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Abstract

We show how the first and second Zagreb indices of bridge and chain graphs are determined

from the respective indices of the component graphs. The special cases when the bridge and

chain graphs are built from copies of the same component are also elaborated. Using these

results, the Zagreb indices of some classes of chemical graphs and nanostructures are computed.

1 Introduction

In this paper, we consider connected finite graphs without loops or multiple edges. Let

G be such a graph with the vertex set V (G) and the edge set E(G). For u ∈ V (G), we

denote by NG(u) the set of all first neighbors of u in G. The cardinality of NG(u) is called

the degree of u in G and will be denoted by degG(u). We denote by αG(u), the sum of

degrees of all neighbors of the vertex u in G, i.e., αG(u) =
∑

a∈NG(u) degG(a). We denote

by |S| the cardinality of a set S.

In theoretical chemistry, the physico–chemical properties of chemical compounds are

often modelled by means of molecular–graph–based structure–descriptors, which are also
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referred to as topological indices [8]. The Zagreb indices belong among the oldest topo-

logical indices, and were introduced as early as in 1972 [9,10]. For details on their theory

and applications see [2–4, 7, 14, 17–19], and especially the recent papers [5, 6, 13, 15, 16].

The first and second Zagreb indices of G are denoted by M1(G) and M2(G), respectively,

and are defined as:

M1(G) =
∑

u∈V (G)

degG(u)
2 and M2(G) =

∑
uv∈E(G)

degG(u) degG(v) . (1)

The first Zagreb index can also be expressed as a sum over edges of G:

M1(G) =
∑

uv∈E(G)

[degG(u) + degG(v)] .

At this point we recall the definitions of bridge and chain graphs. Let {Gi}di=1 be a set

of finite pairwise disjoint graphs with distinct vertices vi, wi ∈ V (Gi). The bridge graph

B1 = B1(G1, G2, . . . , Gd; v1, v2, . . . , vd) of {Gi}di=1 with respect to the vertices {vi}di=1 is

the graph obtained from the graphs G1, G2, . . . , Gd by connecting the vertices vi and vi+1

by an edge for all i = 1, 2, . . . , d− 1, as shown in Fig. 1.

v v v v v
1 2 3 d-1 d

G G G G G1 2 3 d-1 d

Fig. 1. The bridge graph B1 = B1(G1, G2, . . . , Gd; v1, v2, . . . , vd).

The bridge graph B2 = B2(G1, G2, . . . , Gd; v1, w1, v2, w2, . . . , vd, wd) of {Gi}di=1 with

respect to the vertices {vi, wi}di=1 is the graph obtained from the graphs G1, G2, . . . , Gd

by connecting the vertices wi and vi+1 by an edge for all i = 1, 2, . . . , d − 1, as shown in

Fig. 2.

G G G G G1 2 3 d-1 d

1 2 2 3 3
d-1d-1 dw w w wv v v v

Fig. 2. The bridge graph B2 = B2(G1, G2, . . . , Gd; v1, w1, v2, w2, . . . , vd, wd).
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The chain graph C = C(G1, G2, . . . , Gd; v1, w1, v2, w2, . . . , vd, wd) of {Gi}di=1 with re-

spect to the vertices {vi, wi}di=1 is the graph obtained from the graphs G1, G2, . . . , Gd by

identifying the vertices wi and vi+1 for all i = 1, 2, . . . , d− 1, as shown in Fig. 3.

G G G G G1 2 3 d-1 d

1

2

2

3 4

3 d-1d-2

d-1 d

w w w ww

v v v v v

Fig. 3. The chain graph C = C(G1, G2, . . . , Gd; v1, w1, v2, w2, . . . , vd, wd).

Some topological indices of bridge and chain graphs have been computed, previ-

ously [11, 12]. In this paper, we determine the first and second Zagreb indices for these

graphs, including the important special case when the components Gi , i = 1, 2, . . . , d are

mutually isomorphic. In addition, several classes of chemical graphs and nanostructures

are considered.

2 Zagreb indices of the bridge graph B1

In this section, we compute the first and second Zagreb indices of the bridge graph B1 =

B1(G1, G2, . . . , Gd; v1, v2, . . . , vd) in terms of the graphs Gi . First, we state the following

simple Lemma, that is crucial in this section. It follows immediately from the definition

of B1 , and its proof is therefore omitted.

Lemma 2.1. The degree of an arbitrary vertex u of the bridge graph B1 , d ≥ 2, is

given by:

degB1
(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

degGi
(u) if u ∈ V (Gi)− {vi}, 1 ≤ i ≤ d

ν1 + 1 if u = v1

νi + 2 if u = vi , 2 ≤ i ≤ d− 1

νd + 1 if u = vd

where νi = degGi
(vi) for 1 ≤ i ≤ d. �
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2.1 First Zagreb index of the bridge graph B1

Theorem 2.2. The first Zagreb index of the bridge graph B1 , d ≥ 2, is given by:

M1(B1) =
d∑

i=1

M1(Gi) + 2ν1 + 4
d−1∑
i=2

νi + 2νd + 4d− 6 (2)

where νi = degGi
(vi), for 1 ≤ i ≤ d.

Proof. Using the definition of the first Zagreb index, Eq. (1), and Lemma 2.1, we

have:

M1(B1) =
d∑

i=1

∑
u∈V (Gi)−{vi}

degGi
(u)2 + (ν1 + 1)2 +

d−1∑
i=2

(νi + 2)2 + (νd + 1)2

=
d∑

i=1

M1(Gi)−
d∑

i=1

ν2
i + ν2

1 + 2ν1 + 1 +
d−1∑
i=2

ν2
i

+ 4
d−1∑
i=2

νi + 4(d− 2) + ν2
d + 2νd + 1

from which Eq. (2) follows straightforwardly. �

Suppose that v is a vertex of a graphG, and letGi = G and vi = v for all i = 1, 2, . . . , d.

Using Theorem 2.2, we easily arrive at:

Corollary 2.3. The first Zagreb index of the bridge graph B1 = B1(G,G, . . . , G; v, . . . , v),

(d ≥ 2 times) is given by:

M1(B1) = dM1(G) + 4ν(d− 1) + 4d− 6

where ν = degG(v). �

2.2 Second Zagreb index of the bridge graph B1

Theorem 2.4. The second Zagreb index of the bridge graph B1 , d ≥ 3, is given by:

M2(B1) =
d∑

i=1

M2(Gi) + αG1(v1) + αGd
(vd) + 2

d−1∑
i=2

αGi
(vi) +

d−1∑
i=1

νi νi+1

+ 2(ν1 + νd)− (ν2 + νd−1) + 4
d−1∑
i=2

νi + 4(d− 2) (3)

where νi = degGi
(vi), for 1 ≤ i ≤ d.

-924-



Proof. By definition of the second Zagreb index, M2(B1) is equal to the sum of

degB1
(a) degB1

(b), where summation is taken over all edges ab ∈ E(B1). From the defini-

tion of the bridge graph B1, E(B1) = E(G1)∪E(G2)∪ . . .∪E(Gd)∪{vivi+1|1 ≤ i ≤ d−1}.
In order to compute M2(B1), we partition our sum into four sums as follows:

The first sum S1 is taken over all edges ab ∈ E(G1). Using Lemma 2.1,

S1 =
∑

ab∈E(G1)

degB1
(a) degB1

(b) =
∑

ab∈E(G1) ; a,b�=v1

degG1
(a) degG1

(b)

+
∑

ab∈E(G1) ; a∈V (G1) , b=v1

degG1
(a)[degG1

(v1) + 1]

= M2(G1) + αG1(v1) .

The second sum S2 is taken over all edges ab ∈ E(Gd). Using Lemma 2.1, we obtain

S2 =
∑

ab∈E(Gd)

degB1
(a) degB1

(b) =
∑

ab∈E(Gd) ; a,b �=vd

degGd
(a) degGd

(b)

+
∑

ab∈E(Gd) ; a∈V (Gd),b=vd

degGd
(a)[degGd

(vd) + 1]

= M2(Gd) + αGd
(vd) .

The third sum S3 is taken over all edges ab ∈ E(Gi) for all 2 ≤ i ≤ d − 1. Using

Lemma 2.1,

S3 =
d−1∑
i=2

∑
ab∈E(Gi)

degB1
(a) degB1

(b) =
d−1∑
i=2

⎧⎨⎩ ∑
ab∈E(Gi) ; a,b �=vi

degGi
(a) degGi

(b)

+
∑

ab∈E(Gi) ; a∈V (Gi) , b=vi

degGi
(a)[degGi

(vi) + 2]

⎫⎬⎭
=

d−1∑
i=2

M2(Gi) + 2
d−1∑
i=2

αGi
(vi) .

The last sum S4 is taken over all edges vivi+1 for all 1 ≤ i ≤ d− 1. Using Lemma 2.1,

we get:

S4 =
d−1∑
i=1

∑
ab=vivi+1

degB1
(a) degB1

(b)

= (ν1 + 1)(ν2 + 2) +
d−2∑
i=2

(νi + 2)(νi+1 + 2) + (νd−1 + 2)(νd + 1)
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= ν1ν2 + 2ν1 + ν2 + 2 +
d−2∑
i=2

νi νi+1 + 2
d−2∑
i=2

νi

+ 2
d−1∑
i=3

νi + 4(d− 3) + νd−1 νd + νd−1 + 2νd + 2

=
d−1∑
i=1

νi νi+1 + 2(ν1 + νd)− (ν2 + νd−1) + 4
d−1∑
i=2

νi + 4(d− 2) .

Eq. (3) is obtained by adding S1, S2, S3, S4 . �

Suppose that v is a vertex of a graphG, and letGi = G and vi = v for all i = 1, 2, . . . , d.

Corollary 2.5. The first Zagreb index of the bridge graph B1 , (d ≥ 3 times), is given by:

M2(B1) = dM2(G) + (d− 1)((ν + 2)2 + 2αG(v))− 2(ν + 2)

where ν = degG(v). �

3 Zagreb indices of the bridge graph B2

In this section, we give a formula for the first and second Zagreb indices of the bridge graph

B2 = B2(G1, G2, . . . , Gd; v1, w1, v2, w2, . . . , vd, wd) in terms of the graphs Gi. We start this

section with the following simple lemma. It follows immediately from the definition of

B2 .

Lemma 3.1. The degree of an arbitrary vertex u of the bridge graph B2 , d ≥ 2, is given

by:

degB2
(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

degG1
(u) if u ∈ V (G1)− {w1}

degGd
(u) if u ∈ V (Gd)− {vd}

degGi
(u) if u ∈ V (Gi)− {vi, wi} , 2 ≤ i ≤ d− 1

ωi + 1 if u = wi , 1 ≤ i ≤ d− 1

νi + 1 if u = vi , 2 ≤ i ≤ d

where νi = degGi
(vi), ωi = degGi

(wi), for 1 ≤ i ≤ d. �

3.1 First Zagreb index of the bridge graph B2

Theorem 3.2. The first Zagreb index of the bridge graph B2 , d ≥ 2, is given by:

M1(B2) =
d∑

i=1

M1(Gi) + 2
d−1∑
i=1

ωi + 2
d∑

i=2

νi + 2d− 2 (4)
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where νi = degGi
(vi), ωi = degGi

(wi), for 1 ≤ i ≤ d.

Proof. Using the definition (1) of the first Zagreb index and Lemma 3.1, we have:

M1(B2) =
∑

u∈V (G1)−{w1}
degG1

(u)2 +
d−1∑
i=2

∑
u∈V (Gi)−{vi,wi}

degGi
(u)2

+
∑

u∈V (Gd)−{vd}
degGd

(u)2 +
d−1∑
i=1

(ωi + 1)2 +
d∑

i=2

(νi + 1)2

= M1(G1)− ω1
2 +

d−1∑
i=2

M1(Gi)−
d−1∑
i=2

νi
2 −

d−1∑
i=2

ω2
i +M1(Gd)− νd

2

+
d−1∑
i=1

ω2
i + 2

d−1∑
i=1

ωi + d− 1 +
d∑

i=2

νi
2 + 2

d∑
i=2

νi + d− 1

from which Eq. (4) follows straightforwardly. �

Suppose that v and w are two vertices of a graph G, and let Gi = G, vi = v and

wi = w for all i = 1, 2, . . . , d. Then Theorem 3.2 implies:

Corollary 3.3. The first Zagreb index of the bridge graph B2 , (d ≥ 2 times), is given by:

M1(B2) = dM1(G) + 2(d− 1)(ν + ω + 1)

where ν = degG(v), ω = degG(w). �

3.2 Second Zagreb index of the bridge graph B2

Theorem 3.4. The second Zagreb index of B2 , d ≥ 2, is given by:

M2(B2) =
d∑

i=1

M2(Gi) +
d−1∑
i=1

[ωi + αGi
(wi)] +

d∑
i=2

[νi + αGi
(vi)]

+
d−1∑
i=1

ωi νi+1 + d+ n− 1 (5)

where νi = degGi
(vi), ωi = degGi

(wi), for 1 ≤ i ≤ d and n is the order of the graphs

Gi , 2 ≤ i ≤ d − 1. It is additionally assumed that the vertices vi and wi of Gi are

adjacent.

Proof. From the definition of the bridge graph B2 , E(B2) = E(G1) ∪ E(G2) ∪ . . . ∪
E(Gd) ∪ {wivi+1|1 ≤ i ≤ d − 1}. Using the same argument as in the proof of Theorem

2.4, we partition the sum in the formula of M2(B2) into five sums as follows:
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The first sum S1 is taken over all edges ab ∈ E(G1). Using Lemma 3.1 we have

S1 =
∑

ab∈E(G1)

degB2
(a) degB2

(b) =
∑

ab∈E(G1) ; a,b�=w1

degG1
(a) degG1

(b)

+
∑

ab∈E(G1) ; a∈V (G1) , b=w1

degG1
(a)[degG1

(w1) + 1]

= M2(G1) + αG1(w1) .

Analogously,

S2 = M2(Gd) + αGd
(vd)

where S2 is the sum over all edges ab ∈ E(Gd),

S3 =
∑
i∈I

[M2(Gi) + αGi
(vi) + αGi

(wi) + 1]

where I = {i|2 ≤ i ≤ d − 1, viwi ∈ E(Gi)}, and S3 is the sum over all edges ab ∈ E(Gi)

for all i ∈ I,

S4 =
∑
i∈Ī

(M2(Gi) + αGi
(vi) + αGi

(wi))

where Ī = {i|2 ≤ i ≤ d− 1, viwi �∈ E(Gi)} = {2, 3, . . . , d− 1} − I, and S4 is the sum over

all edges ab ∈ E(Gi) for all i ∈ Ī, and

S5 =
d−1∑
i=1

ωi +
d∑

i=2

νi +
d−1∑
i=1

ωi νi+1 + d− 1

where S5 is the sum over all edges wivi+1, 1 ≤ i ≤ d− 1.

Adding the quantities S1, S2, S3, S4, S5, we arrive at Eq. (5). �

Suppose that v and w are two vertices of a graph G, and let Gi = G, vi = v and

wi = w for all i = 1, 2, . . . , d.

Corollary 3.5. Let ν = degG(v) and ω = degG(w). If v and w are adjacent in G, then

M2(B2) = dM2(G) + (d− 1)[ν + ω + ν ω + αG(v) + αG(w) + 2]− 1

whereas otherwise,

M2(B2) = dM2(G) + (d− 1)[ν + ω + ν ω + αG(v) + αG(w) + 1] . �
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Remark 3.6. The formulas given in Theorem 2.4 and Corollary 2.5 do not hold for the

case d = 2. Since B1(G1, G2;w1, v2) ≡ B2(G1, G2; v1, w1, v2, w2), we can apply Theorem

3.4 and Corollary 3.5 to compute the second Zagreb index of the bridge graphs consisting

of two components. Hence we can reproduce the result communicated by Ashrafi et al. [1].

4 Zagreb indices of chain graphs

In this section, we give a formula for the first and second Zagreb indices of the chain graph

C = C(G1, G2, . . . , Gd, v1, w1, v2, w2, . . . , vd, wd), in terms of the graphs Gi. We first state

a simple Lemma which immediately follows from the definition of C.

Lemma 4.1. The degree of an arbitrary vertex u of the bridge graph C , d ≥ 2, is given

by:

degC(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

degG1
(u) if u ∈ V (G1)− {w1}

degGd
(u) if u ∈ V (Gd)− {vd}

degGi
(u) if u ∈ V (Gi)− {vi, wi} , 2 ≤ i ≤ d− 1

ωi + νi+1 if u = wi = vi+1 , 1 ≤ i ≤ d− 1

where νi = degGi
(vi), ωi = degGi

(wi), for 1 ≤ i ≤ d. �

4.1 First Zagreb index of chain graphs

Theorem 4.2. The first Zagreb index of the chain graph C , d ≥ 2, is given by:

M1(C) =
d∑

i=1

M1(Gi) + 2
d−1∑
i=1

ωi νi+1

where νi = degGi
(vi), ωi = degGi

(wi), for 1 ≤ i ≤ d.

Proof. Similar to the proof of Theorem 3.2 and by definition of the chain graph, we

have:

M1(C) =
∑

u∈V (G1)−{w1}
degC(u)

2 +
d−1∑
i=2

∑
u∈V (Gi)−{vi,wi}

degC(u)
2

+
∑

u∈V (Gd)−{vd}
degC(u)

2 +
d−1∑
i=1

∑
u=wi=vi+1

degC(u)
2
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=
∑

u∈V (G1)−{w1}
degG1

(u)2 +
d−1∑
i=2

∑
u∈V (Gi)−{vi,wi}

degGi
(u)2

+
∑

u∈V (Gd)−{vd}
degGd

(u)2 +
d−1∑
i=1

(ωi + νi+1)
2

= M1(G1)− ω1
2 +

d−1∑
i=2

M1(Gi)−
d−1∑
i=2

ν2
i −

d−1∑
i=2

ωi
2 +M1(Gd)− νd

2

+
d−1∑
i=1

ω2
i +

d∑
i=2

ν2
i + 2

d−1∑
i=1

ωi νi+1 . �

Suppose that v and w are two vertices of a graph G, and let Gi = G, vi = v, and

wi = w for all i = 1, 2, . . . , d.

Corollary 4.3. The first Zagreb index of the chain graph C , (d ≥ 2 times), is given by:

M1(C) = dM1(G) + 2(d− 1)ν ω

where ν = degG(v), ω = degG(w). �

4.2 Second Zagreb index of chain graphs

Theorem 4.4. The second Zagreb index of the chain graph C , d ≥ 2, is given by:

M2(C) =
d∑

i=1

M2(Gi) +
d−1∑
i=1

[ωi αGi+1
(vi+1) + νi+1 αGi

(wi)] +
∑
i∈I

ωi−1 νi+1

where νi = degGi
(vi), ωi = degGi

(wi), for 1 ≤ i ≤ d and I = {i|1 ≤ i ≤ d− 1 , viwi ∈
E(Gi)}.

Proof. In a similar manner as in the proof of Theorems 2.4 and 3.4, we partition the

sum in the formula of M2(C) into the four terms as follows:

The first sum S1 is taken over all edges ab ∈ E(G1). Using Lemma 4.1, we get

S1 = M2(G1) + ν2 αG1(w1) .

Further,

S2 = M2(Gd) + ωd−1 αGd
(vd)
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where S2 is the sum over all edges ab ∈ E(Gd),

S3 =
∑
i∈I

[M2(Gi) + ωi−1 αGi
(vi) + νi+1 αGi

(wi) + ωi−1 νi+1]

where S3 is the sum over all edges ab ∈ E(Gi) for all i ∈ I, and

S4 =
∑
i∈Ī

[M2(Gi) + ωi−1 αGi
(vi) + νi+1 αGi

(wi)]

where S4 is the sum over all edges ab ∈ E(Gi) for all i ∈ Ī.

Adding S1, S2, S3, S4, we arrive at the expression for M2(C), given in Theorem 4.4.

�

Suppose that v and w are two vertices of a graph G, and let Gi = G, vi = v, and

wi = w for all i = 1, 2, . . . , d. Then from Theorem 4.4 follows:

Corollary 4.5. Let ν = degG(v) and ω = degG(w). If v and w are adjacent in G, then

M2(C) = dM2(G) + (d− 1)[ω αG(v) + ν αG(w)] + (d− 2)ν ω

whereas otherwise,

M2(C) = dM2(G) + (d− 1)[ω αG(v) + ν αG(w)] . �

5 Examples

In this section, we consider some simple molecular graphs and determine their Zagreb

indices.

Example 5.1. Two vertices v and w of a hexagon H are said to be in ortho-position if

there are adjacent in H. If two vertices v and w are at distance two, then they are said

to be in meta-position, and if two vertices v and w are at distance three, then they are

said to be in para-position. Examples of vertices in the above three types of positions are

illustrated in Fig. 4.
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w

w

w

v v v

Fig. 4. Ortho-, meta- and para-positions of vertices in a hexagon.

An internal hexagon H in a polyphenyl chain is said to be an ortho-hexagon, meta-

hexagon, and para − hexagon, respectively, if two vertices of H incident with two edges

which connect other two hexagons are in ortho–, meta–, and para-position. A polyphenyl

chain of h hexagons is ortho-PPCh and is denoted by Oh, if all its internal hexagons are

ortho-hexagons. In a fully analogous manner, we define meta-PPCh (denoted by Mh)

and para-PPCh (denoted by Lh), see Fig. 5.

1

1

1

2

2

2

3

3

3

h-1

h-1

h-1

h

h

h

h

h

h

O

L

M

Fig. 5. Ortho-, para-, and meta-polyphenyl chains with six hexagons.

We may view the polyphenyl chains Oh , Mh , and Lh as the chain graphs

B2(C6, C6, . . . , C6; v, w, v, w, . . . , v, w) (h times) where C6 is the cycle with six vertices and

v and w are the vertices shown in Fig. 4. Since all vertices of C6 are of degree two, it is

M1(C6) = M2(C6) = 24, ν = ω = 2, and αC6(v) = αC6(w) = 4. Using Corollary 3.3, we

obtain:

M1(Oh) = M1(Mh) = M1(Lh) = 24h+ 2(h− 1)(2 + 2 + 1) = 34h− 10 .
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Note that v and w are adjacent in Oh , but are not adjacent in Mh and Lh . Thus by

Corollary 3.5

M2(Oh) = 24h+ (h− 1)(2 + 2 + 4 + 4 + 4 + 2)− 1 = 42h− 19

M2(Mh) = M2(Lh) = 24h+ (h− 1)(2 + 2 + 4 + 4 + 4 + 1) = 41h− 17 .

Example 5.2. Consider the spiro-chain of the cycle Cn for arbitrary n ≥ 3. Choosing

the numbering for vertices of Cn such that the vertex v has number 1, the number i of

the vertex w has to be in {2, 3, . . . , n}. However, due to the symmetry k ←→ n− k + 2,

one can restrict i to {2, 3, 4, . . . , �n/2� + 1}. Denoting the graph Cn by Cn(k, �), where

k and � are the numbers of the vertices v and w, respectively. The spiro-chain of the

graph Cn(k, �) can be considered as the chain graph C(G,G, . . . , G; v, w, v, w, . . . , v, w),

where G = Cn(k, �). The spiro-chains of C3, C4, C6 are shown in Fig. 6. We denote the

spiro-chain containing d times the component Cn(k, �), by Sd(Cn(k, �)).

1

1

1

2

2

2

3

3

3 d-1

d-1

d-1

d

d

d

C

C (1,3)

C (1,4)

(d = even)

4

3

6

Fig. 6. The spiro-chains of C3 , C4 , and C6.

Since all vertices of Cn(k, �) are of degree two, it is M1(Cn(k, �)) = M2(Cn(k, �)) = 4n,

ν = ω = 2, and αCn(k,
)(v) = αCn(k,
)(w) = 4. Application of Corollary 4.3 yields:

M1(Sd(Cn(k, �))) = 4nd+ 2(d− 1)× 4 = 4nd+ 8d− 8 .
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Also by Corollary 4.5,

M2(Sd(Cn(1, 2))) = M2(Sd(Cn(1, n)))

= 4nd+ (d− 1)(2× 4 + 2× 4) + (d− 2)× 4 = 4nd+ 20d− 24

and for � ∈ {2, 3, . . . , n− 1},

M2(Sd(Cn(1, �))) = 4nd+ (d− 1)(2× 4 + 2× 4) = 4nd+ 16d− 16 .

Example 5.3. Consider the bridge graph G = B1(Cn, Cn, . . . , Cn; v, v, . . . , v) , (d times),

where v is an arbitrary vertex of the n-cycle Cn, see Fig. 7 for the case n = 5.

1 2 3 d-1 d

V V V V V

Fig. 7. The bridge graph G = B1(C5, C5, . . . , C5; v, v, . . . , v) , (d times).

Application of Corollary 2.3 yields:

M1(G) = 4nd+ 4× 2(d− 1) + 4d− 6 = 4nd+ 12d− 14 .

Similarly, using Corollary 2.5, for d ≥ 3 we have:

M2(G) = 4nd+ (d− 1)((2 + 2)2 + 2× 4)− 2(2 + 2) = 4nd+ 24d− 32

whereas Corollary 3.5, for d = 2 yields:

M2(G) = 2(4n) + (2− 1)[(2 + 2) + (2× 2) + (2 + 2) + (2 + 2) + 1] = 8n+ 17 .

Example 5.4. Consider the square comb lattice graph Cq(N) with open ends, where N =

n2 is the number of its vertices (see Fig. 8). This graph can be represented as the bridge

graph B1(Pn, Pn, . . . , Pn; v, v, . . . , v) , (n times), where Pn is the path with n vertices and

v is its first vertex (vertex of degree one). It is easy to see that, M1(Pn) = 4n−6 (n ≥ 2),

M2(P2) = 1, and M2(Pn) = 4n− 8 (n ≥ 3). Application of Corollary 2.3 yields:

M1(Cq(N)) = n(4n− 6) + 4(n− 1) + 4n− 6 = 4n2 + 2n− 10 , n ≥ 2 .
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1
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3

3 4

4

n-2

n-2 n-1

n-1

n

n

Fig. 8. The square comb lattice graph with N = n2 vertices.

Similarly, using Corollary 3.5 for the case n = 2, and Corollary 2.5 for n ≥ 3, we get:

M2(Cq(N)) =

⎧⎨⎩
(2× 1) + (2− 1)[1 + 1 + (1× 1) + 1 + 1 + 1] if n = 2

n(4n− 8) + (n− 1)[(1 + 2)2 + 2× 2]− 2(1 + 2) if n ≥ 3

=

{
8 if n = 2

4n2 + 5n− 19 if n ≥ 3 .

Example 5.5. We consider the van Hove comb lattice graph CvH(N) with open ends,

where N = n2 is the number of its vertices (see Fig. 9). This graph can be represented

as the bridge graph

B1(P1, P2, . . . , Pn−1, Pn, Pn−1, . . . , P2, P1; v1,1, v1,2, . . . , v1,n−1, v1,n, v1,n−1, . . . , v1,2, v1,1)

where for 2 ≤ i ≤ n, v1,i is the first vertex (vertex of degree one) of the i-vertex path Pi

and v1,1 is the single vertex (vertex of degree zero) of singleton graph P1 .

1 12 23 34 4n-2 n-2n-3 n-3n-1n-1 n
P PP PP PP PPP PP PPP

Fig. 9. The van Hove comb lattice graphs with N = n2 vertices.
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Clearly, M1(P1) = M2(P1) = 0. Application of Theorem 2.2 yields:

M1(CvH(N)) = 0 + 2
n−1∑
i=2

(4i− 6) + (4n− 6) + (2× 0)

+ 4
2n−2∑
i=2

1 + (2× 0) + 4(2n− 1)− 6 = 4n2 + 4n− 12 .

Similarly, using Theorem 2.4 we have for n = 2:

M2(CvH(N)) = (0 + 1 + 0) + 0 + 0 + 2× 1 + (0× 1 + 1× 0)

+ 2(0 + 0)− (1 + 1) + 4× 1 + 4(3− 2) = 9

whereas for n ≥ 3,

M2(CvH(N)) = 2

(
0 + 1 +

n−1∑
i=3

(4i− 8)

)
+ (4n− 8) + 0 + 0

+ 2

[
2

(
1 +

n−1∑
i=3

2

)
+ 2

]
+ 0× 1 +

2n−3∑
i=2

1 + 0× 1

+ 2(0 + 0)− (1 + 1) + 4
2n−2∑
i=2

1 + 4(2n− 1− 2)

= 4n2 + 10n− 28 .

Example 5.6. In our last example, we consider the molecular graph of the nanostar

dendrimer Dn shown in Fig. 10.

v

w

Fig. 10. The molecular graph of nanostar dendrimer Dn.
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This graph can be viewed as the bridge graph B2(G,G, . . . , G; v, w, v, w, . . . , v, w) , (n

times), where G is the graph depicted in Fig. 11, v and w are the vertices shown in Fig.

10, and n is the number of repetition of the fragment G.

Fig. 11. The graph of nanostar dendrimer Dn for n = 1.

It is easy to see that M1(G) = 15 × 4 + 4 × 9 = 96 and M2(G) = 12(2 × 2) + 6(2 ×
3) + 3(3× 3) = 111. Application of Corollary 3.3 yields then:

M1(Dn) = 96n+ 2(n− 1)(2 + 2 + 1) = 106n− 10 .

Similarly, using Corollary 3.5,

M2(Dn) = 111n+ (n− 1)[2 + 2 + (2× 2) + 4 + 4 + 1] = 128n− 17 .

References

[1] A. R. Ashrafi, A. Hamzeh, S. Hosseinzadeh, Calculation of some topological indices

of splices and links of graphs, J. Appl. Math. Inf. 29 (2011) 327–335.

[2] M. Azari, A. Iranmanesh, Generalized Zagreb index of graphs, Studia Univ. Babes

Bolyai Chem. 3 (2011) 59–70.

[3] J. Braun, A. Kerber, C. Rucker, Similarity of molecular descriptors: the equivalence

of Zagreb index and walk counts, MATCH Commun. Math. Comput. Chem. 54

(2005) 163–176.

[4] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Com-

mun. Math. Comput. Chem. 52 (2004) 103–112.

[5] K. C. Das, I. Gutman, B. Horoldagva, Comparing Zagreb indices and coindices of

trees, MATCH Commun. Math. Comput. Chem. 68 (2012) 189–198.

-937-
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