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Abstract

Sharp upper bounds for the energy and Randić energy of a (bipartite) graph are established.

From these, some previously known results could be deduced.

1 Introduction

Let G be a graph with n vertices and m edges. Let V (G) = {v1, v2, . . . , vn} be the vertex
set of G. For 1, 2, . . . , n let di be the degree (=number of first neighbors) of the vertex vi.

The 2-degree of the vertex vi [6], denoted by ti, is the sum of the degrees of the vertices

adjacent to vi. If any two vertices vi and vj are adjacent, then we use the notation vi ∼ vj.

Let A(G) = (aij) be the adjacency matrix of the graph G where aij = 1 if vi ∼ vj and

aij = 0 otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A(G). These eigenvalues

are said to be the eigenvalues of G and to form its spectrum [9]. The largest eigenvalue

λ1 is called the spectral radius of G. Note that if G is a connected graph, then A(G) is

an irreducible matrix, then by the Perron Fobenius Theory of non-negative matrices, the

spectral radius λ1 has multiplicity one and there exists a unique positive unit eigenvector

corresponding to it [2].
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The Randić matrix R = R(G) = [Rij] of G is the n× n matrix as the following

Rij =

⎧⎨
⎩

1√
dj dj

vi ∼ vj

0 otherwise.

Randić matrix was studied in connection with the Randić index [1, 23, 24]. It (denoted

by A∗, but without any name and without any mention of the Randić index) was found

in the seminal book by Cvetković, Doob, and Sachs [9] (p. 26). Also, the role of Randić

matrix in the Laplacian spectral theory was clarified in [5]. The Randić eigenvalues of

the graph G are the eigenvalues of its Randić matrix and denoted by ρ1 ≥ ρ2 ≥ · · · ≥ ρn .

The largest Randić eigenvalue ρ1 is called the Randić spectral radius of G. It was proved

that Randić spectral radius ρ1 = 1 [9,20].

Let L(G) = D(G) − A(G) be the Laplacian matrix of the graph G, where A(G)

and D(G) are the adjacency matrix and the diagonal matrix of the vertex degrees of G,

respectively. The normalized Laplacian matrix [8] of G is defined as

�(G) = D(G)−1/2L(G)D(G)−1/2

where D(G)−1/2 is the matrix obtained by taking the
(
−1

2

)
-power of each entry of D(G).

Let μ1 ≥ μ2 ≥ · · · ≥ μn = 0 be the eigenvalues of �(G). These eigenvalues are called the

normalized Laplacian eigenvalues of G. For a graph G without isolated vertices, it can be

seen that the normalized Laplacian matrix and Randić matrix are related as follows [5]

�(G) = I −R(G)

where, I is the n× n unit matrix and R(G) is the Randić matrix.

The energy of the graph G is defined as [10]

E = E(G) =
n∑

i=1

|λi| . (1)

The concept of graph energy is closely related to total π-electron energy in a molecule

represented by a (molecular) graph. An extensive work has been done on graph energy.

For details, see [10–12,15,17–19,21,22,27, 28].

In line with the general ideas by which the energy concept is extended to the other

graph matrices [19], Randić energy pertaining to Randi ć matrix is defined as [5]

RE = RE(G) =

n∑
i=1

|ρi| . (2)
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Recently, the concept of Randić energy was studied intensely in the literature. For more

information, see [3–5,20, 25].

In view of the fact that the normalized Laplacian eigenvalues of a graph G with no

isolated vertices are nonnegative real numbers and their sum is equal to n [8], where n is

the number of vertices of G, the normalized Laplacian analogue of Eq. (1), namely the

normalized Laplacian energy, is defined as [7]

�E = �E(G) =
n∑

i=1

|μi − 1| . (3)

For details and some bounds on normalized Laplacian energy, see [7].

This paper is organized in the following way. In Section 2, we give some working

lemmas which will be used in our main results. In Section 3, we obtain a lower bound

for the spectral radius of a graph. In Section 4, we establish sharp upper bounds for

the energy of a (bipartite) graph. From which, we also arrive at some known results. In

Section 5, we characterize the upper bound on Randić energy obtained in [20] and present

a sharp upper bound for the Randić energy of a bipartite graph.

2 Preliminary Lemmas

Lemma 2.1. [14] Let A be a nonnegative symmetric matrix and x be a unit vector of

Rn. If λ1 (A) = xTAx, then Ax = λ1 (A) x.

Lemma 2.2. [4] A simple connected graph G has two distinct Randić eigenvalues if and

only if G is complete.

Lemma 2.3. [5] If G is a graph without isolated vertices, then the normalized Laplacian

energy defined via Eq. (3) coincides with the Randić energy defined via Eq. (2).

Considering Lemma 2.3, we can give the following lemma.

Lemma 2.4. [7] Let G be a graph with n vertices and no isolated vertices. Then

RE(G) ≥ 2

with equality if and only if G is a complete multipartite graph.
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3 A lower bound for the spectral radius of a graph

Let R+ denotes the set of positive real numbers. Let G be a connected graph with n

vertices and let bi ∈ R+, 1 ≤ i ≤ n. In order to obtain a lower bound for the spectral

radius of G, we define the following sequence

S
(1)
i , S

(2)
i , . . . , S

(t)
i , . . .

where S
(1)
i = bi and S

(t)
i =

∑
i∼j

S
(t−1)
j , for each t ≥ 2, t ∈ Z.

Theoreom 1. Let G be a connected graph with n vertices and let bi ∈ R+, 1 ≤ i ≤ n.

Then

λ1(G) ≥ max
t

max
bi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√√√√√√√
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4)

Moreover, the equality holds in (4) for a particular value of t if and only if

S
(t+1)
1

S
(t)
1

=
S
(t+1)
2

S
(t)
2

= · · · = S
(t+1)
n

S
(t)
n

or G is a bipartite graph with the partition {v1, v2, . . . , vr} ∪
{
vr+1 , . . . , vn

}
and

S
(t+1)
1

S
(t)
1

= · · · = S
(t+1)
r

S
(t)
r

,
S
(t+1)
r+1

S
(t)
r+1

= · · · = S
(t+1)
n

S
(t)
n

.

Proof. Let X = (x1, x2, . . . , xn)
T be the unit positive Perron eigenvector of A(G) corre-

sponding to λ1. Now we take the unit positive vector

C =
1√

n∑
i=1

(
S
(t)
i

)2
(
S
(t)
1 , S

(t)
2 , . . . , S(t)

n

)T
.

Then we have

λ1(G) =
√
λ1 (A(G)2) =

√
XTA(G)2X ≥

√
CTA(G)2C . (5)

Since

AC =
1√

n∑
i=1

(
S
(t)
i

)2
(

n∑
j=1

a1jS
(t)
j ,

n∑
j=1

a2jS
(t)
j , . . . ,

n∑
j=1

anjS
(t)
j

)T

=
1√

n∑
i=1

(
S
(t)
i

)2
(
S
(t+1)
1 , S

(t+1)
2 , . . . , S(t+1)

n

)T
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we get

λ1(G) ≥
√

CTA(G)2C =

√√√√√√√
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2 .

Hence the inequality (4) holds. Now we assume that the equality holds in (4). By Eq.

(5) and Lemma 2.1, A(G)2C = λ1 (A(G)2)C. Then, C is a positive eigenvector of A(G)2

corresponding to λ1 (A(G)2). If the multiplicity of the eigenvalue λ1 (A(G)2) is one, then

by Perron Frobenius Theorem, C is also an eigenvector of A(G) corresponding to λ1(G).

Therefore A(G)C = λ1(G)C which implies
S
(t+1)
i

S
(t)
i

= λ1(G), 1 ≤ i ≤ n. If the multiplicity

of the eigenvalue of λ1 (A
2(G)) is two, then −λ1 (A(G)) is also an eigenvalue of A(G).

Then G is a bipartite graph (see, Theorem 3.4. in [9]) and the adjacency matrix A(G) of

G can be taken as the following form

A(G) =

(
0 B

BT 0

)

where B is an r × (n− r) matrix. Let

X = (X1, X2)
T and C =

1√
n∑

i=1

(
S
(t)
i

)2 (C1, C2)
T

where X1 = (x1, . . . , xr)
T , X2 = (xr+1, . . . , xn)

T , C1 =
(
S
(t)
1 , . . . , S

(t)
r

)T
and C2 =(

S
(t)
r+1, . . . , S

(t)
n

)T
. Since

A(G)2 =

(
BBT 0

0 BTB

)

we have

BBTC1 = λ1

(
A(G)2

)
C1 , BTBC2 = λ1

(
A(G)2

)
C2

and

BBTX1 = λ1

(
A(G)2

)
X1 , BTBX2 = λ1

(
A(G)2

)
X2 .

Note that BBT and BTB are similar matrices. Then λ1 (A(G)2) is the eigenvalue both of

the matrices BBT and BTB with multiplicity one. Therefore X1 = a1C1 and X2 = a2C2,

that is,

S
(t+1)
1

S
(t)
1

= · · · = S
(t+1)
r

S
(t)
r

and
S
(t+1)
r+1

S
(t)
r+1

= · · · = S
(t+1)
n

S
(t)
n

.

Conversely, considering the similar method in the proof of Theorem 4 in [26] and by some

simple calculations, it can be easily seen that the result holds.
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Remark 3.1. From Theorem 1, we have the following results:

i) Taking bi = 1 and t = 1 in (4), we have the Hofmeister’s bound in [13].

ii) Taking bi = di and t = 1 in (4), we have the Yu et al’s bound in [26].

iii) Taking bi = di and t = 2 in (4), we have the Hong and Zhang’s bound in [14].

iv) Taking bi = di and t = 3 in (4), we have the Hu’s bound in [16].

v) Taking bi = di in (4), we have the Hou et al’s bound in [15].

Remark 3.2. Note that the bound (4) is also more general than the Liu and Lu’s bound

in [22].

4 Energy of a (bipartite) graph

In this section, we obtain sharp upper bounds for the energy of a (bipartite) graph. Note

that S
(1)
i = bi and S

(t)
i =

∑
i∼j

S
(t−1)
j , for each t ≥ 2, t ∈ Z, where bi ∈ R+, 1 ≤ i ≤ n.

Theoreom 2. Let G be a connected graph with n vertices and m edges and let t be an

integer. Then

E(G) ≤ min
t

min
bi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√√√√√√√
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2 +

√√√√√√√(n− 1)

⎛
⎜⎜⎝2m−

n∑
i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2
⎞
⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (6)

Moreover, the equality holds in (6) for a particular value of t if and only if G ∼= Kn or G

is a non-bipartite connected graph satisfying

S
(t+1)
1

S
(t)
1

=
S
(t+1)
2

S
(t)
2

= · · · = S
(t+1)
n

S
(t)
n

and has three distinct eigenvalues
(
p ,

√
2m− p2

n− 1
, −

√
2m− p2

n− 1

)

where

p =
S
(t+1)
i

S
(t)
i

>

√
2m

n
, 1 ≤ i ≤ n .

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the graph G. Using Cauchy–Schwarz

Inequality, we get

E(G) ≤ λ1 +
n∑

i=2

|λi| ≤ λ1 +

√√√√(n− 1)
n∑

i=2

λ2
i = λ1 +

√
(n− 1) (2m− λ2

1) .
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By Theorem 1, Remark 3.1, and Theorem 4.1 in [22] , we have

λ1 ≥ max
t

max
bi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√√√√√√√
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
≥ max

t
max
bi=di

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√√√√√√√
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≥

√√√√√√√

(
n∑

i=1

ti

)2

n
n∑

i=1

d2i

=

√√√√ 1

n

n∑
i=1

d2i ≥
√

2m

n
. (7)

Consider the auxiliary function

f (x) = x+
√
(n− 1) (2m− x2)

for x ≤
√
2m and note that it is monotonically decreasing for x ≥

√
2m
n
, see [28]. There-

fore, we get

E(G) ≤ f (λ1) ≤ f

⎛
⎜⎜⎜⎝

√√√√√√√
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2

⎞
⎟⎟⎟⎠ .

Hence the inequality (6) holds. If the equality holds in (6), then by similar method in the

proof of Theorem 2.5 in [21], we conclude that G is one of the two graphs specified in the

second part of the theorem.

Conversely, it can be easily seen that the equality holds in (6) for the graphs specified

in the second part of the theorem.

Considering (7) and the similar procedure in the proof of Theorem 3.1 in [21], we can

give the following result.

Theoreom 3. Let G be a connected bipartite graph with n > 2 vertices and m edges and

let t be an integer. Then

E(G) ≤ min
t

min
bi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2

√√√√√√√
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2 +

√√√√√√√(n− 2)

⎛
⎜⎜⎝2m−

2
n∑

i=1

(
S
(t+1)
i

)2
n∑

i=1

(
S
(t)
i

)2
⎞
⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (8)

Moreover, the equality holds in (8) for a particular value of t if and only if G ∼= Kr1,r2 ∪
(n− r1 − r2)K1 , where r1 r2 = m or G is a connected bipartite graph with the partitions
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V1 = {v1, v2, . . . , vr} V2 =
{
vr+1 , . . . , vn

}
, such that

S
(t+1)
1

S
(t)
1

= · · · = S
(t+1)
r

S
(t)
r

,
S
(t+1)
r+1

S
(t)
r+1

= · · · = S
(t+1)
n

S
(t)
n

and has four distinct eigenvalues(
√
p1 p2 ,

√
2m− 2p1 p2

n− 2
, −
√

2m− 2p1 p2
n− 2

, −√p1 p2

)

where

p1 =
S
(t+1)
i

S
(t)
i

, 1 ≤ i ≤ r

p2 =
S
(t+1)
j

S
(t)
j

, r + 1 ≤ j ≤ n

√
p1 p2 >

√
2m

n
.

Remark 4.1. From Theorem 2 and Theorem 3, we have the following results:

i) i) Taking bi = 1 and t = 1 in (6) and (8), we have the Zhou’s bounds in [28].

ii) Taking bi = di and t = 1 in (6) and (8), we have the Yu et al’s bounds in [27].

iii) Taking bi = di and t = 2 in (6) and (8), we have the Liu et al’s bounds in [21].

iv) Taking bi = di in (6) and (8), we have the Hou et al’s bounds in [15].

Remark 4.2. Note that the bounds (6) and (8) are also more generalized forms of the Liu

and Lu’s bounds in [22].

5 Randić energy of a (bipartite) graph

In this section, we present our results on Randić energy.

Theoreom 4. Let G be a connected graph with n vertices. Then

RE(G) ≤ 1 +

√√√√√(n− 1)

⎛
⎝2

∑
vi∼vj

1

dj dj
− 1

⎞
⎠. (9)

Moreover, the equality holds in (9) if and only if G is a complete graph or a non-bipartite

connected graph with three distinct Randić eigenvalues
⎛
⎜⎜⎝1 ,

√√√√2
∑

vi∼vj

1
dj dj

− 1

n− 1
, −

√√√√2
∑

vi∼vj

1
dj dj

− 1

n− 1

⎞
⎟⎟⎠ . (10)
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Proof. Inequality (9) was earlier reported in [20]. Now we assume that the equality holds

in (9). Then we have

ρ1 = 1 and |ρi| =

√√√√2
∑

vi∼vj

1
di dj

− 1

n− 1
, for 2 ≤ i ≤ n .

Then there are two possibilities:

• G has exactly two distinct Randić eigenvalues. Then by Lemma 2.2, G ∼= Kn for

some n ≥ 2.

• G has exactly three distinct Randić eigenvalues. Since ρ1 > ρi and ρi �= 0, for

2 ≤ i ≤ n, we conclude that G is a non-bipartite connected graph with three distinct

Randić eigenvalues given by (10).

Conversely, we can easily see that the equality holds in (9) for the graphs specified in

the second part of the theorem.

Now we consider the bipartite graph case of the above theorem.

Theoreom 5. Let G be a connected bipartite graph with n ≥ 2 vertices. Then

RE(G) ≤ 2 +

√√√√√(n− 2)

⎛
⎝2

∑
vi∼vj

1

dj dj
− 2

⎞
⎠ . (11)

Moreover, the equality holds in (11) if and only if G is a complete bipartite graph or a

non-complete bipartite graph with four distinct Randić eigenvalues

⎛
⎜⎜⎝1 ,

√√√√2
∑

vi∼vj

1
dj dj

− 2

n− 2
, −

√√√√2
∑

vi∼vj

1
dj dj

− 2

n− 2
, −1

⎞
⎟⎟⎠ . (12)

Proof. Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the Randić eigenvalues of G. Note that

n∑
i=1

|ρi| = RE(G) and
n∑

i=1

ρ2i = 2
∑
vi∼vj

1

dj dj

see [5]. Since G is a bipartite graph, we have ρ1 = −ρn [9] (p. 109). Using Cauchy–

Schwarz Inequality, we get

n−1∑
i=2

|ρi| ≤

√√√√(n− 2)
n−1∑
i=2

ρ2i =

√√√√√(n− 2)

⎛
⎝2

∑
vi∼vj

1

dj dj
− 2ρ21

⎞
⎠.
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Therefore

RE(G) ≤ 2ρ1 +

√√√√√(n− 2)

⎛
⎝2

∑
vi∼vj

1

dj dj
− 2ρ21

⎞
⎠ . (13)

Combining (13) and ρ1 = 1 [9,20], we get the inequality ( 11). Now we suppose that the

equality holds in (11). Therefore we have

ρ1 = −ρn = 1 and |ρi| =

√√√√2
∑

vi∼vj

1
dj dj

− 2

n− 2
for 2 ≤ i ≤ n− 1 .

Then we have the three possibilities.

• G has exactly two distinct Randić eigenvalues. Then, by Lemma 2.2, we conclude

that G is a complete bipartite graph of order two.

• G has exactly three distinct Randić eigenvalues. In this case, ρ1 = −ρn = 1 and

|ρi| =
√

2
n−2

∑
vi∼vj

1
dj dj

− 2 = 0, for 2 ≤ i ≤ n − 1 which implies that RE(G) = 2ρ1 = 2.

Then by Lemma 2.4, we conclude that G is a complete bipartite graph.

• G has exactly four distinct Randić eigenvalues. Note that the multiplicity of ρ1 = 1

is one and ρi �= 0 for 2 ≤ i ≤ n − 1. Then G is non-complete bipartite graph with four

distinct Randić eigenvalues given by (12).

Conversely, it can be easily seen that the equality holds in (11) for the graphs specified

in the second part of the theorem.
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