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Abstract

We give tight upper and lower bounds for the additive degree-Kirchhoff index of
a connected undirected graph.

1 Introduction

The Kirchhoff index R(G) of a connected undirected graph G = (V,E) with vertex set

{1, 2, . . . , N} and edge set E was defined by Klein and Randić [1] as

R(G) =
∑
i<j

Rij ,

where Rij is the effective resistance of the edge ij. This index has undergone intense

scrutiny in recent years and researchers have come up with several modifications to it

that take into account the degrees of the graph under consideration. On the one hand,

Chen and Zhang defined in [2] the degree-Kirchhoff index as

R∗(G) =
∑
i<j

didjRij , (1)

where di is the degree (i.e., the number of neighbors) of the vertex i. This index has been

studied in [3–6]. On the other hand, Gutman et al. defined in [7] the degree resistance

index as

R+(G) =
∑
i<j

(di + dj)Rij, (2)
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and worked on the identification of graphs with lowest such degree among unicyclic graphs.

Perhaps it would be convenient to unify the nomenclature and call R∗(G) the multiplica-

tive degree-Kirchhoff index while calling R+(G) the additive degree-Kirchhoff index.

One fruitful viewpoint to this area is the probabilistic approach, that we have used

in [3, 8–11], and can be summarized as follows: on the graph G we can define the simple

random walk as the N -state Markov chain Xn, n ≥ 0, with transition probability matrix

P = (pij), 1 ≤ i, j ≤ N , whose entries are zero unless i and j are neighbors, in which case

it is given by

pij =
1

di
.

The stationary distribution π of this Markov chain, i.e., the unique left probabilistic

eigenvector of P associated to the eigenvalue 1, is given by

πi =
di

2|E| , 1 ≤ i ≤ N, (3)

where |E| is the number of edges of G.

The hitting time Tb of the vertex b is the number of jumps that the walk takes until

it lands on b, and its expected value when the walk starts at a is denoted by EaTb. It is

well known (see [8])that

Rij =
1

2|E|(EiTj + EjTi). (4)

The purpose of this article is to give bounds for the additive degree-Kirchhoff index.

On the one hand, we give a simple upper bound that is shown to be attained, except for

the constant of the largest term, by the symmetric barbell graph. On the other hand,

we use probabilistic arguments in order to get a general formula for R+(G) in terms of

Kemeny’s constant and a sum of hitting times normalized by the stationary distribution,

that have lower bounds known in the Markov chain literature; this way we obtain a lower

bound for R+(G) that is attained by the complete graph.

2 The bounds

For the upper bound, it is immediate that

R+(G) ≤ 2(N − 1)R(G) ≤ 1

3
(N4 −N3 −N2 +N),

using the upper bound for R(G), which occurs in the linear graph, obtained in [8]. The

linear graph, however, with an additive degree-Kirchhoff index of order N3 only, is a poor
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maximal candidate. We look instead at the (aN, bN, (1− a− b)N) barbell graph, where

0 ≤ a, b; a+ b ≤ 1, which consists of two complete graphs on aN and bN vertices united

by a path of length (1 − a − b)N (we allow ourselves some leeway regarding whether

aN , bN and (1− a− b)N are integers) and will show that the index is maximized when

a = b = 1
3
.

Indeed, every pair of vertices, each of which belongs to a complete part, contributes

roughly

(a+ b)(1− a− b)N2

to the sum (2). Since there are roughly abN2 such pairs, the net contribution to the

coefficient of N4 of these vertices is

ab(a+ b)(1− a− b). (5)

Also, each vertex in the aN -complete part contributes, when adding the contributions of

all vertices in the linear part, about aN(1 − a − b)2N2/2. Taking into account all aN

vertices in the aN complete part we obtain a2(1− a− b)2/2N4. Repeating the argument

with the bN part and adding to (5), and given that all other contributions generate lower

powers of N , we find that the coefficient of N4 is given by

ab(a+ b)(1− a− b) + (a2 + b2)(1− a− b)2/2 =

a2 + b2 − 2a3 − 2b3 + a4 + b4 − 2a2b2. (6)

Partial differentiation of the bivariate function F (a, b) given by (6) shows that its critical

points are (0, 0) (corresponding to the linear graph, without N4 term), (0, 1), (1, 0) (the

complete graph, again, without N4 term), (0, 1
2
), (1

2
, 0) (the lollipop graph, for which

R+(G) ∼ 1
16
N4) and (1

3
, 1
3
), (the symmetric (1

3
, 1
3
, 1
3
) barbell graph, where the maximum

is attained, with value R+(G) ∼ 2
27
N4). We conjecture that this maximal value among

all barbell graphs is indeed the maximum over all graphs on N vertices.

Now we work on the lower bound. From (2), (3) and (4), it is clear that

R+(G) =
∑
i<j

(πi + πj)(EiTj + EjTi)

=
N∑
i=1

∑
j �=i

πjEiTj +
N∑
j=1

∑
i �=j

πiEiTj.
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It is well known (see [3, 12]) that the sum
∑

j πjEiTj is a constant K independent of

i, usually called Kemeny’s constant, that can be expressed in terms of the eigenvalues

λi �= λ1 = 1 of the matrix P as

K =
N∑
i=2

1

1− λi

.

It is also known (see [3]) that the multiplicative degree-Kirchhoff index can be written as

R∗(G) = 2|E|K.

Therefore

R+(G) = NK +
N∑
j=1

∑
i �=j

πiEiTj =
N

2|E|R
∗(G) +

N∑
j=1

∑
i �=j

πiEiTj, (7)

showing a relationship between the two degree-Kirchhoff indices.

The sum
∑

i πiEiTj in general depends on j, but there is a well known lower bound

(see [12]) stating that ∑
i

πiEiTj ≥
1

πj

(1− πj)
2.

Inserting this into (7) we obtain

R+(G) ≥ NK +
N∑
j=1

1

πj

(1− πj)
2 = NK +

N∑
j=1

1

πj

− 2N + 1

= N
N∑
i=2

1

1− λi

+ 2|E|
N∑
j=1

1

dj
− 2N + 1. (8)

Two applications of the harmonic mean-arithmetic mean inequality to equation (8), and

the facts that
∑N

i=2 λi = −1 and
∑N

j=1 dj = 2|E|, allow us to conclude that

R+(G) ≥ 2(N − 1)2,

a bound that is attained by the complete graph KN , as an easy computation shows.
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[1] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.

[2] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum,

Discr. Appl. Math. 155 (2007) 654–661.

[3] J. L. Palacios, J. M. Renom, Broder and Karlins formula for hitting times and the

Kirchhoff index, Int. J. Quantum Chem. 111 (2011) 35–39.

-654-



[4] J. L. Palacios, J. M. Renom, Another look at the degree–Kirchhoff index, Int. J.

Quantum Chem. 111 (2011) 3453–3455.

[5] M. Bianchi, A Cornaro, J. L. Palacios, A. Torriero, Bounds for the Kirchhoff index

via majorization techniques, J. Math. Chem. 51 (2013) 569–587.

[6] S. B. Bozkurt, D. Bozkurt, On the sum of powers of normalized Laplacian eigenvalues

of graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 917–930.

[7] I. Gutman, L. Feng, L. Yu, Degree resistance distance of unicyclic graphs, Trans.

Comb. 1 (2012) 27–40.

[8] J. L. Palacios, Resistance distance in graphs and random walks, Int. J. Quantum

Chem. 81 (2001) 29–33.

[9] J. L. Palacios, Foster’s formulas via probability and the Kirchhoff index, Methodol.

Comput. Appl. Probab. 6 (2004) 381–387.

[10] J. L. Palacios, On the Kirchhoff index of regular graphs, Int. J. Quantum Chem. 110

(2010) 1307–1309.

[11] J. L. Palacios, J. M. Renom, Bounds for the Kirchhoff index of regular graphs via

the spectra of their random walks, Int. J. Quantum Chem. 110 (2010) 1637–1641.

[12] L. Lovász, Random walks on graphs: A survey, in: D. Miklós, V. T. Sós, T. Szőnyi
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