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Abstract

Two graphs are said to be equienergetic if their energies are equal. In the paper MATCH
Commun. Math. Comput. Chem. 61 (2009) 451–461 the concept of almost-equienergetic
graphs was put forward, based on the observation that in some cases the (non-zero) differ-
ence between the energies of two graphs is very small. We now estimate the minimal value
of this difference.

1 Introduction

LetG be a graph of order n and let its eigenvalues (i.e., the eigenvalues of the (0, 1)-adjacency

matrix of G) be λ1, λ2, . . . , λn . The energy of G is defined as

E(G) =

n∑
i=1

|λi| .

For details on the theory of graph energy see the reviews [7, 8, 10], the book [17], and the

references cited therein. Two graphs Ga and Gb are said to be equienergetic if the condition

E(Ga) − E(Gb) = 0 is satisfied. This concept was introduced in 2004, independently by

Balakrishnan [1] and Brankov et al. [2]. Since then, numerous pairs, triplets, and larger

families of equienergetic graphs have been discovered and/or constructed [5,9,11–16,18–23].
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Performing a computer–aided search for equienergetic trees [18], it was noticed that

there exist pairs of trees for which the difference E(Ga) − E(Gb) is remarkably small. A

characteristic example of this kind is depicted in Fig. 1.

T T
1 2

Fig. 1. Two trees whose energies differ only slightly: E(T1) = 18.090756640280765 . . . ,

E(T2) = 18.090756641775140 . . . .

Based on this observation, the concept of almost–equienergetic graphs was conceived

[18]. However, a rigorous definition of almost–equienergeticity could not be given. In [18]

we read:

... There also exist trees whose energies are different, but remarkably close. These we

refer to as almost–equienergetic. ... What “remarkably close” means for the energy of two

graphs is a theme for debate. ... We tentatively and to a great degree arbitrarily call two

graphs Ga and Gb almost–equienergetic if 0 < |E(Ga)− E(Gb)| < 10−8 .

In this note we show that the limit value 10−8 is indeed arbitrary and unjustified, and

offer arguments in favor of the possibility that the difference E(Ga) − E(Gb) can become

much smaller.

2 Preparatory considerations

Throughout this paper we will consider bipartite graphs. The characteristic polynomial of

a bipartite graph G of order n is of the form [3]

φ(G, λ) =

n/2�∑
k=0

(−1)k b(G, k)λn−2k (1)
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where b(G, 0) = 1 and b(G, k) ≥ 0 for all k , 1 ≤ k ≤ �n/2�.

Let thus Ga and Gb be two bipartite graphs of order na and nb, respectively. According

to a classical result by Coulson and Jacobs [4], if na = nb , then

E(Ga)− E(Gb) =
2

π

+∞∫
0

ln
φ(Ga , ix)

φ(Gb , ix)
dx

where i =
√
−1. If na < nb, then a slightly modified form of the above integral expression

applies:

E(Ga)− E(Gb) =
2

π

+∞∫
0

ln
(i x)nb−na φ(Ga , ix)

φ(Gb , ix)
dx .

In both cases, in view of Eq. (1),

E(Ga)− E(Gb) =
2

π

+∞∫
0

ln

∑
k≥0

b(Ga, k)x
2(m−k)

∑
k≥0

b(Gb, k)x2(m−k)
dx (2)

where m =
⌊
1
2 max{na, nb}

⌋
.

Bearing in mind Eq. (2), we see that without loss of generality it may be assumed

that the graphs Ga and Gb have equal number n of vertices, and that n = 2m. If so, then

replacing b(Ga, k) by a2k and b(Gb, k) by b2k, we get

E(Ga)− E(Gb) =
2

π

+∞∫
0

ln
P (x)

Q(x)
dx (3)

with

P (x) = xn + a2 x
n−2 + a4 x

n−4 + · · ·+ an =
m∑
k=0

a2k x
n−2k , a0 = 1

Q(x) = xn + b2 x
n−2 + b4 x

n−4 + · · ·+ bn =

m∑
k=0

b2k x
n−2k , b0 = 1 .

In what follows, by investigating the integral

I =

+∞∫
0

ln
P (x)

Q(x)
dx (4)

we establish some results relevant for the almost–equienergeticity concept.
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3 Main result

Let n = 2m , m ∈ N, and

P (x) = xn + a2 x
n−2 + a4 x

n−4 + · · ·+ an =

m∑
k=0

a2k x
n−2k , a0 = 1

Q(x) = xn + b2 x
n−2 + b4 x

n−4 + · · ·+ bn =

m∑
k=0

b2k x
n−2k , b0 = 1

where ai, bi ∈ N0 = N ∪ {0} and bi ≤ ai . Let I be given by Eq. (4).

Since lim
n→+∞

P (x)

Q(x)
= 1 and lnx is a continuous function on (0,+∞), integration by parts

yields

I = x ln
P (x)

Q(x)

∣∣∣∣∣
+∞

0

−
+∞∫
0

P ′(x)Q(x)−Q′(x)P (x)

P (x)Q(x)
x dx

=

+∞∫
0

P (x)Q′(x)− P ′(x)Q(x)

P (x)Q(x)
x dx . (5)

Choose now the polynomials P and Q so that ai = bi for all i �= n − i0 and an−i0 =

bn−i0 + �, for some � ∈ N. Then

P (x) = Q(x) + � xi0 and P ′(x) = Q′(x) + � i0 x
i0−1

and therefore

P (x)Q′(x)− P ′(x)Q(x) = � xi0−1
(
xQ′(x)− i0Q(x)

)
.

Substituting this back into (5), we get

I1 = �

+∞∫
0

xi0
(
xQ′(x)− i0Q(x)

)
Q(x)

(
Q(x) + � xi0

) dx .

Consider now the polynomials P̃ (x) and Q̃(x), such that P̃ (x) = P (x) + � xi0 and Q̃(x) =

Q(x) + � xi0 , i.e., P̃ (x) = Q(x) + 2� xi0 and Q̃(x) = Q(x) + � xi0 . Then the corresponding

integral is

I2 = �

+∞∫
0

xi0
(
xQ′(x)− i0Q(x)

)
(
Q(x) + xi0

)(
Q(x) + 2� xi0

) dx .

Evidently, I2 < I1 .
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Continuing this procedure, namely by increasing the coefficients ai0 and bi0 each time

by � ≥ 1, we get a decreasing sequence of integrals:

It = �

+∞∫
0

xi0
(
xQ′(x)− i0Q(x)

)
(
Q(x) + (t− 1)xi0

)(
Q(x) + t� xi0

) dx , t = 1, 2, 3, . . . .

In what follows we demonstrate that It tends to zero as t→∞ .

Let n, the degree of the polynomials be fixed, and let the coefficients at xi0 differ by

� ∈ N, i.e., bn−i0 + � = an−i0 . For the sake of simplicity, we denote bn−i0 = b. We show

that for any ε > 0, the coefficient b can be determined so that the value of the integral (4)

be less than ε.

Lemma 1. For k ≥ 2,
+∞∫
0

dx

b+ xk
= b1/k−1 π

k
csc

π

k
. (6)

Proof. For � ν > �μ > 0 it is known [6, formula 3.241. 2,p. 319] that

+∞∫
0

xμ−1 dx

1 + xν
=

π

ν
csc

μπ

ν
. (7)

In our case, k ≥ 2 > μ = 1 > 0, and so the integral on the left–hand side of (6) is

transformed as:
+∞∫
0

dx

b+ xk
=

1

b

∞∫
0

dx

1 +
(
b−1/kx

)k =
b1/k

b

∞∫
0

dt

1 + tk
.

The right–hand side of (6) follows now directly from (7).

Recall that cscx = 1/ sinx .

Theorem 1. Let � ∈ N , P (x) = Q(x) + � xi0 , Q(x) = xn + · · ·+ b xi0 + · · ·+ bn , and

k = n− i0 . Then for an arbitrary ε > 0, for all

b ≥
(
� π csc(π/k)

ε k

)k/(k−1)

(8)

the condition I < ε holds for the integral (4).
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Proof. According to the given conditions,

ln
P (x)

Q(x)
= ln

Q(x) + � xi0

Q(x)
= ln

(
1 +

� xi0

Q(x)

)

≤ � xi0

Q(x)
≤ � x� i0

xn + b xi0
=

�

xk + b
.

Note that the first inequality is a consequence of the inequality ln(1 + x) ≤ x for x ≥ 0,

whereas the second of that fact that the value of a fraction increases when the nominator

is decreased. Therefore,
+∞∫
0

ln
P (x)

Q(x)
dx ≤ �

+∞∫
0

dx

xk + b

which combined with Lemma 1 implies

+∞∫
0

ln
P (x)

Q(x)
dx ≤ �

b(k−1)/k

π

k
csc

π

k
≤ ε

whenever the parameter b satisfies the condition (8).

* * * * *

At this point it should be noted that in the above considerations we were not “hunting”

for pairs of polynomials P (x) and Q(x) with integer coefficients, for which the value of

the integral I, Eq. (4), assumes the smallest non-zero value. Even smaller values must be

encountered if some coefficients of Q(x) are set smaller and some other greater than the

respective coefficients of P (x). Therefore, Theorem 1 may be understood as the analysis of

the simplest case. Yet, its main implications are certainly valid also in the general case.

4 A discrete–mathematical caveat

At the first glance, from Eq. (3) and Theorem 1 it follows that there are pairs of non-

equienergetic (finite) graphs whose energies differ arbitrarily little. However, Theorem 1

should be interpreted in a bit more cautious manner. In Theorem 1 it is required that

the coefficient b be sufficiently large. On the other hand, in graphs with a fixed value n

of vertices, the coefficients of the characteristic polynomial cannot assume arbitrarily large
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values. For instance, for a bipartite graph with n = 2m vertices and maximal vertex degree

Δ, the coefficient b(G, k) in Eq. (1) is bounded by above as

b(G, k) ≤ Δ2k

(
m

k

)

with equality if and only if G consists of m isolated edges.

Anyway, because the number of graphs with a fixed value n of vertices is finite, there

exists a smallest non-zero value that the energy difference does assume, say εn. In other

words, there are no two non-equienergetic graphs of order n, such that their energies differ by

less than εn . Consequently, for any finite n, the energy difference cannot become arbitrarily

small.

Therefore, Theorem 1 should be interpreted as an indication that the energy difference

may be much smaller than the earlier proposed limit 10−8. Since the coefficients of the

characteristic polynomial rapidly increase with n, Theorem 1 also implies that very small

(non-zero) energy differences are expected to be encountered at graphs with large n-values.
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