)-COMB 

The differences between the different versions of the algorithm corresponding to each 
of the different methods are a) the sequential order of execution of the different steps and b) 
calculation of the different gradient vectors and Hessian matrices, whose constitutive 
elements are different for each method and whose identities are detailed in the Appendix 
  
4.1. KINADGC(MW)-M1 version. 
 This is the version of the program corresponding to Method 1, in which one performs 

a single optimization process of all the parameters that one wishes to determine (k and �). It is 
the initial version that we previously used in the computational treatment applied to different 
fields Thermodynamics, Chemical Kinetics, Chemical Analysis, Modelling validation, etc.) 
The KINADGC(MW)-M1 program is represented step-by-step in Scheme 1. 

Scheme I 
1. Input data (matrix of �j,r, number of reactions, species, experimental data, matrix of �j,�  
convergence criterion (CC), etc… 

�
2.  Establish  the rate differential equations system and its solution (Gear algorithm) [31,32] 
obtaining [Bj,i]CALC 
 
3.  Calculate  the absorbance (Ai��)CALC   

4.  Determinate of the SQD(m) function [eq.(6)] 

5.  AGDC(MW) ALGORITHM 

5.1.  Compute the g(m) and H(m) (Gradient vector and Hessian Matrix) [33] 
 
5.2.  Compute [H(m)] –1 by Gauss elimination method and improvement by  sucessive  
aproximations method.            

 
5.3.   Calculate the components of the vector of movement (p(m) = – (H(m)) –1 g(m)) 
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5.4.  Control and correction of the vector of movement p(m) 
  
5.4.1.  Direction of p(m) 

 
5.4.1.1   If H(m)  is singular, set  p(m) = – g(m), and  go to 5.4.2 
5.4.1.2   If  p(m) g(m)    !�"! = scalar close to zero ), set p(m) = - g(m) and go to 5.5.2. 
5.4.1.3   If p(m) g(m)  � 0 set  p(m) = – p(m) 

5.4.2.  Length of p(m) 

5.4.2.1.   Compute the scalar (�(m) ) by the method of Hartley  

5.4.2.2.   X (m+1) = X (m) + �(m) p(m) 
5.4.2.3.   If the Goldstein-Armijo criterion is satisfied go to 5.5. 
5.4.2.4#���"m�����"m) / 2 and go to 5.4.2.2 

5.5.   Calculate SQD(m+1) from  X(m+1) values 

5.6.   If convergence is not attained (│SQD(m+1) – SQD(m) │> CC ), set m = (m + 1) and 
go to 2 
  

6.  Statistic Residual Analysis. 

7.  END.    
 

Comments about the Scheme I. In step 5, the optimization process is performed by applying 
AGDC(MW), which begins (step 5.1) with the determination of the elements forming the 
gradient vectors and the Hessian matrices (gM1 and HM1), formed by elements in which partial 
derivatives do not appear with respect to the kinetic constants and the molar absorption 
coefficients and whose identities are shown in the APPENDIX. Accordingly, one performs a 
single optimization process that finishes at step 5.6 when the convergence (CC) is satisfied.  

 
4.2 KINADGC(MW)-M2A Version. 
 This version corresponds to method 2A and consists in performing 2 individualized 
optimization processes for each group of parameters. First, only the rate constants are 
optimized until convergence is reached (1st process), and then the molar absorption 
coefficients of all species are optimized at each wavelength, maintaining the values of the 
previously optimized rate constants invariable. 
KINADGC(MW)-M2A is shown step-by-step in Scheme II 

Scheme II 
1. Input data (matrix of �j,r, number of reactions, species, experimental data, matrix of �j,�  
convergence criterion (CC), etc. 
�
2.Rate differential equations system and solution (Gear algorithm) [31,32] obtaining [Bj,i]CALC 

3.  Calculate  the absorbance (Ai��)CALC   
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4.  Determinate of the SQD(m) function [eq.(6)] 

5.  AGDC(MW) ALGORITHM (Optimization of the rate constants) 

5.1. Compute the g(m) and H(m) (Gradient vector and Hessian Matrix) [33] (See APPENDIX) 

5.2.  Compute [H(m)] –1 by Gauss elimination method and improvement by  sucessive  

aproximations method. 
 

5.3. Calculate the components of  the vector of movement (p(m) = – (H(m) –1 g(m)) 
 
5.4.  Control and correction of the vector of movement p(m)   

5.4.1.  Direction of p(m) 
 
5.4.1.1   If H(m)  is singular, set  p(m) = – g(m), and  go to 5.4.2 
5.4.1.2   If  p(m) g(m)    !�"! = scalar close to zero ), set p(m) = - g(m) and go to 5.5.2. 
5.4.1.3   If p(m) g(m)  � 0 set  p(m) = – p(m) 

5.4.2.  Length of p(m) 

5.4.2.1.   Compute the scalar (�(m) ) by the method of Hartley  

5.4.2.2.   X (m+1) = X (m) + �(m) p(m) 
5.4.2.3.   If the Goldstein-Armijo  is satisfied go to 5.5. 
5.4.2.4#���"m�����"m) / 2 and go to 5.4.2.2 

5.5.   Calculate SQD(m+1) from  X(m+1) values 

5.6.   If convergence is not attained (│SQD(m+1) – SQD(m) │> CC ), set m = (m + 1) and 
go to 2 
  

6.  AGDC(MW) ALGORITHM  (Optimization of the molar absorption coefficients) 

6.1.  Compute the g(m) and H(m) (Gradient vector and Hessian Matrix) [33] (See 
APPENDIX)  
 
6.2.  Compute [H(m)] –1 by Gauss elimination method and improvement by  sucessive  
aproximations method. 

 
6.3.  Calculate the components of the vector of movement (p(m) = – (H(m)) –1 g(m)) 
 
6.4.  Control and correction of the vector of movement p(m) 

6.4.1.  Direction of p(m) 
6.4.1.1   If H(m)  is singular, set  p(m) = – g(m), and  go to 6.4.2 
6.4.1.2   If  p(m) g(m)    !�"! = scalar close to zero ), set p(m) = - g(m) and go to 6.5.2. 
6.4.1.3   If p(m) g(m)  � 0 set  p(m) = – p(m) 

6.4.2.  Length of p(m) 

6.4.2.1.   Compute the scalar (�(m) ) by the method of Hartley  

6.4.2.2.   X (m+1) = X (m) + �(m) p(m) 
6.4.2.3.   If the Goldstein-Armijo  is satisfied go to 6.5. 

6.4.2.4#���"m�����"m) / 2 and go to 6.4.2.2 
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6.5.   Calculate SQD(m+1) from  X(m+1) values 

7.  Statistic Residual Analysis. 

8.  END.     

Comments about Scheme II. The first four steps are identical to those of Method M1 in 
Scheme I. The differences between Method 2A (Scheme II) ad M1 are as follows: a) In the 
elements forming the gradient vectors and Hessian matrices appearing in step 5 of Scheme II, 
the partial derivatives of the SQD function are in all cases defined only with respect to the 
rate constants, and in step 6 these derivatives are only defined with respect to the molar 
absorption coefficients (see APPENDIX), and b) Step 5 is developed iteratively (from 5.1 to 
5.6) until convergence is reached whereas step 6 (from 6.1 to 6.5) does not correspond to an 
iterative process; instead it is executed only once in order to polish the results obtained in step 
5.5.  
 

4.3. KINADGC(MW)-M2B version 
 This version corresponds to Method 2B, in which the two optimization processes are 
developed independently for each group of parameters, using an alternate individual treatment 
that starts with the rate constants, followed by the set of molar absorption coefficients, and so 
on successively until convergence and optimum SQD values are reached. The 
KINADGC(MW)-M2B program is represented step-by-step in Scheme III 

Scheme III 
1. Input data (matrix of �j,r, number of reactions, species, experimental data, matrix of �j,�  
convergence criterion (CC), etc.�
�
2.  Establish  the rate differential equations system and its solution (Gear algorithm) [31,32] 
obtaining [Bj,i]CALC 
 
3.  Calculate  the absorbance (Ai��)CALC   

4.  Determinate of the SQD(m) function [eq.(6)] 

5.  AGDC(MW) ALGORITHM (Optimization of the rate constants) 

5.1.  Compute the g(m) and H(m) (Gradient vector and Hessian Matrix) [33] (See Appendix) 
 
5.2.  Compute [H(m)] –1 by Gauss elimination method and improvement by  sucessive  
aproximations method. 

 
5.3.  Calculate the components of the vector of movement (p(m) = – (H(m)) –1 g(m)) 
 
5.4.  Control and correction of the vector of movement p(m) 

  
5.4.1.  Direction of p(m) 
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5.4.1.1   If H(m)  is singular, set  p(m) = – g(m), and  go to 5.4.2 
5.4.1.2   If  p(m) g(m)    !�"! = scalar close to zero ), set p(m) = - g(m) and go to 5.5.2. 
5.4.1.3   If p(m) g(m)  � 0 set  p(m) = – p(m) 

5.4.2.  Length of p(m) 

5.4.2.1.   Compute the scalar (�(m) ) by the method of Hartley  

5.4.2.2.   X (m+1) = X (m) + �(m) p(m) 
5.4.2.3.   If the Goldstein-Armijo criterion is satisfied go to 5.5. 
5.4.2.4#���"m�����"m) / 2 and go to 5.4.2.2 

6.  AGDC(MW) ALGORITHM (Optimization of the molar absorption coefficients) 

6.1. Compute the g(m) and H(m) (Gradient vector and Hessian Matrix) [33] (See Appendix) 
 
6.2.  Compute [H(m)] –1 by Gauss elimination method and improvement by sucessive  
aproximations method. 

 
6.3. Calculate the components of the vector of movement (p(m)= –(H(m))–1 g(m)) 
 
6.4. Control and correction of the vector of movement p(m)   

 
6.4.1.  Direction of p(m) 

 
6.4.1.1   If H(m)  is singular, set  p(m) = – g(m), and  go to 6.4.2 

6.4.1.2   If  p(m) g(m)    !�"! = scalar close to zero ), set p(m) = - g(m) and go to 6.5.2. 

6.4.1.3   If p(m) g(m)  � 0 set  p(m) = – p(m) 

6.4.2.  Length of p(m) 

6.4.2.1.   Compute the scalar (�(m) ) by the method of Hartley  

6.4.2.2.   X (m+1) = X (m) + �(m) p(m) 

6.4.2.3.   If the Goldstein-Armijo criterion is satisfied go to 6.5. 

6.4.2.4#���"m�����"m) / 2 and go to 6.4.2.2 

6.5 Calculate SQD(m+1) from  X(m+1) values 
 
6.6 If convergence is not attained (│SQD(m+1) – SQD(m) │> CC ), set m=(m + 1) and go to 2 
 

7.  Statistic Residual Analysis. 

8.  END 

 

Comments about Scheme III. The first four steps are identical to those appearing in both 
Schemes I and II, corresponding to methods M1 and M2A. The differences between Method 
M2B (SCHEME III) and the others are as follows: a) The elements composing the gradient 
vectors and Hessian matrices in step 5 correspond to the partial derivatives of SQD with 
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respect to the rate constants whereas in step 6 the partial derivatives of these vectors and 
matrices are defined with respect to the molar absorption coefficients (Appendix) and b) 
Neither of the steps corresponds to an iterative process since –as may be seen from Scheme 
III- there is no final stage in which two consecutive SQD values are compared. The sequence 
of execution of these steps is alternate and consecutive until convergence is reached in step 
6.6.  

The computational work has been performed using Matlab [34] for the design and 
performing of the specific computational executable programs (##.m type) using “M” 
language for the main program, functions and subroutines according to the algorithms of the 
different mathematical optimization methods considered in the present work. We have a 
previous version written in FORTRAN which uses for their compilation the SVS C3 (Silicon 
Valley Systems) compiler with a source program constituted by more than 1000 lines and the 
executable application has a size of 330 KB and can be executed in DOS. 

 
5. Results and Discussion 
 The mechanism chosen to perform the present study comprises 2 consecutive first-
order reactions in which the kinetic data measured at three wavelengths are computed. The 
model is very versatile and its range of applications fairly broad since it appears quite often 
both in the field of Chemical Kinetics and in other fields (Compartmental model, Chemical 
Engineering, etc). 

321
2312 BBB kk $%$$%$  

  The study consisted in applying the different optimization methods proposed 
here to a set of synthetic data in which noise within the range of experimental noise was 
imposed. We performed several experiments in which we applied the different optimization 
methods to experimental data on total Absorbance/time, starting out from different initial 
estimates for the parameters to be optimized. We systematically varied the magnitudes 
affecting the process with a view to assaying as broad a range as possible and determining, by 
means of the corresponding comparative studies, the individual effect of each of the variables 
involved in the optimization process used by each method. We also assayed the behavior of 
the application of the different methods under the most and least favorable conditions in 
which the optimization process was implemented, then comparing the results obtained in each 
case. The values of the kinetic parameters that served to generate the data were k12 = 1.0 h-1 
and k23 = 0.5 h-1 and those of the molar absorption coefficients are shown in Table I. 
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Table 1 
 
 
 ��(B1)/mol-1Lcm-1 �� (B2) /mol-1Lcm-1 �� (B3) /mol-1Lcm-1 

������ 1200 1100 1600 
���� 1400 1200 700 
���� 1700 900 500 

 
The experiments performed and the results obtained are shown in Table 2, which has 

been split into three parts corresponding to each of the methods applied, each of the columns 
corresponding to each experiment performed. The different rows show the values of the initial 
estimates of the parameters to be optimized, the final values and that corresponding to the 
sum of quadratic deviations (SQD) function (SQDFINAL). 
  

Method 1(M1) (Exp.1.) The values used for the initial estimates of the rate constants 
(k12 and k23) were almost double those that served to generate the data (100% deviation). 
However, the values of the initial estimates of the molar absorption coefficients of the three 

species at three wavelengths were very close to the true values (deviation around &0.5%). 
Despite this, the values of the molar absorption coefficients were not modified along the 
optimization process and the optimized values of the rate constants proved to be appreciably 
different from those used to generate the data. The Hessian matrix was singular in all 
iterations and the vector of movement follows always Steepest Descent direction. Moreover, 
the value of SQDFINAL was unacceptable since its order of magnitude was 10-1, indicating a 
much higher mean error for each of the data computed than the experimental error. From  
this it may be concluded that application of Method M1 affords result that are very divorced 
from reality and hence unacceptable owing to the complete failure of the process of 
optimizing the 11 parameters when performed jointly and simultaneously. 

 

Table 2 

 
 Method 1 (M1) Method  2.A  (M2A) Method 2.B (M2B) 

Parameter 
Values Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7    Exp. 8 

Init.estimates 
k12 

2.0 1.1 1.1 0.10 0.10 0.10 0.9 

Init.estimates 
k23 

1.0 0.4 0.4 0.05 0.05 0.05 0.6 0.6 

Init. 
estimates�
� (B1) �1 

 
1205 
1395 

 
1250 

– 

 
1500 

– 

 
1205 
1395 

 
1500 
1200 

 
1225 
1375 

 
1205 
1395 

 
1250 

– 
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� (B1) �2 
��(B1) �3 

1695 – – 1695 1600 1715 1695 – 

Init. 
estimates�
� (B2) �1 
� (B2) �2 
��(B2) �3 

 

 
1095 
1195 
905 

 
1050 

– 
– 

 
1400 

– 
– 

 
1095 
1195 
905 

 
1400 
1400 
1000 

 
1110 
1180 
915 

 
1095 
1195 
905 

 
1050 

– 
– 

Init. 
estimates�
� (B3) �1 
� (B3) �2 
��(B3) �3 

 
1605 
705 
505 

 
1700 

– 
– 

 
1900 

– 
– 

 
1605 
705 
505 

 
1900 
500 
700 

 
1375 
710 
510 

 
1695 
705 
505 

 
1700 

– 
– 

Optimized 
k12 

 
1.706 

 
1.097 

 
0.966 

 
1.006 

 
1.626 

 
1.028 

 
1.114 

 
0.948 

Optimized 
k23 

 
0.320 

 
0.376 

 
0.024 

 
0.499 

 
0.248 

 
0.508 

 
0.479 

 
0.378 

Optimized�
� (B1) �1 
� (B1) �2 
��(B1) �3 

 
1205 
1395 
1695 

 
1250 

– 
– 

 
1500 

 
 

 
1200 
1397 
1700 

 
1195 
1428 
1772 

 
1202 
1387 
1707 

 
1205 
1398 
1707 

 
1185 

– 
– 

Optimized��
� (B2) �1 
� (B2) �2 
��(B2) �3 

 
1095 
1195 
905 

 
1050 

– 
– 

 
1400 

 
 

 
1099 
1198 
904 

 
1138 
1227 
1062 

 
1095 
1195 
918 

 
1095 
1230 
979 

 
1142 

– 
– 

Optimized��
� (B3) �1 
� (B3) �2 
��(B3) �3 

 
1605 
705 
505 

 
1700 

– 
– 

 
1900 

 
 

 
1599 
702 
499 

 
1735 
521 
265 

 
1595 
707 
505 

1598 
697 
487 

1654 
– 
– 

SQDFINAL 0.91E-1 0.35E-2 0.276 0.26E-4 0.46E-2 0.76E-3 0.48E-4 0.16E-3 
  

Method 1(M1) (Exp. 2). Faced with the negative results obtained in Exp. 1, we tested a lower 
number of parameters, considering a single wavelength and starting the process with values of 
the initial estimates closer to the true values (Exp. 2). The results showed that the molar 
absorption coefficients remained unaltered along the optimization process and that the values 
of the rate constants underwent only slightly significant changes 
 
Method 1 (M1) (Exp. 3). This experiment was undertaken to assess the influence of the 
deviations in the values of the initial estimate in the case of the molar absorption coefficients. 
We started out from the values of the initial estimates of the molar absorption coefficients that 
were most different from the real ones, maintaining the same values of the initial estimates as 
those used in Exp. 2. The results obtained were similar to those of the previous case because 
the molar absorption coefficient values did not vary significantly and the corresponding 
optimized values of the rate constants were appreciably different from the real values. 
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Method 2A (M2A) (Exp. 4). In this case, we started out with values of the initial estimates of 

the rate constants that were very distant from the correct values, while a deviation of &5 units 
was imposed on the values of the molar absorption coefficients. The optimized values of the 
rate constant proved to be very close to the correct values (6/1000 and 7/50000) and were 
acceptable since they had an error of 0.6%. In turn, the values of the molar absorption 
coefficients (of all the chemical species at all wavelengths) were modified along the process, 
following an asymptotic trend towards the true values . The value of the SQDFINAL function 
was 2.5 x 10-5, which implies a mean error for each of the data of 1.5 x 10-4, similar to the 
experimental error imposed (noise) and hence acceptable. 
 
Method 2A (M2A) (Exp.5). In this experiment, we maintained the values of the initial 
estimates of the rate constants used in Exp 4, attributing very different (with respect to the 
real ones) values to the molar absorption coefficients. This represents the opposite case to Exp 
4. Values very different from the real values were obtained for the optimized constants and in 
the case of the molar absorption coefficients we obtained incorrect values that afforded a very 
high value for the SQDFINAL function, which was unacceptable. 
 
Method 2A(M2A) (Exp. 6). Here we started out with rate constant values that departed 

strongly from the real ones by imposing a deviation of &2% on the molar absorption 
coefficients. The results of the optimization gave values of the rate constants with errors of 
the order of 3/100 and 9/50, although the results obtained were better than those obtained in 
Exp 5 for the optimized values of the molar absorption coefficients. The final value of the 
SQDFINAL function was 7.5 x 10-4, implying a mean error of 2.2 x 10-3 units of absorbance. 
Method 2B (M2B) (Exp. 7). The initial estimates of both the rate constants and of the molar 
absorption coefficients were close to the values that were used to generate the absorbance 
data. However, the optimized values of the rate constants proved to be unacceptable and the 
values of the molar absorption coefficients did not vary ostensibly along the development of 
the process. Additionally, the value of SQDFINAL remained unaltered along the process, 
pointing to the failure of the optimization process when M2B is applied individually 
Method 2B (M2B) (Exp. 8). In view of the failures obtained in the previous experiments, we 
imposed very favorable starting conditions on the initial estimates in order to facilitate the 
optimization when applying Method 2B (values very close to the real ones for the initial 
estimates of the rate constants at a single wavelength). Despite such favorable conditions, the 
optimized values of the rate constants were different from the real ones, affording a SQDFINAL 

value that was too high.  
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6. Conclusions 
 Upon the analysis of the results of the experiments shown in Table 2, where the 
optimization methods are applied individually (M1, M2A and M2B) we observed that the 
values of the optimized parameters and the analysis of Residuals (step 7 of Schemes I, II and 
III) prove to be slightly poor. Nevertheless, these results were substantially improved (Table 
3) when the combining of the three optimization methodologies [KINAGDC(MW)-COMB] is 
applied sequentially, that is, when the optimized parameters determined by each one of the 
methods are taken like the set of the initial estimates of the next method to be applied to the 
objective function. The values of the optimized parameters shown in Table 3 (k and 

�),�obtained after application of the combining method, present errors less than 1% in all cases 
and the obtained value of the SQDFINAL (0.52 E-5) is of one order of magnitude lower than the 
best value (0.48 E-4) determined in the cases of individual applications of each single method 
(M1, M2A and M2B).  
 

Table 3 

Parameter 
Values 

Initial 
Estimates 

Optimized 
Combining Approach: 

[KINADGC(MW) –COMB] 
 

k12 2.0 1.01 
k23 1.0 0.497 

� (B1) �1 
� (B1) �2 
��(B1) �3 

1225 
1375 
1715 

1205 
1393 
1715 

� (B2) �1 
� (B2) �2 
��(B2) �3 

1110 
1180 
915 

1100 
1194 
909 

� (B3) �1 
� (B3) �2 
��(B3) �3 

1375 
710 
510 

1595 
701 
497 

SQDFINAL 0.91E-1 0.52 E-5 
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