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Abstract

The Hosoya polynomial of a graph encompasses many of its metric properties, for

instance the Wiener index (alias average distance) and the hyper-Wiener index. An

expression is obtained that reduces the computation of the Hosoya polynomial of a graph

with cut vertices to the Hosoya polynomial of the so-called primary subgraphs. The

main theorem is applied to specific constructions including bouquets of graphs, circuits of

graphs, chains of graphs, and link of graphs. This is in turn applied to obtain the Hosoya

polynomial of several chemically relevant families of graphs. In this way numerous known

results are generalized and an approach to obtain them is simplified. Along the way

several misprints from the literature are corrected.

1 Introduction

The Hosoya polynomial of a graph was introduced in Hosoya’s seminal paper [23] back

in 1988 and received a lot of attention afterwards. Actually, it was anticipated already in

1961 in a more general framework by Altenburg [2]; see the recent book chapter [22] on

the historical developments and the relations between the Altenburg’s multilinear form

(also called Altenburg polynomial) and the Hosoya polynomial. The latter polynomial was

later independently introduced and considered by Sagan, Yeh, and Zhang [31] under the
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name Wiener polynomial of a graph. Both names are still used for the polynomial but

the term Hosoya polynomial is nowadays used by the majority of researchers.

The main advantage of the Hosoya polynomial is that it contains a wealth of informa-

tion about distance based graph invariants. For instance, knowing the Hosoya polynomial

of a graph, it is straightforward to determine the famous Wiener index of a graph as the

first derivative of the polynomial, evaluated at 1. Cash [7] noticed that the hyper-Wiener

index can be obtained from the Hosoya polynomial in a similar simple manner, while

Brückler et al. [5] reported the same for the Tratch-Stankevich-Zefirov index, cf. [22,

Eq. (18)].

The Hosoya polynomial has been by now investigated on (in the historical order)

trees [6, 19], composite graphs [32, 14, 15], benzenoid graphs [20, 36], tori [13], zig-zag

open-ended nanotubes [38], certain graph decorations [39], armchair open-ended nan-

otubes [34], zigzag polyhex nanotorus [16], TUC4C8(S) nanotubes [37], pentachains [1],

polyphenyl chains [27], the circumcoronene series [28], as well as on Fibonacci and Lucas

cubes [26] and Hanoi graphs [30]. For relations to other graph polynomials see [4, 21].

In this paper we consider the Hosoya polynomial on graphs that contain cut-vertices.

Such graphs can be decomposed into subgraphs that we call primary subgraphs. Blocks of

graphs are particular examples of primary subgraphs, but a primary subgraph may consist

of several blocks. (For graph-theory concepts not defined here, such as cut-vertices and

blocks, see any standard graph theory book, say [33].) In our main result, the Hosoya

polynomial of a graph is expressed in terms of the Hosoya polynomial of the corresponding

primary subgraphs. A related result for the Wiener index of a graph (in terms of the block-

cut-vertex tree of the graph) was obtained in [3]. Our main result can be thus considered

as an extension (and a simplification) of [3, Theorem 1]. In the case when a graph is

decomposed into two primary subgraphs, our result is a special case of [35, Theorem

2.1] where a formula is given for the Hosoya polynomial of the gated amalgamation of

two graphs, which is in turn a generalization of the corresponding result on the Wiener

index [25]. On the other hand, [35, Corollary 2.1] is a special case of our main result.

We point out that our formulae require the knowledge of the Hosoya polynomials of

the primary subgraphs, the so-called partial Hosoya polynomials, and specific distances.

In many cases these are known or easy to find; especially in the case of bouquets, circuits,

chains, and links when—to make things easier—the blocks are very often identical graphs.

Very often authors go through several pages of computations to find only the Wiener index

-628-



of a family of graphs; one of the point of the present paper is to show that with much less

effort one can find the Hosoya polynomial.

We proceed as follows. In the rest of this section the Hosoya polynomial and other

concepts needed are formally introduced, while in the next section the main result is

stated and proved. In Section 3 the result is applied to bouquets of graphs, circuits of

graphs, chains of graphs, and links of graphs. These results are then applied in the final

section to several families of graphs that appear in chemistry. Their Wiener index and

hyper-Wiener index are obtained as a side product.

Let G be a connected graph and let d(G, k), k ≥ 0, be the number of vertex pairs at

distance k. Then the Hosoya polynomial [23] of G is defined as

H(G, t) =
∑
k≥1

d(G, k) tk .

Before we continue, we point out that some authors define the Hosoya polynomial by

adding in the above expression also the constant term d(G, 0) = |V (G)|. For our purposes
the present definition is more convenient. Clearly, no matter which definition is selected,

the considerations are equivalent.

We will write dG(u, v) for the usual shortest-path distance between u and v in G. If

there will be only one graph in question, we will shorten the notation to d(u, v). Let H1

and H2 be subgraphs of a connected graph G. Then the distance dG(H1, H2) between

H1 and H2 is min{d(u, v) | u ∈ V (H1), v ∈ V (H2)}. The diameter of G is defined as

diam(G) = maxu,v∈V (G) d(u, v). For a finite set A and a nonegative integer k let
(
A
k

)
denote the set of all k-subsets of A. Note that

∣∣(A
k

)∣∣ = (|A|
k

)
. With these notations at

hand H(G, t) can be more specifically written as

H(G, t) =

diam(G)∑
k=1

d(G, k) tk =
∑

{u,v}∈(V (G)
2 )

td(u,v) .

Recall that the Wiener index W (G) of G is defined by

W (G) =
∑

{u,v}∈(V (G)
2 )

d(u, v) ,

and that the hyper-Wiener index WW (G) is

WW (G) =
1

2

∑
{u,v}∈(V (G)

2 )

(
d(u, v) + d(u, v)2

)
.
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The relations between the Hosoya polynomial and these two indices are then

W (G) =
dH(G, t)

dt

∣∣
t=1

and WW (G) =
dH(G, t)

dt

∣∣
t=1

+
1

2
· d

2H(G, t)

dt2
∣∣
t=1

.

Finally, for a positive integer n we will use the notation [n] = {1, 2, . . . , n}.

2 Main result

Let G be a connected graph and let u ∈ V (G). Then the partial Hosoya polynomial with

respect to u is

Hu(G, t) =
∑

v∈V (G)
v �=u

td(u,v) .

This concept was used by Došlić in [14] under the name partial Wiener polynomial.

Let G be a connected graph constructed from pairwise disjoint connected graphs

G1, . . . , Gk as follows. Select a vertex of G1, a vertex of G2, and identify these two

vertices. Then continue in this manner inductively. More precisely, suppose that we have

already used G1, . . . , Gi in the construction, where 2 ≤ i ≤ k − 1. Then select a vertex

in the already constructed graph (which may in particular be one of the already selected

vertices) and a vertex of Gi+1; we identify these two vertices. Note that the graph G

constructed in this way has a tree-like structure, the Gi’s being its building stones (see

Fig. 1). We will briefly say that G is obtained by point-attaching from G1, . . . , Gk and

that Gi’s are the primary subgraphs of G. A particular case of this construction is the

decomposition of a connected graph into blocks.

Gi

u

Gj

v

xi→j

xj→i

Figure 1: Graph G obtained by point-attaching from G1, . . . , Gk

Let G be a graph obtained by point-attaching from G1, . . . , Gk. Then let δij =

dG(Gi, Gj). This distance is realized by precisely one vertex from Gi and one vertex
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from Gj, denote them with xi→j and xj→i, respectively; see Fig. 1 where the distance

between Gi and Gj is indicated with a dashed line. Note that if Gi and Gj share a vertex

x, then x = xi→j = xj→i and δij = 0.

Now everything is ready for our main result.

Theorem 2.1 Let G be a connected graph obtained by point-attaching from G1, . . . , Gk,

and let xi→j and δij be as above. Then

H(G, t) =
k∑

i=1

H(Gi, t) +
∑

{i,j}∈([k]2 )

(
Hxi→j

(Gi, t) ·Hxj→i
(Gj, t) · tδij

)
. (1)

Proof. Let u �= v be arbitrary vertices of G. We need to show that their contribution to

the claimed expression is td(u,v).

Suppose first that u and v belong to the same primary subgraph, say u, v ∈ Gi. Then

dG(u, v) = dGi
(u, v) and hence td(u,v) is included in the corresponding term of the first

sum of the theorem.

Assume next that u and v do not belong to the same primary subgraph. If u or v is

an attaching vertex, then it belongs to more than one primary subgraph. Hence select

primary subgraphs Gi and Gj with u ∈ Gi and v ∈ Gj such that δij = dG(Gi, Gj). By

our assumption i �= j and hence

dG(u, v) = dGi
(u, xi→j) + δij + dGj

(xj→i, v) ,

cf. Fig. 1 again. It is possible that δij = 0, that is, xi→j = xj→i, but in any case td(u,v) is

a term in the product Hxi→j
(Gi, t) · tδij ·Hxj→i

(Gj, t).

We have thus proved that for any distinct vertices u and v, the term td(u,v) is included

in the claimed expression. To complete the argument we need to show that no such term

is included more than once. To verify this it suffices to prove that the total number of

pairs of vertices considered in (1) is equal to the total number of pairs of vertices. Set

ni = |V (Gi)| − 1, 1 ≤ i ≤ k, and note that then |V (G)| = 1 +
∑k

i=1 ni. Then the first

term of (1) involves

A =
k∑

i=1

(
ni + 1

2

)

pairs of vertices, while the second sum involves

B =
∑

{i,j}∈([k]2 )

ninj
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pairs of vertices of G. Then

2(A+B) =
k∑

i=1

n2
i +

k∑
i=1

ni +
∑

{i,j}∈([k]2 )

2ninj

=

(
k∑

i=1

ni

)
·
(
1 +

k∑
i=1

ni

)

= (|V (G)| − 1) · |V (G)| .

We conclude that A+B =
(|V (G)|

2

)
, that is, the number of pairs of vertices involved in (1)

is equal to the number of all pairs. �

As an example consider the graph Q(m,n) constructed in the following manner: de-

noting by Kq the complete graph with q vertices, consider the graph Km and m copies of

Kn. By definition, the graph Q(m,n) is obtained by identifying each vertex of Km with

a vertex of a unique Kn. The graph Q(6, 4) is shown in Fig. 2.

Figure 2: Q(6, 4)

Clearly, the Hosoya polynomial of Kq is
1
2
q(q− 1)t and the partial Hosoya polynomial

with respect to any of its vertices is (q− 1)t. The distance between the central Km and a

Kn is 0, while the distance between any two distinct Kn’s is 1. Now, Theorem 2.1 gives,

after elementary calculations,

H(Q(m,n), t) =
1

2
m(m+ n2 − n− 1)t

+m(m− 1)(n− 1)t2 +
1

2
m(m− 1)(n− 1)2t3 .

For the Wiener index and the hyper-Wiener index we obtain

W (Q(m,n)) =
1

2
mn (3mn− 2m− 2n+ 1) ,

HW (Q(m,n)) =
1

2
m
(
6mn2 − 6mn− 5n2 +m+ 5n− 1

)
.

Notice that the Wiener index W (Q(m,n)) is symmetric in m and n.
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3 Specific constructions

In this section we present several constructions of graphs to which our main result can

be applied. These constructions will in turn be used in the next section where chemical

applications will be given.

3.1 Bouquet of graphs

Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint connected graphs and let

xi ∈ V (Gi). By definition, the bouquet G of the graphs {Gi}ki=1 with respect to the

vertices {xi}ki=1 is obtained by identifying the vertices x1, x2, . . . , xk (see Fig. 3 for k = 3).

x1 = x2 = x3 = x

G1

G2

G3

Figure 3: A bouquet of three graphs

Clearly, we have a graph obtained by point-attaching from G1, G2, . . . , Gk and for-

mula (1) holds with δij = 0 and xi→j = xj→i = x, where x is the vertex obtained from

the identification of the xi’s. Formula (1) becomes

H(G, t) =
k∑

i=1

H(Gi, t) +
∑

{i,j}∈([k]2 )

Hx(Gi, t) ·Hx(Gj, t) . (2)

Consider the following special case of identical Gi’s. Let X be a connected graph and

let x ∈ V (X). Take Gi = X and xi = x for i ∈ [k]. Formula (2) becomes

H(G, t) = kH(X, t) +
1

2
k(k − 1)H2

x(X, t) . (3)

3.2 Circuit of graphs

Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint connected graphs and let

xi ∈ V (Gi). By definition, the circuit G of the graphs {Gi}ki=1 with respect to the vertices

{xi}ki=1 is obtained by identifying the vertex xi of the graph Gi with the i-th vertex of the

cycle graph Ck (see Fig. 4 for k = 4).

The Hosoya polynomial of G is given by

H(G, t) =
k∑

i=1

H(Gi, t) +
∑

{i,j}∈([k]2 )

tmin(j−i,k−j+i) (1 +Hxi
(Gi, t))

(
1 +Hxj

(Gj, t)
)
. (4)
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G1

G3

G4 G2

x1

x2

x3

x4

Figure 4: A circuit of four graphs

This can be derived from Theorem 2.1 by viewing G as a graph obtained by point-

attaching from the k + 1 graphs G1, G2, . . . , Gk, and Ck. However, we prefer to give a

direct proof.

Let u �= v be arbitrary vertices in G. Suppose first that u and v belong to the same

graph Gi, In this case, td(u,v) is included in the corresponding term of the first sum in (4).

Assume now that u ∈ Gi and v ∈ Gj, i < j. Then d(u, v) = d(u, xi) + d(xi, xj) + d(xj, v),

where d(xi, xj) = min(j − i, k − j + i). The first and the last term of this sum may be

equal to 0. It follows that td(u,v) is a term in the product under the 2nd sum in (4). To

complete the argument we need to show that no such term is included more than once. To

verify this it suffices to prove that the total number of pairs of vertices considered in (4)

is equal to the total number of pairs of vertices. Setting ni = |V (Gi)|, the number of pairs

of vertices involved in the right-hand side of (4) is 1
2

∑k
i=1 ni(ni − 1) +

∑
{i,j}∈([k]2 )

ninj =

1
2

(∑k
i=1 ni

)(∑k
i=1 ni − 1

)
, i.e. the number of all unordered pairs of distinct vertices in

G.

Consider the following special case of identical Gi’s. Let X be a connected graph and

let x ∈ V (X). Take Gi = X, xi = x for i ∈ [k]. Then formula (4) becomes

H(G, t) = kH(X, t) + (1 +Hx(X, t))2H(Ck, t) . (5)

3.3 Chain of graphs

Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint connected graphs and let

xi, yi ∈ V (Gi). By definition (see [29]) the chain G of the graphs {Gi}ki=1 with respect

to the vertices {xi, yi}ki=1 is obtained by identifying the vertex yi with the vertex xi+1 for

i ∈ [k − 1] (see Fig. 5 for k = 4).
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x1 y1 = x2 y2 = x3 y3 = x4 y4

Figure 5: A chain of four graphs

Denoting dl = d(xl, yl), we define

si,j =

{
di+1 + di+2 + · · ·+ dj−1 if j − i ≥ 2 ,

0 otherwise .
(6)

Clearly, we have a graph obtained by point-attaching from G1, . . . , Gk and formula (1)

holds with xi→j = yi, xj→i = xj, and δij = sij. Consequently, we have

H(G, t) =
k∑

i=1

H(Gi, t) +
∑

{i,j}∈([k]2 )

Hyi(Gi, t)Hxj
(Gj, t)t

si,j . (7)

Consider the following special case of identical Gi’s. Let X be a connected graph and

let x, y ∈ V (X). Take Gi = X, xi = x, yi = y for i ∈ [k]. Then, denoting d = d(x, y), we

have si,j = (j − i− 1)d and formula (7) becomes

H(G, t) = kH(X, t) +Hx(X, t)Hy(X, t)
tkd − ktd + k − 1

(td − 1)2
. (8)

We mention that in [29] long expressions with long proofs are given for the Wiener index

(pp. 86–89) and for the hyper-Wiener index (pp. 93–94) of a chain of graphs.

3.4 Link of graphs

Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint connected graphs and let

xi, yi ∈ V (Gi). The link G of the graphs {Gi}ki=1 with respect to the vertices {xi, yi}ki=1

is obtained by joining by an edge the vertex yi of Gi with the vertex xi+1 of Gi+1 for all

i = 1, 2, . . . , k − 1 (see Fig. 6 for k = 4).

x1 y1 x2 y2 x3 y3 x4 y4

Figure 6: A link of four graphs

The Hosoya polynomial of G is given by

H(G, t) =
k∑

i=1

H(Gi, t) +
∑

{i,j}∈([k]2 )

(1 +Hyi(Gi, t))
(
1 +Hxj

(Gj, t)
)
tj−i+si,j , (9)

where sij is defined in (6), with dl = d(xl, yl).
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Formula (9) can be derived from Theorem 2.1 by viewing G as a chain of 2k−1 graphs:

the k Gi’s alternating with the k − 1 K2’s (edges). This derivation is rather cumbersome

and, consequently, we prefer to give a direct proof.

Let u �= v be arbitrary vertices in G. Suppose first that u and v belong to the same

graph Gi, In this case, td(u,v) is included in the corresponding term of the first sum in (9).

Assume now that u ∈ Gi and v ∈ Gj, i < j. We break up d(u, v) into three parts:

d(u, yi), d(yi, xj) = j− i+ si,j, and d(xj, v). The first and the last part may be equal to 0.

It follows that td(u, v) is a term in the product under the 2nd sum in (9). Using the same

reasoning as for the circuit of graphs we then infer that the number of pairs of vertices

involved in the right-hand side in (9) is equal to the number of all unordered pairs of

distinct vertices in G.

Consider the following special case of identical Gi’s. Let X be a connected graph and

let x, y ∈ V (X). Take Gi = X, xi = x, yi = y for all i ∈ [k]. Then, denoting d = d(x, y),

we have d1 = d2 = · · · = dk = d and formula (9) becomes

H(G, t) = kH(X, t) + (1 +Hx(X, t)) (1 +Hy(X, t))
tkd+k+1 − ktd+2 + kt− t

(td+1 − 1)2
. (10)

4 Chemical applications

In this section we apply our previous results in order to obtain the Hosoya polynomial of

families of graphs that are of importance in chemistry. As already pointed out, numerous

distance-based invariants such as the Wiener and the hyper-Wiener index can then be

routinely derived.

4.1 Spiro-chains

Spiro-chains are defined in [12, p.114]. Making use of the concept of chain of graphs, a

spiro-chain can be defined as a chain of cycles. We denote by Sq,h,k the chain of k cycles Cq

in which the distance between two consecutive contact vertices is h (see S6,2,5 in Fig. 7).

Figure 7: Spiro-chain S6,2,5
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The Hosoya polynomial of Sq,h,k can be easily obtained from (8). We distinguish two

cases: q odd and q even.

Assume q is odd: q = 2r + 1 (r ≥ 1). In (8) we take g = Cq and d = h. We

have H(Cq, t) = (2r + 1)
∑r

j=1 t
j [31] and Hx(Cq, t) = 2

∑r
j=1 t

j for any vertex x of Cq.

Now, (8) yields

H(S2r+1,h,k, t) =
k(2r + 1)t(tr − 1)

t− 1
+

4t2(tr − 1)2(tkh − kth + k − 1)

(t− 1)2(th − 1)2
.

For the Wiener index and the hyper-Wiener index we obtain

W (S2r+1,h,k) =
1

6
kr[3(r + 1)(1− 2r + 4kr) + 4rh(k − 1)(k − 2)] , (11)

WW (S2r+1,h,k) =
1

6
kr[(r + 1)(2− 6r + 11kr + 7kr2 − 5r2)

+2rh(k − 1)(k − 2)(2r + 3) + rh2(k − 1)2(k − 2)] . (12)

Assume q is even: q = 2r (r ≥ 1). Again in (8) we take g = Cq and d = h. We have

H(Cq, t) = 2r
∑r−1

j=1 t
j + rtr [31] and Hx(Cq, t) = 2

∑r−1
j=1 t

j + tr for any vertex x of Cq.

Now, (8) yields

H(S2r,h,k, t) =
kr(tr+1 + tr − 2t)

t− 1
+

(tr+1 + tr − 2t)2(tkh − kth + k − 1)

(t− 1)2(th − 1)2
.

For the Wiener index and the hyper-Wiener index we obtain

W (S2r+1,h,k) =
1

6
k[h(2r − 1)2(k − 1)(k − 2) + 6r2(1− r + 2rk − k)] , (13)

WW (S2r+1,h,k) =
1

6
kr[(r + 1)(2− 6r + 11kr + 7kr2 − 5r2)

+2rh(k − 1)(k − 1)(2r + 3) + rh2(k − 1)2(k − 2)] . (14)

From Eqs. (11), (12), (13), (14), setting q = 3, 4, 5, 6 and h ∈ {1, 2, . . . , � q
2
�}, we recover

all the expressions in Table 4.2 of [12, p.115] (they occur also in [11]). Incidentally, there

is a typo in the last expression of Table 4.2 of [12]: 847 should be changed to 874. The

corresponding expression in [11, Eq. (64)] is correct.

4.2 Polyphenylenes

Similarly to the above definition of the spiro-chain Sq,h,k, we can define the graph Lq,h,k

as the link of k cycles Cq in which the distance between the two contact vertices in the

same cycle is h. See Fig. 8 for L6,2,5.

We consider here only the case of hexagons (q = 6), the so-called ortho-, meta-, or

para-polyphenyl chains, corresponding to h = 1, 2 or 3, respectively (see [9, 10]).
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Figure 8: L6,2,5

If in (10) we takeH(X, t) = 6t+6t2+3t3 (the Hosoya polynomial of C6) andHx(X, t) =

Hy(X, t) = 2t+ 2t2 + t3 (the relative Hosoya polynomial of C6 with respect to any of its

vertices), then (10) becomes

H(L6,h,k, t) = 3kt(2 + 2t+ t2) +
(t+ 1)2(t2 + t+ 1)2(tkh+k+1 − kth+2 + kt− t)

(th+1 − 1)2
.

The expression obtained from here for all the possible values h = 1, 2, 3 have been obtained

by a different method in [27] (Theorems 2.1, 2.2, and 2.3).

Now, for the Wiener index and the hyper-Wiener index we obtain

W (L6,h,k) = 3k[4h− 11 + 6k(3− h) + 2k2(1 + h)] , (15)

WW (L6,h,k) =
3

2
k[−2h2 + 32h− 69 + k(5h2 − 44h+ 82)

−2k2(h+ 1)(2h− 7) + k3(h+ 1)2] .

Setting h = 1, 2, 3 in (15), we recover the expressions given in [10, Corollary 3.3]. The

Wiener index of L6,3,k is found also in [9, p.1233]. However, the formulation of the final

result has a typo: the binomial
(
n+1
3

)
should be preceded by 144.

The reader may be interested to find in the same way the Hosoya polynomial, the

Wiener index, and the hyper-Wiener index of Lq,h,k.

4.3 Nanostar dendrimers

We intend to derive the Hosoya polynomial of the nanostar dendrimer Dk defined picto-

rially in [17]. A better pictorial definition can be found in [18]. In order to define Dk,

first we define recursively an auxiliary family of rooted dendrimers Gk (k ≥ 1). We need

a fixed graph F defined in Fig. 9; we consider one of its endpoint to be the root of F .

The graph G1 is defined in Fig. 10, the leaf being its root. Now we define Gk (k ≥ 2) as

the bouquet of the following 3 graphs: Gk−1, Gk−1, and F with respect to their roots; the

root of Gk is taken to be its unique leaf (see G2 and G3 in Fig. 11). Finally, we define

Dk (k ≥ 1) as the bouquet of 3 copies of Gk with respect to their roots (D2 is shown in

Fig. 12, where the circles represent hexagons).
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Figure 9: Graph F

Figure 10: Graph G1

G2 G3

Figure 11: Graphs G2 and G3

Figure 12: Nanostar D2

Let s denote the partial Hosoya polynomial of the graph F with respect to its root

and let p denote the Hosoya polynomial of F . Direct computation yields

s = t9 + t(1 + t)(1 + t+ t2)(1 + t4) ,

p = 15t+ 20t2 + 18t3 + 12t4 + 10t5 + 8t6 + 5t7 + 2t8 + t9 . (16)
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Let rk denote the partial Hosoya polynomial of Gk with respect to its root. It is straight-

forward to find r1 = t(1 + t)(1 + t+ t2) and the recurrence relation rk = s+2t9rk−1; they

lead to

rk = s
(2t9)k−1 − 1

2t9 − 1
+ (2t9)k−1t(1 + t)(1 + t+ t2) . (17)

Now from (2) we obtain a recurrence relation for H(Gk, t):

H(Gk, t) = 2H(Gk−1, t) + p+ 2srk−1 + r2k−1 ,

the initial condition being

H(G1, t) = 7t+ 8t2 + 5t3 + t4 . (18)

The solution is

H(Gk, t) = 2k−1(p+H(G1, t))− p+
k−1∑
j=1

2k−1−jrj(2s+ rj) , (19)

where p and H(G1, t) are given in (16) and (18), respectively.

Although not required in the sequel, we give the Wiener index and the hyper-Wiener

index of Gk:

W (Gk) = 1323 + 2k−13735− 22k−212711 + 2k2223k + 22k−23249k ,

WW (Gk) = −45867− 2k−1173401 + 22k−31060083− 2k−1132777k

−22k−3454347k + 20007k22k−1 + 29241k222k−2 .

Since Dk is a bouquet of three copies of Gk with respect to their roots, from (3) we

have

H(Dk, t) = 3H(Gk, t) + 3r2k ,

where the terms in the right-hand side are given in (19) and (17). For the Wiener index

and the hyper-Wiener index of Dk we obtain

W (Dk) = −9369− 22k−275411 + 22k−229241k + 2k−156205 ,

WW (Dk) = 116340− 2k−11429983 + 22k−34790367− 22k−32685555k

+22k−2263169k2 .

Incidentally, the formula given in [17, p.62] for the Wiener index of Dn contains some

misprints; for example, for D1 it does not give the correct value 666 found on p. 60.
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4.4 Triangulanes

We intend to derive the Hosoya polynomial of the triangulane Tk defined pictorially in [24].

We define Tk recursively in a manner that will be useful in our approach. First we define

recursively an auxiliary family of triangulanes Gk (k ≥ 1). Let G1 be a triangle and denote

one of its vertices by y1. We define Gk (k ≥ 2) as the circuit of the graphs Gk−1, Gk−1,

and K1 and denote by yk the vertex where K1 has been placed. The graphs G1, G2, G3

are shown in Fig. 13.

y1
G1

y2
G2

y3
G3

Figure 13: Graphs G1, G2, G3

Now, Tk is defined as the circuit of 3 copies of Gk with respect to their vertices yk (T2

is shown in Fig. 14).

Figure 14: Graph T2

Let rk denote the partial Hosoya polynomial of Gk with respect to the vertex yk. It is

straightforward to derive that

1 + rk =
2k+1tk+1 − 1

2t− 1
. (20)

Since Gk is the circuit of the graphs Gk−1, Gk−1, andK1, from (4) we obtain the recurrence

equation

H(Gk, t) = 2H(Gk−1, t) + t(1 + rk−1)
2 + 2t(1 + rk−1) .
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The initial condition is H(G1, t) = 3t and the solution is found to be

H(Gk, t) =
2k+2tk+2 + 4t2 − 3t

(2t− 1)2
− 2k(4t2 + 3t)

2t2 − 1
+

22k+1t2k+3

(2t− 1)2(2t2 − 1)
. (21)

Although not required in the sequel, we give the Wiener index and the hyper-Wiener

index of Gk:

W (Gk) = 22k+1(2k − 5) + 2k(4k + 9) + 1 ,

WW (Gk) = 22k+1(2k2 − 9k + 16) + 2k(2k2 − 6k − 29)− 3 .

Since Tk is a circuit of 3 copies of Gk with respect to the vertices yk, from (5) we obtain

H(Tk, t) = 3H(Gk, t) + 3t(1 + rk)
2 ,

where the expressions occurring in the right-hand side are given in (21) and (20). We

obtain easily

H(Tk, t) =
6t

2t− 1
− 2n3t(4t+ 3)

2t2 − 1
+

22n+13t2n+3(2t+ 1)

(2t− 1)(2t2 − 1)
.

For the Wiener index of Tk we obtain

W (Tk) = 22n+13(6n− 7) + 2n51− 6 .

This expression can be found in [24, Theorem 1] and in [8, p.37, Theorem 5]. For the

hyper-Wiener index of Tk we have

WW (Tk) = 22n+13(6n2 − 11n+ 20)− 2n123 + 6 .
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