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Abstract

The entropy of a chemical graph can be interpreted as its structural information
content. In this paper, we study extremality properties of graph entropies based
on so-called information functionals. Based on different information functionals
using metrical properties of graphs, we tackle the problem of determining classes
of graphs which take maximal and minimal values. Also, we define a novel class of
graphs which maximizes the structural information content based on the functional
using i-spheres. Under certain assumptions, this class fully determines the class
of maximal graphs based on their structural information content. For minimal
graphs and other functionals, an analytic approach to the question failed. Hence we
performed simulations and provide several conjectures on classes of extremal graphs
by using our numerical results.

1 Introduction

The study of extremal properties of structural graph measures has been performed in

terms of both theoretical and practical purposes, see [12, 22, 21]. Examples thereof are

the well-known Randić index [16] and the Balaban J index where their extremality, by

using several graph classes, has been investigated in [12] and [21], respectively. Similarly,

[10] determined trees with minimal ABC-index which is based on vertex degrees. Other

related work has been described in [6].

In this paper, we investigate extremality properties of graph entropy measures which

are based on information functionals [4]. We emphasize that entropy-based graph mea-

sures have been defined in a broad variety, e.g., [14, 11, 7, 8, 5]. In many cases, the base
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for those measures is so-called Shannon entropy [18], a concept from information theory

to measure the structural information content of arbitrary discrete random variables. In

recent work, [6] tackled the problem of exploring extremal properties of graph entropies

by inferring lower and upper bounds for certain graph classes. Also, quasi-majorization

has been introduced and several extremality statements for graph entropies have been

proven by using this method [6].

The main contribution of this paper is twofold: First, we introduce a novel graph class

which we call sphere-regular and derive an inclusion criterion to classify these graphs.

Second, we prove statements to find graphs possessing maximal and minimal entropy by

using the class of entropy measures introduced in [4]. To prove the results, we put the

emphasis on two information functionals for determining the entropy of the underlying

graph topology; the first functional is based on i-spheres [4], the second is based on

the vertex eccentricity. As a result, we find that the derived statements depend on the

underlying weight sequences of the just mentioned information functionals (see Section 2)

and, hence, proving quite general extremality results turned out to be very challenging.

Also, we have performed simulations and provide several conjectures for classes of extremal

graphs based on the obtained numerical results.

2 Notation

For a discrete probability distribution p = (p1, . . . , pk), the Shannon entropy [18] is defined

by

I(p) = −
k∑
i=1

pi log pi. (1)

The Shannon entropy attains its maximum for the uniform distribution p = ( 1
k
, . . . , 1

k
),

where

I(p) = −
k∑
i=1

1

k
log

1

k
= − log

1

k
= log k. (2)

The minimum of I(p) is taken at the distribution p = (1, 0, 0, . . . , 0), where I(p) = 0.

In the case of structural graph measures, we extract a vector

X = (x1, x2, . . . , xk),

containing topological information, and define a probability vector by

pX =

(
x1∑k
j=1 xj

, . . . ,
xk∑k
j=0 xj

)
, (3)
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to which we can apply Shannon’s formula (1). This construction was first used by [17]

and [19], who defined the vector X to be the sizes of the vertex orbits of a graph G. [14]

was the first who used this measure to characterize the structural information content

of a graph and proved properties thereof. Later, [2] defined graph entropies which are

called magnitude-based information measures. Another approach to define the entropy of

a graph in due to [11]. This quantity often called Körner entropy has been introduced to

solve a coding problem and is therefore rooted in information theory, see [11].

Now, we state further definitions.

Definition 2.1. [4] The structural information content of a graph G is given by

If (G) = −
n∑
i=1

f(vi)∑n
j=1 f(vj)

log
f(vi)∑n
j=1 f(vj)

, (4)

for some information functional f : V → R.

Throughout Sections 4 and 5 we will use the sphere-functional fS. Let ρ(G) denote

the diameter of a graph G, and for i from 1 to ρ(G), let Si(v) denote the i-th sphere of

the vertex v, i.e. the set of all vertices at distance i of v.

Definition 2.2. The sphere-functional fS is defined by

fS : V → R

fS(v) = c1|S1(v)|+ c2|S2(v)|+ · · · cρ(G)|Sρ(G)(v)|,
(5)

where (c1, . . . , cρ(G)) is a real-valued weight sequence.

For our purposes, we will mainly use decreasing sequences c1, . . . , cρ(G) of

constant decrease: c1 := S, c2 := S − k, . . . , cρ(G) := S − (ρ(G)− 1)k, (6a)

quadratic decrease: c1 := S2, c2 := (S − k)2, . . . , cρ(G) := (S − (ρ(G)− 1)k)2, or (6b)

exponential decrease: c1 := S, c2 := Se−k, . . . , cρ(G) := Se−(ρ(G)−1)k. (6c)

Intuitive choices for the parameters are S = ρ(G) and k = 1.

The sphere-functional introduced above is of central interest in this paper, but the

following eccentricity functional will be addressed in Section 6.

Definition 2.3. The eccentricity σ(v) of a vertex v is the greatest distance between v and

any other vertex.

Definition 2.4. The eccentricity-functional fσ is defined by

fσ : V → Z

fσ(v) = σ(v).
(7)
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We now define several sub-classes of regular graphs, which will be of interest in Sec-

tion 4. Recall that a (d)-regular graph is a graph, where every vertex has equal degree

d. To our knowledge, the class of sphere-regular graphs (see Definition 2.5) has not been

studied previously, while the class of distance-regular graphs has been introduced by [3]

and studies thereof can be found in the literature.

Definition 2.5. We call a graph sphere-regular if there exist positive integers s1, . . . , sρ,

such that

(|S1(v)|, |S2(v)|, . . . , |Sρ(G)(v)|) = (s1, s2, . . . , sρ)

for all vertices v ∈ V , where ρ denotes the diameter ρ(G) of G.

The following definition of a distance-regular graph is slightly different to the one given

in [3], but it is easily seen that it is equivalent.

Definition 2.6. A graph G is called distance-regular if for every i = 0, . . . , ρ(G) there

exist integers bi and ci, such that for all pairs v, w ∈ V with d(v, w) = i holds

|Si−1(v) ∩ S1(w)| = bi and (8a)

|Si+1(v) ∩ S1(w)| = ci. (8b)

We will use the graph classes defined by Definitions 2.5 and 2.6 to find graphs of

maximal entropy.

3 Software and Computation

Custom computer software has been developed and applied in order to determine the

graphs among a group which maximize the entropy with regard to a given information

functional. This has been achieved by calculating the entropy values for several graph

sets (see Section 5) and displaying the graphs possessing extremal values (maximum and

minimum).

In order to calculate the entropies, the existing routines from the QuACN package [15]

based on the R programming language suggested a first implementation. This experi-

mental early attempt turned out to be far too slow for an exhaustive analysis of larger

data sets. As a meaningful optimization of the R-based solution would have been rather

difficult, a different solution has been created in C++. The LEMON library has been chosen

to represent the graphs at runtime, mainly because of its ability to read graph6 files.

These are readily available thanks to the geng tool from the nauty package [13], which
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has been used to generate the sets of all connected graphs (geng -c $N) and all trees

(geng -cbf $N $[N-1]) of a given order $N. Our program loads one graph at a time,

calculates its distance matrix and computes the entropy values. The algorithms to cal-

culate the information functionals have been taken from QuACN and translated into C++

code utilizing the STL.

The output of this program is a line-based text file with tab-separated fields for the

considered information functionals, the diameter as well as an edge list representation for

each graph. These intermediate output files, one per set, have been further processed and

rendered with a Python script based on the igraph and cairo libraries. The final result

is a collection of PDF files containing graphical representations of the extremal graphs,

both for each set as a whole and for each subset of graphs with the same diameter.

4 Maximum entropy

In this section, we try to classify those graphs which return maximal entropy IfS(G) =

log n for the sphere-functional and an arbitrary decreasing weight sequence. We will

find that a full classification is only possible for special weight sequences such as the

exponential sequence. In the following, we will speak about maximal graphs as those

graphs having maximal entropy.

Proposition 4.1. Every sphere-regular graph with n vertices has maximum entropy

If (G) = log n.

Proof. Let F = f(v) =
∑ρ(G)

i=1 cisi, then

If (G) = −
n∑
i=1

F

nF
log

F

nF
= − log

1

n
= log n.

Obviously, a trivial constraint for a sphere-regular graph is being regular, since the

degree of a vertex corresponds to its first sphere. In contrast, regularity is not sufficient

for sphere-regularity.

Proposition 4.2. Not every regular graph is sphere-regular.

Proof. The graph in Figure 1 proves the statement, since it is a regular graph with d = 4,

but

S(v) = (4, 4, 4, 1),

S(w) = (4, 7, 2, 0).
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Figure 1: A regular graph which is not sphere-regular.

Still, a sufficient condition for sphere-regularity can be given using the notion of dista-

nce-regularity.

Theorem 4.3. A distance-regular graph G is sphere-regular.

Proof. We proof the statement inductively. For S1(v) let i = 0. Only a vertex v itself is

at distance 0 from v, hence by the definition of distance regular graphs we have that

|S1(v) ∩ S1(v)| = |S1(v)| = c0 = s1

for all vertices v.

Now we assume that for all spheres Si(v) and all vertices v we have Si(v) = si.

Note that, if d(v, w) = i, then

S1(w) = (S1(w) ∩ Si−1(v)) ∪ (S1(w) ∩ Si(v)) ∪ (S1(w) ∩ Si+1(w))

= S1(w) ∩ (Si−1(v) ∪ Si(v) ∪ Si+1(v)), (9)

because every neighbor of w is reachable in a maximum of i+1 steps via w, and if one of its

neighbors was reachable in i−j, j ≥ 2 steps, then w would be reachable in i−j+1 ≤ i−1

steps via this vertex. Further, all vertices in Si+1(v) are neighbors of a vertex in Si(v),

and they are those neighbor which are not at distance i− 1 or i of v, that is

Si+1(v) =
⋃

w∈Si(v)

S1(w)\ (Si(v) ∪ Si−1(v)) =
⋃

w∈Si(v)

(S1(w) ∩ Si+1(v)) .

By the inclusion-exclusion principle, this gives

|Si+1| =
∑

w∈Si(v)

|S1(w) ∩ Si+1(v)|+
|Si(v)|∑
`=2

(−1)`+1
⋂

(w1,...,w`)∈Si(v)
wi 6=wj

S1(wi) ∩ Si+1(v).
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Let v ∈ V and x ∈ V be at distance i + 1 of v, i.e. x ∈ Si+1(v). Then, x must have

at least one neighbor in Si(v), and by distance-regularity, |Si(v) ∩ S1(x)| = bi+1, that is,

every vertex x ∈ Si+1(v) has a fixed number ki of neighbors in Si(v), and hence it appears

in
(
ki
`

)
intersections of spheres Si+1(v) ∩

⋂`
j=1 S1(wj). Therefore,

|Si+1(v)| =
∑

w∈Si(v)

ci +

ki∑
`=2

(−1)`−1|
⋂

w1,...,w`∈Si(v)

S1(wi) ∩ Si+1(v)|

= cisi +

ki∑
`=2

(−1)`−1|Si+1(v)|
(
ki
`

)
.

Hence

|Si+1(v)| = sici

1 +
∑ki

`=2(−1)`
(
ki
`

) , (10)

which is independent of v. Note therefore that the constant ki is also determined by i.

Lemma 4.4. Distance-regularity is not a necessary condition for sphere-regularity

Proof. The statement is proven by the sphere-regular graph in Figure 2. For i = 1, we

have

|S2(3) ∩ S1(2)| = 2, but |S2(2) ∩ S1(1)| = 1.

b

b

b

1

2
3

b

b

b

b

b

b

Figure 2: A sphere-regular graph which is not distance-regular.

To summarize the results presented so far, we state the following Corollary.

Corollary 4.5. {regular graphs} % { sphere-regular graphs } % { distance-regular graphs}.

Apparently, the class of sphere-regular graphs is a novel class of graphs. Naturally,

the question arises whether sphere-regular graphs are the only maximal graphs for IfS .

The answer to this question depends heavily on the weight sequence used. The following

Lemma answers the question for suitable sequences.
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Lemma 4.6. Sphere-regular graphs are the only maximal graphs for IfS when using

a weight sequence such that there exist no numbers ai, i = 1, . . . , ρ(G), ai ∈ Z with∑ρ(G)
i=1 ai = 0, where

ρ(G)∑
i=1

ajcj = 0. (11)

Proof. Lets assume G is maximal but not sphere-regular, hence there is a vertex v with

S(v) = (s1, s2, . . . , sρ) and a vertex w with S(w) = (s̃1, s̃2, . . . , s̃ρ) with si 6= s̃i for at least

one i = 1, . . . , ρ(G). Since the graph is maximal, we have

ρ(G)∑
i=1

sici =

ρ(G)∑
i=1

s̃ici,

and hence
ρ(G)∑
i=1

(si − s̃i)ci =

ρ(G)∑
i=1

aici,

where the numbers ai are integers which sum up to zero.

An example of a sequence fulfilling the preliminaries of Lemma 4.6 is the exponential

sequence, since obviously,

−aie−ik 6=
∑
j 6=i

aje
−jk

for any integers ai, aj.

For other (decreasing) sequences such as the linear or the quadratic sequence, linear

combinations like equation (11) do exist (for the quadratic sequence there are fewer than

for the linear one). It would be required to prove that no graph can actually take such a

set of sphere-sequences, which can be disproved as follows.

Theorem 4.7. There are maximal graphs with respect to IfS which are not sphere-regular.

Proof. The graph depicted in Figure 3 is an example of a non sphere-regular maximal

graph for IfS , using the linear sequence c1 = ρ(G), c2 = ρ(G) − 1, . . . , cρ(G) = 1. It

contains two types of nodes, namely nodes of type v and node of type w. We have

S(v) = (4, 2, 2), fS(v) = 18,

S(w) = (3, 4, 1), fS(w) = 18.
(12)

Remark 4.1. Note that even for the linear sequence, computations indicate that there

is only a very small number of maximal graphs which are not sphere-regular. For graphs

of size 9, for example, the graph depicted in Figure 3 is the only one among 22 maximal

graphs.
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Figure 3: A maximal graph which is not regular.

In the following, we will present some restrictions on maximal graphs for IfS , which

are valid for any decreasing weight sequence.

Lemma 4.8. A graph of diameter 2 is maximal for fS if and only if it is sphere-regular.

Proof. We proved in Proposition 4.1 that a sphere-regular graph is maximal. Now assume

G is a maximal graph with diameter ρ(G) = 2. Further assume it contains vertices v and

w with different sphere-vectors, say S(v) = (v1, v2) and S(w) = (w1, w2) with vi 6= wi for

i = 1, 2. Since v1 + v2 = w1 + w2 = (n− 1) we have

c1v1 + c2v2 = c1w1 + c2w2

(n− 1− v2)c1 + c2v2 = (n− 1− w2)c1 + w2c2

(c2 − c1)v2 = (c2 − c1)w2

v2 = w2,

and also v1 = n− 1− v2 = n1 − w2 = w1.

Lemma 4.9. Maximal graphs cannot have unary nodes. Hence, in particular, trees cannot

be maximal for IfS .

Proof. Let v be a vertex of degree 1 and w be its unique neighbor. Further, let S(w) =

(w1, w2, . . . , wd−1, 0) be the sphere vector of w (The last entry has to be zero since any

path of length r starting in w gives a path of length r + 1 starting in v. Then,

s(v) = (v1, . . . , vd) = (1, w1 − 1, w2, w3, . . . , wd−1).

Given that the two vectors have the same weighted sum, we have

c1 + (w1 − 1)c2 + c3w2 + · · · cdwd−1 = c1w1 + c2w2 + · · ·+ cd−1wd−1

(w1 − 1)(c1 − c2) + w2(c3 − c2) + · · ·+ wd−1(cd−1 − cd) = 0. (13)
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This is a contradiction since all terms ci − ci+1 are positive due to the monotonicity of

the sequence and w1 ≥ 2 if n > 2.

Corollary 4.10. The last nonzero entries of the sphere-sequence of a vertex of a maximal

graph cannot be 2 or more consecutive ones.

Proof. Let σ(v) be the eccentricity of vertex v. If there is only one vertex at distance

σ(v)− 1 and one vertex w at distance σ(v) of v, then w must be a leaf.

Lemma 4.11. A maximal graph different from the complete graph Kn cannot contain a

vertex of degree n− 1.

Proof. A vertex of degree n − 1 has sphere-vector S(v) = (n − 1, 0, . . . , 0). For a vertex

w with degree sequence S(w) = (s1, s2, . . . , sρ) we have

(n− 1− s1)c1 =

ρ(G)∑
i=2

sici ≤ (n− 1− s1)c2,

since c1 > c2 the statement is proven.

5 Minimum entropy

Very little is known about minimal entropy graphs. The absolute minimum of entropy

is taken at the probability distribution p = (1, 0, 0, . . . , 0), which is clearly not taken by

any graph since the functional fS(v) never returns 0. Due to the limitations in size of

computations on exhaustively generated graph classes [5], our numerical results provide

no clear picture for universal conjectures.

Computations (see Section 3) give the minimal graphs of size 8 and 9 depicted in

Figure 4 for IfS , where the left graph is minimal for the linear sequence and the right

graph is minimal for the exponential sequence. Note therefore that the set N8 of all

non-isomorphic graphs on 8 vertices contains 11117 graphs, N9 contains 261080 graphs

and the exhaustively generated set on 10 vertices, N10, has 11716571 graphs. Similarly

sizes of exhaustive graph sets explode for larger numbers of vertices. Note that these

graph classes have been recently used by [5] to determine the discrimination ability of

topological graph measures.

Results for the linear sequence show that the minimal graph is not necessarily a tree,

while for the exponential sequence the minimal graphs are closely related and it seems

reasonable to conjecture that a minimal graph is a tree. Computations on exhaustively
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Figure 4: Minimal graphs of sizes 8 and 9.

generated classes of trees are less costly than those on all graphs, hence further computa-

tions on exhaustively generated trees up to size 20 provide a conjecture. We therefore call

a tree a generalized star, if it has on central vertex, and a number of branches emerging

from this vertex whose lengths differ by at most 1. Hence, the minimal graph for IfS with

the exponential sequence is a generalized star for sizes 8 and 9, and so are the minimal

trees up to size 20, as computations on trees show. In Figure 5 we depict the minimal

tree on 20 vertices.

Conjecture 5.1. The minimal graph for IfS with the exponential sequence is a tree. Fur-

ther it is a generalized star of diameter approximately
√

2n and, hence, with approximately
√

2n branches.

For the linear sequence, note that both minimal graphs are bipartite, in fact they are

complete bipartite graphs K1,7 and K2,7, respectively. Still, further computations would
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Figure 5: The minimal tree of size 20.

be required to determine the development of the minimal graph, which is, as mentioned

previously, very costly on time and computational power due to the rapidly increasing

sizes of sets of exhaustively generated graphs.

6 The eccentricity-based functional

In this section, we will focus on the second functional introduced in Section 2, namely

the distance-functional fσ, see Definition 7. The quite simple definition of the functional

intuitively suggests that maxima and minima of Ifσ might be easier to determine as those

of IfS . In fact, this is not the case due to the high degeneracy [5] of the measure, that is, a

lot of graphs which are not necessarily structurally related dispose of identical information

content for Ifσ .

6.1 Maximal graphs

We first present an elementary result on maximal graphs with respect to fσ.

Lemma 6.1. (i) A graph G is maximal with respect to Ifσ(G) if and only if every of

its vertices is endpoint of a maximal path in G.

(ii) A maximal graph different from the complete graph Kn cannot contain a vertex of

degree n− 1.

Proof. The first statement is obvious since to obtain a uniform distribution every vertex

has to have the same eccentricity σ(v) = ρ(G). There exists at least one graph with this

property, namely the complete graph Kn. Hence the absolute maximum of the entropy,

log n, is indeed taken by a graph. The second statement follows immediately since a

vertex of degree n− 1 has eccentricity 1, but Kn is the only graph of diameter 1.

-896-



Unfortunately, the above conditions are fulfilled by a large number of graphs, as men-

tioned in the following remark, which seemingly do not have further structural properties

in common, a similarity is mentioned in the following.

Remark 6.1. Computations indicate that there are > 1500 maximal graphs in N8 and

most probably more than 50000 in N9. Also, note that many of these graphs are little

connected, i.e. they contain a lot of vertices of degree 2.

In Figure 6, we depict one of the large number of graphs on 9 vertices which are

maximal for the functional fσ. This graph can be considered a typical representant with

a high number of vertices of degree 2. Interestingly, this graph minimizes the entropy

with respect to the functional fS together with a linear weight sequence, see Section 5.

b

b

b

bb

b

b

bb

Figure 6: A maximal graph in N9.

6.2 Minimal graphs

Based on the numerical results, we make the following conjecture for a minimal graph

with respect to fσ. We depict the minimal graphs on 8 vertices in Figure 7.

Conjecture 6.2. A minimal graph for Ifσ is a highly connected graph, i.e. it is a complete

graph Kn where a small number of edges have been removed. In particular, we conjecture

that a minimal graph on n vertices will have m ≥ n
2

vertices of degree n− 1.

A graph described in Conjecture 6.2 has diameter 2, since a maximal path contains a

vertex of degree n− 1 at step 1. The vector of functionals is

f(V ) = (1, 1, . . . , 1︸ ︷︷ ︸
m

, 2, . . . , 2︸ ︷︷ ︸
n−m

).
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Figure 7: The minimal graphs of N8.

Note that there is only a very small number of minimal graphs, especially in comparison

to the number of maximal graphs. For N8 and N9, computations show that there are 2

minimal graphs. For n = 8, they are depicted in Figure 7, for n = 9 they contain 5

vertices of degree 8 each.

Further note that the range of values of If3 is quite small, i.e.

Imax(N9)− Imin(N9) ≈ 0.085.

Even by performing thorough computations, we could not provide analytic results or

strong conjectures for the case of fσ. Therefore, note that the complete graph is a maximal

graph for Ifσ , while the complete graph K8, where only two edges have been removed, has

minimal entropy. The graph depicted in Figure 6 can be obtained from those in Figure 7

by further removal of edges, but returns maximal entropy. Hence, we can conclude that

extremal behavior of information content based on the eccentricity functional will not be

describable by edge-removal operations.

7 Summary and Conclusion

Now we summarize the results obtained in this paper. We have successfully classified the

class of graphs which take the maximal value by using the entropy based on i-spheres and

the exponential sequence (see Equations 4, 5). We further realized that the considera-

tions are not completely true for a linear sequence, which indicates that the exponential

sequence might also provide better uniqueness properties for non-extremal graphs. In

parts, this has already been confirmed in a previous study to explore the discrimination

ability (uniqueness) of entropic graph measures, see [5]. We found that for proving state-
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ments to find minimal graphs, the problem is much harder, and analytic proofs seem out

of reach at the present state. A reason for this is surely the complexity of the used graph

entropies. However, they have been proven useful in several disciplines such as structural

chemistry and computational linguistics, see [9, 1].

By performing further computations on a large scale, we could get deeper insights to

better understand the complexity of the problem. If we study the literature regarding

contributions to prove extremal properties by using non-information-theoretic measures,

e.g., see [10], we see that the problem of exploring extremal properties of parametric graph

entropies remains quite intricate.

Acknowledgement : Matthias Dehmer and Veronika thank the Austrian Science Founda-

tion (FWF) for supporting this work (project P22029-N13).
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