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José Luis Palacios b, Anna Torrieroa

a
Department of Mathematics and Econometrics, Catholic University, Milan, Italy

monica.bianchi@unicatt.it, alessandra.cornaro@unicatt.it,

anna.torriero@unicatt.it

b
Department of Scientific Computing and Statistics, Simon Bolivar University, Caracas,

Venezuela

jopalal@gmail.com

(Received January 24, 2013)

Abstract

Given a simple connected graph G, this paper presents a new approach for
localizing the graph topological indices given by the sum of the α-th power of the
non zero normalized Laplacian eigenvalues. Through this method, old and new
bounds are derived, showing how former results in the literature can be improved.

1 Introduction

Among the various indices in mathematical Chemistry, the Kirchhoff index K(G) and a

close relative of it, the degree-Kirchhoff index K∗(G), have received a great deal of atten-

tion recently. For a connected undirected graph G = (V,E) with vertex set {1, 2, . . . , n}
and edge set E, the Kirchhoff index was defined by Klein and Randić [1] as

K(G) =
∑
i<j

Rij
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where Rij is the effective resistance of the edge ij. We refer the reader to references

[3],[6] and [12], and their bibliographies, to get a taste of the variety of approaches used

to study this descriptor. The degree-Kirchhof index was proposed by Chen and Zhang in

[6], defined as

K∗(G) =
∑
i<j

didjRij

where di is the degree of the vertex i. The index K∗(G) was studied in [13], [12] and

[16] , where a number of bounds for the index and an expression of it in terms of the

eigenvalues of the normalized Laplacian were found.

This latter expression was the source of inspiration for a whole new family of descrip-

tors, in terms of the sum of α powers of the eigenvalues of the normalized Laplacian,

defined by Bozkurt and Bozkurt in [4]. These authors found a number of bounds for

arbitrary α and particularly for α = −1, which is the case of the degree Kirchhoff index.

It is worth pointing out that their bound given in Corollary 3.4 was published slightly

earlier (in electronic form) and arrived at with a different technique in [3].

It is the purpose of this note to continue using this fruitful technique of majorization

and Schur-convex functions on this new family of descriptors, in order to obtain some

better bounds.

2 Notations and preliminaries

In this section we recall some basic notions on majorization and graph theory. For more

details refer to [9] and [11].

Definition 1 Given two vectors y, z ∈ D = {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn}, the

majorization order y � z means:

⎧⎨
⎩
〈
y, sk

〉
≤
〈
z, sk

〉
, k = 1, ..., (n− 1)

〈y, sn〉 = 〈z, sn〉

where 〈·, ·〉 is the inner product in Rn and sj = [1, 1, · · · , 1︸ ︷︷ ︸
j

, 0, 0, · · · 0︸ ︷︷ ︸
n−j

], j = 1, 2, · · · , n.

Given a closed subset S ⊆ Σa = D ∩ {x ∈ Rn
+ : 〈x, sn〉 = a}, where a ∈ R, a > 0, let us

consider the following optimization problem

Minx∈S φ(x) (1)
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If the objective function φ is Schur-convex, i.e. x � y implies φ(x) ≤ φ(y), and the set

S has a minimal element x∗(S) with respect to the majorization order, then x∗(S) solves

problem (1) and

φ(x) ≥ φ(x∗(S)) for all x ∈ S.

It is worthwhile to notice that if S ′ ⊆ S the following inequality holds x∗(S) � x∗(S ′)

and thus

φ(x) ≥ φ(x∗(S ′)) ≥ φ(x∗(S)) for all x ∈ S ′. (2)

On the other hand, if the objective function φ is Schur-concave, i.e. −φ is Schur-

convex, then

φ(x) ≤ φ(x∗(S ′)) ≤ φ(x∗(S) for all x ∈ S ′. (3)

A very important class of Schur-convex (Schur-concave) functions can be built adding

convex (concave) functions of one variable. Indeed, given an interval I ⊂ R, and a

convex function g : I → R, the function φ(x) =
∑n

i=1 g(xi) is Schur-convex on In =

I × I × · · · × I︸ ︷︷ ︸
n−times

. The corresponding result holds if g is concave on In.

In [1] the authors derived the maximal and minimal elements, with respect to the ma-

jorization order, of the set

Sa = Σa ∩ {x ∈ Rn : Mi ≥ xi ≥ mi, i = 1, · · · , n}

where M1 ≥M2 ≥ · · · ≥Mn, m1 ≥ m2, · · · ≥ mn.

In the sequel we will work choosing Mi and mi in a suitable way. In particular we will

make use of the following results

Corollary 2 (see [1], Corollary 14) Let us consider the set

S
[h]
1 = Σa ∩

{
x ∈ Rn : xi ≥ α, i = 1, · · · , h, 1 ≤ h ≤ n, 0 < α ≤ a

h

}
(4)

Then

x∗(S
[h]
1 ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a

n
sn if α ≤ a

n

αsh + ρvh with ρ =
a− αh

n− h
if α >

a

n

.

Corollary 3 For n ≥ 3, let us fix m1 ≥ m2suchthatm1 +m2 ≤ a and consider the set

S2 = Σa ∩ {x ∈ Rn : x1 ≥ m1, x2 ≥ m2}
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If the followinq condition hold {
nm1 > a

m1 +m2(n− 1) > a

then x∗(S2) =

⎡
⎢⎢⎣m1,m2,

a−m1 −m2

n− 2
, · · · , a−m1 −m2

n− 2︸ ︷︷ ︸
n−2

⎤
⎥⎥⎦.

Proof. The result follows easily by Theorem 8 in [2] noticing that the first integers

satisfying the assumptions of the theorem are d = 0 and k = 2.

Let now G = (V,E) be a simple, connected, undirected graph where V = {1, ..., n} is

the set of vertices and E ⊆ V × V the set of edges. We consider graphs with fixed order

|V | = n and fixed size |E| = m. Denote by π = (d1, d2, .., dn) the degree sequence of G,

where di is the degree of vertex i, arranged in non increasing order d1 ≥ d2 ≥ · · · ≥ dn.

It is well known that
n∑

i=1

di = 2m and that if G is a tree, i.e. a connected graph without

cycles, m = n − 1. Let A(G) be the adjacency matrix of G and D(G) be the diagonal

matrix of vertex degrees. The matrix L(G) = D(G) − A(G) is called Laplacian matrix

of G, while L(G) = D(G)−1/2L(G)D(G)−1/2 is known as normalized Laplacian. Let

μ1 ≥ μ2 ≥ ... ≥ μn be the set of (real) eigenvalues of L(G) and λ1 ≥ λ2 ≥ ... ≥ λn be the

(real) eigenvalues of L(G). The following properties of spectra of L(G) and L(G) hold:
n∑

i=1

μi = tr(L(G)) = 2m; μ1 ≥ 1 + d1 ≥
2m

n
; μn = 0, μn−1 > 0.

n∑
i=1

λi = tr(L(G)) = n;
n∑

i=1

λ2
i = tr(L2(G)) = n+ 2

∑
(i,j)∈E

1

didj
; λn = 0;λ1 ≤ 2.

For any square matrix M of order n let μ(M) = tr(M)
n

and σ2(M) = tr(M2)
n

−
(

tr(M)
n

)2
. If

M admits real eigenvalues ρ1 ≥ ρ2 ≥ ... ≥ ρn, the inequalities below are well-known (see

[14]):

μ(M)− σ(M)

√
i− 1

n− i+ 1
≤ ρi ≤ μ(M) + σ(M)

√
i− 1

n− i+ 1
, i = 1, · · · , n. (5)

and, in particular, more binding inequalities hold for the smallest and biggest eigenvalue,

i.e.

ρ1 ≥ μ(M) +
σ(M)√
n− 1

(6)
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and

ρn ≤ μ(M)− σ(M)√
n− 1

In case of the normalized Laplacian we get

σ2(L(G)) =

(
2

n

) ∑
(i,j)∈E

1

didj
,

and inequality (6) gives

λ1 ≥ 1 +

√
2

n(n− 1)

∑
(i,j)∈E

1

didj
(7)

Notice that for every connected graph of order n we have (see [3])

1 > σ(L(G)) ≥ 1√
n− 1

,

and the right inequality is attained for the complete graph G=Kn.

3 Bounds for the sum of powers of normalized Lapla-

cian eigenvalues

Most of the topological indices of graphs are formulated by Schur-convex (Schur-concave)

functions of the degree sequence as well as the eigenvalues of A(G) or L(G). The corre-

sponding bounds are generally expressed in terms of size and order of G but they can also

take into account the degrees of one or more vertices of G. With respect to the eigenvalues

of L(G), let

sα(G) =
n−1∑
i=1

μα
i , α �= 0, 1

be the index given by the sum of the α-th powers of the non zero Laplacian eigenvalues

(see [15]).

In [2], taking into account the Schur-convexity or Schur-concavity of the functions

sα(G) for α > 1 and α < 0 or 0 < α < 1 respectively, the same bounds as in [15], Theorem

3 and 5, have been easily derived. Furthermore, considering additional information on

the localization of the eigenvalues, the previous bounds have been improved.

The same approach can be applied to obtain and improve the bounds for the topolog-

ical index:

s∗α(G) =
n−1∑
i=1

λα
i , α �= 0, 1

given by the sum of the α-th powers of the non zero normalized Laplacian eigenvalues,

first introduced by Bozkurt and Bozkurt in [4].
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Let Σ′
n = {λ ∈ Rn−1 : λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0,

∑n−1
i=1 λi = n} and define the set

SL = Σ′
n ∩ {λ ∈ Rn−1 : λ1 ≥ P},

where P ≥ n
n−1

.

By Corollary 2 it follows that, for n ≥ 3, the minimal element of SL is

x∗(SL) =

⎡
⎢⎢⎣P, n− P

n− 2
, · · · , n− P

n− 2︸ ︷︷ ︸
n−2

⎤
⎥⎥⎦ .

By the Schur-concavity or Schur-convexity of the function s∗α(G), the following result

holds

Theorem 4 Let G be a simple connected graph with n ≥ 3 vertices

1. if α < 0 or α > 1 then

s∗α(G) ≥ Pα +
(n− P )α

(n− 2)α−1

2. if 0 < α < 1 then

s∗α(G) ≤ Pα +
(n− P )α

(n− 2)α−1
.

Furthermore, in case of a bipartite graph, we know that λ1 = 2. Since the minimal

element of the set

S = {(λ2, λ3, · · ·λn−1) : 0 ≤ λn−1 ≤ · · ·λ2 ≤ 2,
n−1∑
i=2

λi = n− 2}

is x∗(S) =

⎡
⎣1, · · · , 1︸ ︷︷ ︸

n−2

⎤
⎦, by the Schur-concavity or Schur-convexity of the function s∗α(G),

we get the following result

Theorem 5 Let G be a simple connected bipartite graph, with n ≥ 3

1. if α < 0 or α > 1 then s∗α(G) ≥ 2α + (n− 2);

2. if 0 < α < 1 then s∗α(G) ≤ 2α + (n− 2).

In particular, in what follows, we consider

P = 1 +

√
2

n(n− 1)

∑
(i,j)∈E

1

didj
. (8)
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In virtue of (7) we get λ1 ≥ P .

Let us point out that in Theorem 4 and 5, making use of (8) we recover the same bounds

as in Theorem 3.3 and 3.7 in [4] throughout a different approach based on majorization

techniques.

Notice that for the complete graph Kn the spectra of L is given by

spec(L) =
{

n

n− 1
, · · · , n

n− 1
, 0

}

which implies

s∗α(Kn) =
nα

(n− 1)α
.

Being P =
n

n− 1
, by easy computation we get that bounds in Theorem 4 are attained

for G = Kn.

Now we show how the above mentioned bounds in [4] can be improved taking into

account additional information on the localization of the eigenvalues.

In the following we consider a non complete graph. If we know that

λ2 ≥ β

with β ≤ P , Corollary 3 allows us to compute the minimal element of the set

S1
L = Σ′

n ∩ {λ ∈ Rn−1 : λ1 ≥ P, λ2 ≥ β}

To this aim, since the condition (n− 1)P > n is always satisfied, if

P + β(n− 2) > n

the minimal element of S1
L is given by

x∗(S1
L) =

⎡
⎢⎢⎣P, β, n− P − β

n− 3
, ...,

n− P − β

n− 3︸ ︷︷ ︸
n−3

⎤
⎥⎥⎦

By the Schur-concavity or Schur-convexity of the function s∗α(G), we get the following

bounds

Theorem 6 Let G be a simple connected graph with n ≥ 4 vertices which is not complete

and λ2 ≥ β with P + β(n− 2) > n.

1. If α > 1 or α < 0 then s∗α(G) ≥ Pα + βα + (n−P−β)α

(n−3)α−1
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2. If 0 < α < 1 then s∗α(G) ≤ Pα + βα + (n−P−β)α

(n−3)α−1

Furthermore, in case of a bipartite graph we know that λ1 = 2. If we have an additional

information like λ2 ≥ β, with β > 1, Corollary 2 entails that⎡
⎢⎢⎣2, β, n− 2− β

n− 3
, ...,

n− 2− β

n− 3︸ ︷︷ ︸
n−3

⎤
⎥⎥⎦

is the minimal element of the set

S2
L = Σ′

n ∩ {λ ∈ Rn−1 : λ1 = 2, λ2 ≥ β}

and the following result holds

Theorem 7 Let G be a simple connected bipartite graph with n ≥ 4 and λ2 ≥ β with

β > 1.

1. If α > 1 or α < 0 then s∗α(G) ≥ 2α + βα + (n−2−β)α

(n−3)α−1

2. If 0 < α < 1 then s∗α(G) ≤ 2α + βα + (n−2−β)α

(n−3)α−1

Notice that, thanks to the inequalities (2) and (3), the bounds in the previous theorem

perform equal or better than (16) and (17) in [4].

The following example deals with a class of graphs to which Theorem 7 can be applied.

Example 8 The Cheeger constant hG of a graph is a well studied parameter and has been

related to λn−1 as follows
h2
G

2
≤ λn−1(L) ≤ 2hG

(see [7]). Let us now consider a full binary tree of depth d > 1. It has n = 2d+1 − 1

vertices, m = 2d+1 − 2 edges. By Example 3.3 in [8] for such a tree hG = 1
2d+1−3

, and we

get the bound

λn−1(L) ≤
2

2d+1 − 3
. (9)

Since a tree is a bipartite graph, we know that λ2(L) = 2− λn−1(L) and λ1(L) =2. Thus

λ2(L) ≥ 2− 2

2d+1 − 3
.

Since for d > 1 we have 1 < 2 − 2
2d+1−3

< 2, we can apply Theorem 7 with β =

2− 2

2d+1 − 3
. Observe that, thanks to the inequalities (2) and (3) as well as to a straight

comparison between bounds 1. and 2. and those in Theorem 3.7 in [5] , by easy calculation,

it follows that our bounds perform always better.
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4 Bounds for the Kirchhoff index

Notice that bounds for the Kirchhoff index

K(G) = n

n−1∑
i=1

1

μi

= ns−1(G)

can be easily derived taking into account bounds for sα(G) wit α = −1.
The same occurs for the degree Kirchhoff index (see [6])

K∗(G) = 2m
n−1∑
i=1

1

λi

.

By Theorem 4 and 5 for α = −1, we get

Theorem 9 (see Corollary 3.4 and 3.8 in [4]) Let G be a simple connected graph. Then

K∗(G) ≥ 2m

P
+

2m(n− 2)2

n− P
(10)

Furthermore, if G is bipartite

K∗(G) ≥ m(2n− 3) (11)

Bound (10) was firstly proved in [3], while bound (11) was firstly given in [16] and also

in [12].

It must also be pointed out that in [13], through electrical considerations, the following

lower bound is provided:

K∗(G) ≥ 2m

(
n− 2 +

(
1

D + 1

))
(12)

where D is the largest degree of the graph. We mentioned in [3] that (10) is better than

(12) in case there is a vertex with maximal degree n−1. However, it is not difficult to find

examples where (12) beats (10). For instance, attach to every vertex of a complete graph

KN a single vertex with a single edge; this ”snowflake” graph has n = 2N vertices and

enough symmetry to make computations easy. Indeed the exact degree-Kirchhoff index is

given by 2N3 + 2N2 − 2N − 1, and the lower bound (12) is given by 2N 3 −N . Thus, for

N = 5 we obtain that (12) becomes 245, whereas (10) becomes 243. Likewise, for N = 20

the figures are, respectively, 1990 and 1985. Therefore, these two lower bounds are not

comparable.
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