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ABSTRACT 

 

The Webb rate equation has been widely used to describe the kinetic behavior of substrate 

inhibition and activation for various cholinesterases. However, its use is limited to the rate 

versus substrate-concentration analysis, as the integrated Webb equation cannot be expressed 

in an explicit closed-form reformulation of the time-dependent solution. In this article, I 

construct explicit approximations to the solution of the Webb rate equation as a recursive 

series using the Adomian decomposition method. This decomposition method is an elegant 

technique to handle nonlinear differential equations effectively, and thus it has recently been 

widely used to solve this class of equations in the sciences and engineering. I demonstrate 

here that the algebraic nature of these approximations to the solution of the Webb equation 

makes progress-curve analysis through the integrated rate equation an attractive and useful 

alternative for the cholinesterases that can be simply performed using any optional standard 

nonlinear regression software.��
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1. INTRODUCTION 
 

The construction of a reaction model is one of the first steps a biochemist takes following the 

discovery of a novel enzyme. Hence, kinetic tools are used to determine the sequence of 

substrate binding with the appropriate affinity constants and the rates at which the (enzyme-) 

substrate intermediates are converted to the products. The kinetics of enzyme-catalyzed 

reactions are typically characterized in terms of their initial rates, which are determined at 

various substrate concentrations. Thus, instead of the integration of the model rate equations 

and the extraction of the full information from entire time-courses of the reaction, the 

experimental data over the short period when no more than 10% of the substrate has been 

consumed can be used for the initial rate determination method. Hence, despite the obvious 

advantages of progress-curve analyses, and because of their very nature (reaction 

measurements are typically represented as time–concentration data, and not as rate–

concentration data), most biochemists appear not to be aware of their applications. Also, 

explicit mathematical solutions for various reaction models are not available for fitting to 

time-course data using a spreadsheet with commercial nonlinear regression software (e.g., 

Excel, SigmaPlot, Kaleidagraph, Prism). However, attempts have recently been made to 

obtain appropriate explicit approximation solutions of the integrated Michaelis-Menten [1-3] 

and Haldane equations [4].    

Various kinetic models have been proposed to describe the reaction mechanisms of the 

cholinesterases, which have Michaelis-Menten–like mechanisms only for low initial substrate 

concentrations, and either substrate inhibition or activation for higher initial concentrations. 

This behavior of the cholinesterases with an excess of substrate that does not follow 

Michaelis-Menten kinetics is usually explained with the reaction model as shown in Scheme 1 

[5-7].��
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Scheme 1 
 

This reaction model, in which the substrate molecule S binds to two different (active 

and peripheral) sites with two dissociation constants Ks and Kss, can be used to describe both 
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substrate inhibition and activation at high substrate concentrations. These latter deviations 

from Michelis-Menten kinetics depend on parameter b in Scheme 1, which reflects the 

efficiency with which the ternary complex SES can form the product. The mathematical 

formalism of this enzyme reaction model was initially described by Webb [8] as: 
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I therefore refer to Eq. (1) as the Webb equation, although some refer to it also as the Radi�-

Haldane equation [9]. In Eq. (1), VM relates to the total enzyme concentration [E]T as VM = 

kcat[E]T, and b determines the kinetic behavior. When b <1, there is substrate inhibition, when 

b >1, there is substrate activation, and if b = 1, the kinetics cannot be distinguished from 

Michaelis-Menten–like, as Eq. (1) then reformulates to give the classic Michaelis-Menten 

equation. Calculation of the solution to this Webb equation (Eq. (1)) demands numerical 

computation, as Eq. (1) can only be solved either by applying a general numerical integration 

technique for ordinary differential equations, or by a numerical root-finding method of the so-

called integrated implicit form of Eq. (1), as: 
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Eq. (2) (for the derivation from Eq. (1) see the Appendix A) cannot be reformulated as 

an explicit closed-form equation like the integrated Michaelis-Menten equation [1,10-12]. 

However, recently, a great deal of interest has focused on the application of the Adomian 

decomposition method to the solving of a wide variety of nonlinear differential equations 

[13], whereby chemical kinetic problems are no exception [14]. The Adomian decomposition 

method has been applied for the last three decades as an iterative technique to obtain 

approximate analytical solutions of nonlinear differential equations that arise in various fields 

of the sciences and engineering. This method has also been offered recently as an alternative 

to the exact closed-form solution of the integrated Michaelis-Menten equation [2,3], which is 

expressed in terms of the non-elementary Lambert W(x) function. This technique, which 

provides approximate solutions in the form of power series, can efficiently compensate for the 

lack of W(x) in standard nonlinear regression software. Thus, in this article, I provide further 

-747-



approximate solutions to more complex Webb rate equations for substrate inhibition/ 

activation enzyme kinetics that incorporate the use of the Adomian decomposition method.    

 

2. THEORY 

 

2.1. The Adomian decomposition method 

In reviewing the Adomian decomposition methodology [13], we consider an initial-value 

differential equation: 
 

 0( , ) 0, (0)du f t u u u
dt

�    (3)�

 

where f(t,u) is a nonlinear function that is analytic near u = u0 and t = 0, and u0 is an initial-

condition data value. It is equivalent to solve the system of Eq. (3) and the Volterra integral 

equation: 
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As usual in the Adomian decomposition method, the solution u(t) of Eq. (3) is 

considered to be the sum of a series: 
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and the nonlinear function f(t,u) as the series of the function: 
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where An are the special Adomian polynomials that are obtained for the particular nonlinear 

function f(t,u). The An are given as: 
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Continuing this course, the other Adomian polynomials can be obtained, which are 

defined by the general explicit formulae: 
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By substituting Eq. (5) and Eq. (6) into Eq. (4), this gives the recursive equation for 

un+1 in terms of (u0,u1,…,un): 
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Each term un of the solution corresponds to a correction of a given order, and the 

solution itself is the sum given in Eq. (5). 

�

2.2. Adomian decomposition method adapted to the Webb equation 

The Webb equation is a nonlinear differential rate equation that can be nondimensionally 

expressed as: 
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where � = [S]/KSS, � = VMt/KSS, and R = KS/KSS. As an illustration, I present the four-term 

decomposition method below for the Webb equation in the recursive relation as: 
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The resulting nondimensional solution for �(t) is given by the sum of: 
 

� 0 1 2 3 4( )t�  � �� �� �� �� � (12)�
 

which is actually a polynomial in t of the 4th-order with constant coefficients that can be 

evaluated for any time. The higher-order terms can be obtained in a similar fashion. The n-th 

derivative of Eq. (10) and the Adomian polynomials up to the n-th order can be generated in 

Wolfram Mathematica 8 using the code D[s*(1+b*s)/((s+R)*(1+s)),{s,n}] and the function 

AdomianPolynomials[u_,F_,n_]:=CoefficientList[ExpandAll[Series[F[Sum[�^ku[k],{k,n}]],{

�,0,n}]],�].��

The dimensional time-product concentration data can be further calculated using the 

following nth-order-term expressions of Eq. (14): 
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where k is the order of a particular term. 
 

3. COMPUTATIONAL SIMULATIONS 

 

The simulated concentrations of the product versus time data were generated by computation 

using the direct model of Eq. (14) and the FindRoot code to Eq. (2) in the Wolfram 

Mathematica 8 computer program. Here, the numerical values of the kinetic parameters were 
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assigned from the literature for human butyrylcholinesterase (huBChE), for substrate 

inhibition [15] (with benzoylthiocholine (BzTCh); Ks = 3 �M; Kss = 3000 �M, b = 0.3) and 

substrate activation [6] (with butyrylthiocholine (BTCh); Ks = 20 �M; Kss = 1000 �M, b = 3). 

The curves shown in Figure 1 illustrate the deviations of the data generated by the 

computation using the direct model of the 4th-order term of Eq. (14) from the data evaluated 

by the FindRoot code to Eq. (2), for various initial substrate concentrations.�
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Figure 1. Comparisons of the various solution approaches (the 4th-order term of Eq. (14) vs the root-

finding solution of Eq. (2)) for substrate inhibition (A) and substrate activation (B) in the huBChE 

reaction for various initial substrate concentrations. A. 3 �M (�), 7.5 �M (- -), 15 �M (���), 300 �M 

(�), 3000 �M (- -), 15000 �M (���). B. 20 �M (�), 50 �M (- -), 100 �M (���), 500 �M (�), 2000 �M (- -

), 10000 �M (���). 
�

It can be noted from Figure 1 that the approximated solutions evaluated with the 

Adomian decomposition method diverge from the true solutions as the substrate is consumed 

during the reactions. However, the relative errors of the calculated concentrations are 2% or 

less when the substrate concentrations do not decrease below 20% of their initial values. This 

means that efficient progress-curve data analysis can be carried out not only at the initial 

substrate concentrations, but also over the interval between this value and that at which 

around 80% of the initial substrate is converted to the product. As approximated solutions 

diverge most rapidly (most steeply) for the progress curves simulated with the lowest initial 

substrate concentrations (Figure 1), the same simulations were carried out using Eq. (14) with 

the higher-order terms (i.e., 5th, 6th, 7th and 8th orders). The results are shown in Figure 2, 

where it can be seen that higher-order terms in Eq. (14) improve the accuracy for wider 

substrate intervals (for up to 90% substrate consumption), although these higher-order terms 

demand more complex expressions and consequently more computational effort as the 

number of terms required for computation of the solution grows very rapidly with increasing 
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order in accordance with the Hardy-Ramanujam-Rademacher formula [2]. Hence, it appears 

that the explicit 4th-order term of Eq. (14) is already an useful alternative to the solutions 

computed with other numerical techniques. This can serve as a simple analytical tool for 

progress-curve analysis in standard curve-fitting programs, with an accuracy that is in the 

range of the usual experimental errors when up to 80% of the substrate is consumed in the 

reaction.  
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Fig. 2 Comparisons of the approximation solutions of the various orders for substrate inhibition (A) 

and substrate activation (B) in the human butyrylcholinesterase reaction, for the lower initial substrate 

concentrations (3 �M and 20 �M, respectively). A. 4th order (�), 5th order (- -), 6th order (���), 7th order 

(�), 8th order (- -). B. 4th order (�), 5th order (- -), 6th order (���), 7th order (�), 8th order (- -). 

�

4. KINETIC PARAMETER ESTIMATION 

 

Simulated progress-curve data for the cited huBChE [6,15] were generated by assigning the 

following numerical values, with respect to two different substrates, and consequently, kinetic 

behaviors: (1) inhibition with BzTCh: Ks = 3 �M; Kss = 3000 �M, b = 0.3; and (2) activation 

with BTCh: Ks = 20 �M; Kss = 1000 �M, b = 3. The solutions for the substrate concentrations 

as a function of time were generated by root-finding computation with the direct integrated 

Webb rate equation in Eq. (2) using the Wolfram Mathematica 8 computer program with the 

FindRoot code. More realistic experimental observation data were generated by introducing 

noise of a known type and magnitude into the simulated error-free concentration–time data. 

Normally distributed random errors were added to the exact substrate concentration calculated 

from Eq. (2) using the Mathematica software. The individual substrate concentration datasets 

were converted to product concentration profiles ([P]t = [S]0 – [S]t). The time-courses that 

resulted (for the data that represent the substrate consumption for up to 80% of its initial value 
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at low concentrations; see Figure 3A, B) were used to estimate the kinetic parameters using 

the GraphPad Prism 5 software package. 

The 4th-order term of the model approximation of Eq. (14) for product accumulation 

was also implemented in the GraphPad Prism 5 computer program for the calculation of the 

theoretical product concentrations, as a user-defined, built-in, explicit model equation (see 

Appendix B). This standard curve-fitting program has an all-user interface that allows users to 

easily handle global least-squares nonlinear regression curve fitting, to adjust the values of the 

model parameters to find the curve that best predicts the data.  

The modeling results for huBChE substrate inhibition (with BTCh) and activation 

(with BzTCh) are shown in Figure 3A, B for each progress curve (solid lines), and the 

parameter estimates are given in Table 1.�
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Figure 3. Simulated experimental time–product concentrations and initial-rate versus initial substrate 

concentration profiles for substrate inhibition (A, C) and substrate activation (B, D) in the huBChE 

reaction. The symbols represent the simulated data with added ‘experimental noise’, with the 

theoretical parameter values from the text and the following initial substrate concentrations: A, C. 3, 

7.5, 15, 300, 3000 and 15000 �M. B, D. 20, 50, 100, 500, 2000 and 10000 �M. The lines are the 

theoretical concentrations obtained using the 4th-order term approximation of Eq. (14) (in A, B) and 

the initial rate values calculated using Eq. (1) (in C, D), and the estimated parameter values given in 

Table 1. 
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Table 1. Parameters acquired by global progress-curve and initial-rate fitting. Estimates for the kinetic 

parameters fitted to the data shown in Figure 3 that were obtained using the 4th-order term model 

approximation of Eq. (14) and initial rates of Eq. (1). Data are means ±SD.  
 

Substrate VM(�M/s) Ks (�M) Kss (�M) b 

 Theoretical values 

BzTCh 0.150 3.00 3000 0.30 

BTCh 1.00 20.0 1000 3.00 

 Progress-curve fitting 

BzTCh 0.1498 ±0.0003 3.05 ±0.03 2989 ±45 0.304 ±0.002 

BTCh 0.973 ±0.014 19.0 ±0.7 957 ±17 3.08 ±0.04 

 Initial-rate fitting 

BzTCh 0.147 ±0.010 2.78 ±0.76 3300 ±2200 0.30 ±0.12 

BTCh 1.27 ±0.21 40 ±13 1340 ±440 2.39 ±0.37 

�

The initial rates were also determined by estimating the slopes of the tangents of each 

of the individual progress curves at the data intervals where less than 10% of the initial 

amounts of the substrate had been converted to product. The initial velocity versus substrate 

concentration profiles are shown in Figure 3C, D, and the parameter estimates obtained using 

Eq. (1) for the classical v0 vs [S]0 analyses are also given in Table 1. These analyses demand 

accurate initial velocity evaluations, which cannot be obtained in particular at low substrate 

concentrations (see Figure 3C, D). 

The best parameter values shown in Table 1 yielded a surprisingly good fit to the 

experimental data of the model of Eq. (14) by applying standard nonlinear regression 

software, although only the 4th-order term approximations were used for the reaction data that 

represent less than 80% of substrate transformation in each progress curve. Thus, the results 

verify the correctness of the derived approximation solutions presented here. On the contrary, 

the initial-rate analyses lead to much greater uncertainties in the kinetic parameter estimates 

when fitting Eq. (1) to the v0 versus [S]0 data.   
 

5. FURTHER MODIFICATIONS TO THE REACTION MODEL 

 

It should also be emphasized that real-world enzymes generally do not obey the irreversible 

substrate-conversion mechanism, as proposed in the reaction model of this article (see 
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Scheme 1). Instead, the forward velocities of many enzyme-catalyzed reactions are affected 

by product inhibition if the enzyme or enzyme-substrate complex and product can form 

unproductive complexes, as illustrated in Scheme 2, although more realistic reactions are 

further reversible. The reversibility of the reaction is not the case for hydrolytic enzymes like 

the cholinesterases, although reports on human acetylcholinesterase product inhibition are 

known [16].  
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Scheme 2 
 

However, also the extended rate equation that describes the kinetics of such product-

inhibition mechanisms can be transformed into a Webb-type equation. Here, the net rate of 

substrate decay can be expressed as: 
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After considerable reformulation of Eq. (15), and taking mass balance (i.e., [S]0 = [S] 

+ [P]) into consideration, the net rate equation can be replaced with Eq. (16): 
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which can be expressed in terms of the Webb-type form as: 
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An interesting feature of Eq. (17) is that the apparent limiting rate VM* and 

dissociation constant KS* can have negative values if KS > KP, although they must both have 

the same sign. However, in any case, the Adomian decomposition method can also be used to 

find the approximated solutions of such modified Webb rate equations. 
 

6. CONCLUSIONS 
 

The most elegant and ideal simplification of kinetic-parameter evaluation from time-course 

data can be performed when the algebraic integration of the rate equation results in an explicit 

mathematical equation that describes the kinetics of the reaction model. However, exact 

integrated rate equations can be considered as simple and useful alternatives to the widely 

used numerical integration approach, although only for enzymes that obey the generalized 

Michaelis-Menten reaction mechanism [10-12], as integrated rate equations do not exist in 

closed forms for more complex reaction mechanisms.  

Hence, in this article, I have presented the approximated solutions of the Webb rate 

equation using the Adomian decomposition method, which can help in the identification of 

kinetic parameters for the kinetics of cholinesterase substrate inhibition/ activation. The 

procedure demonstrated here offers an easy and quick analysis of progress curves of 

enzymatic reactions within the framework of the Webb model (e.g. cholinesterases), to extract 

the kinetic parameters without relying on specialized algorithms and software. The suggested 

approximations to the solution of the Webb equation can be correctly written and saved as 

user-defined, built-in equations in optional nonlinear regression computer programs. This is 

an improvement that can greatly facilitate the characterization of enzyme kinetics in various 

areas across life-sciences research. 
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APPENDIX A 

Inspection of the differential Eq. (1) shows that its variables of time t and substrate 

concentration [S] can be separated as: 
 

����������
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� �� � � �11S SS SS SS
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S K S K b K bKKV dt d S d S
b SS b S K b b S K
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and direct integration of the expression that results gives the integrated Webb equation in the 

implicit form of Eq. (2). 
 

APPENDIX B 

Software-user-defined, built-in equations using 4th-order term approximations of solutions for 

product concentrations in GraphPad Prism 5.  
 

s=S0/Kss 

R=Ks/Kss 

t=Vm*x/Kss 

sR=(s+R)*(1+s) 

f0=s*(1+b*s)/sR 

f1=((-1+b)*s^2+R*(1+b*s*(2+s)))/sR^2 

f2=-(2*(-(-1+b)*R^2+(-1+b)*s^3+R*(1+3*s+3*b*s^2+b*s^3)))/sR^3 

f3=6*((1-b)*R^3+(b-1)*s^4-(b-1)*R^2*(1+4*s)+R*(1+4*s+6*s^2+4*b*s^3+b*s^4))/sR^4 

s1=-t*f0 

s2=-(t/2)*s1*f1 

s3=-(t/3)*(f1*s2+f2*s1^2/2) 

s4=-(t/4)*(f1*s3+f2*s1*s2+f3*s1^3/6) 

Y=-Kss*(s1+s2+s3+s4) 
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