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Abstract

The Wiener index of a connected graph is defined as the sum of distances be-
tween all unordered pairs of its vertices. A graph G is said to have a Pr-factor
if G contains a spanning subgraph F of G such that every component of F is a
path with r vertices. In this note, it is shown that if T and T ′ are two trees with
Pr-factors on equal number of vertices, then W (T ) ≡W (T ′) (mod r) for odd r and
W (T ) ≡W (T ′) (mod 2r) for even r.

1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). The degree

degG(v) of a vertex v in G is the number of edges of G incident with v. A vertex of

degree one is called a pendent vertex. A vertex v in a tree T is called a branching vertex

if degT (v) ≥ 3. A path with n vertices is denoted by Pn. A set of the independent edges

in G which covers all the vertices in G is called a perfect matching of G. The distance

between vertices u and v of G is denoted by dG(u, v). The Wiener index of a connected

graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) .
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In organic chemistry, the Wiener index is one of the oldest distance-based structure

descriptors which was first introduced by Wiener [16]. Numerous of its chemical applica-

tions and mathematical properties are well studied [2, 3, 10, 13].

Chemists are often interested in the Wiener index of certain trees which represent

molecular structures. For detailed results on this topic, the readers may referred to [2].

Recently, some new properties of the Wiener index within some given classes of trees

have been found. For instance, see [1] for trees with given matching number, [9, 15] for

trees with given diameter, [7] for trees with given radius and [4, 5, 8, 12, 14, 17, 18] for

trees with specific degree conditions.

In [6], Gutman and Rouvray established the following congruence relation for the

Wiener index of trees with perfect matchings.

Theorem 1 ([6]) Let T and T ′ be two trees on equal number of vertices. If both T and

T ′ have perfect matchings, then W (T ) ≡ W (T ′) (mod 4).

The following theorem, discovered by Doyle and Graver [3], is a well known result to

compute the Wiener index of trees with few branching vertices.

Theorem 2 ([3]) Let T be a tree on n vertices. Then

W (T ) =

(
n+ 1

3

)
−
∑
u

∑
1≤i<j<k≤degT (u)

ni(u)nj(u)nk(u) ,

where the first summation goes over all branching vertices u of T , and n1(u), n2(u), ...,

ndegT (u)(u) are the number of vertices in each of the components of T − u.

A segment of a tree T is a path-subtree S whose terminal vertices are branching

or pendent vertices of T . By using the Doyle-Graver formula stated as above and the

concept of segments, Dobrynin, Entringer and Gutman [2] obtained a new congruence

relation for the Wiener index in the class of k−proportional trees. Trees of this class

have the same order and the lengths of all segments are proportional to the coefficient k,

k ≥ 1.

Theorem 3 ([2]) Let T and T ′ be two k−proportional trees. Then W (T ) ≡ W (T ′)

(mod k3).

In this note, we attempt to connect the theory of Wiener index with the theory of

graph factors and establish some further congruence relations for the Wiener index within

some classes of trees. To do so, we first introduce some terminologies and notations that

appears in the theory of graph factors [11].
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A subgraph F of a graph G is called a factor of G if F is a spanning subgraph of G.

A path factor of a graph G is a factor of G such that each component of the factor is a

path, in particular, if each component of the factor is required to be a path with exactly

r vertices, such a factor is called a Pr-factor of G.

Remark 1. According to this definition, if a graph G has a Pr-factor, then there exist

m (m = |V (G)|/r) vertex disjoint paths L1, L2, ..., Lm such that

V (G) = V (L1)
⋃

V (L2)
⋃

...
⋃

V (Lm)

and each Li is a path with r vertices. Figure 1 illustrates an example of a P4-factor

(depicted by the thick lines) of a tree.

� � �

� � �

� � �

� � �

L1 L2 L3

u

T0

Fig. 1 A 12-vertex tree T0 with a P4-factor F = L1

⋃
L2

⋃
L3

Now we can state our main result of this paper.

Theorem 4a If T is an n−vertex tree with a Pr−factor, then

W (T ) ≡
(
n+ 1

3

)
(mod r) for odd r (1)

and

W (T ) ≡
(
n+ 1

3

)
(mod 2r) for even r, (2)

furthermore,

Theorem 4b If T and T ′ are two trees on equal number of vertices with Pr-factors,

then
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W (T ) ≡ W (T ′) (mod r) for odd r (3)

and

W (T ) ≡ W (T ′) (mod 2r) for even r. (4)

.

Let us make several remarks here before proving the theorem.

Remark 2. By the definition of the Pr−factor, the well-known perfect matching (or

1-factor) is a P2−factor. Theorem 4b thus is a natural generalization of Theorem 1.

Remark 3. The congruence relation in Theorem 4b is best possible in the following

sense. If r is odd, then we cannot strengthen the relation (3) by replacing modulo r

by modulo 2r or modulo r2. Consider the 20-vertex trees T1 and T2 (shown in Figure

2) with P5−factors (depicted by the thick lines), W (T1) = 1085, W (T2) = 1090, thus

W (T2) −W (T1) = 5 ≡ 0 (mod 5). This example shows that if r is odd, then r is the

largest value the divisor in relation (3) can take. Similarly, if r is even, then we cannot

strengthen the relation (4) by replacing modulo 2r by modulo r2 or other. Consider the

12-vertex trees T3 and T4 (shown in Figure 3) with P4−factors (depicted by the thick

lines), W (T3) = 238, W (T4) = 246, thus W (T4)−W (T3) = 8 ≡ 0 (mod 8). This example

shows that if r is even, then 2r is the largest value the divisor in relation (4) can take.

� �� � � � �� ��

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

T1 W = 1085 T2 W = 1090

Fig. 2 Two 20-vertex trees with P5-factors and their Wiener indices
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T3 W = 238 T4 W = 246

Fig. 3 Two 12-vertex trees with P4-factors and their Wiener indices

2 Proof of Theorem 4

Proof. It is obvious that Theorem 4b is an immediate corollary of Theorem 4a. Accord-

ingly, it will be sufficient here to prove only the first statement.

Let T be an n−vertices tree with a Pr−factor.
If T = Pn, it is well known [2] that W (Pn) =

(
n+1
3

)
, Theorem 4a clearly holds in

this case. So in the following, we always assume that T �= Pn. Then T contains some

branching vertices, we can compute the Wiener index of T in the following manner by

Theorem 2:

W (T ) =

(
n+ 1

3

)
−
∑
u

∑
1≤i<j<k≤degT (u)

ni(u)nj(u)nk(u), (5)

where the first summation goes over all branching vertices u of T .

Let u be an arbitrary branching vertex of T , and let T1, T2, ..., Tp be the components

of T − u, where p = degT (u) ≥ 3. We call a component Ti of T − u a k-component if

|V (Ti)| contains the factor k. Set nt(u) = |V (Tt)|, t = 1, 2, ..., p.

By Remark 1, we know that there exist m (m = |V (T )|/r) vertex disjoint paths L1,

L2, ..., Lm of T such that V (T ) = V (L1)
⋃

V (L2)
⋃

...
⋃

V (Lm) and each Li is a path

with r vertices. Thus u lies on exactly one path, say Lq ∈ {L1, L2, ..., Lm}, which implies

that at most two components of T −u contain some vertices of Lq. On the other hand, if

a component of T − u does not contain any vertex of Lq, then it again has a Pr−factor,
and hence is a r−component of T − u.

By above discussion, we know that T − u contains at least (p− 2) r−components of

T − u. This implies that each summand ni(u)nj(u)nk(u) in (5) contains the factor r. So
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the relation (1) holds for any r with r ≥ 2.

In particular, if r is even, as above, suppose that u lies on exactly one path, say Lq ∈
{L1, L2, ..., Lm} and T1, T2, ..., Tp are the components of T − u, where p = degT (u) ≥ 3.

Set nt(u) = |V (Tt)|, t = 1, 2, ..., p.

In order to complete the proof, it is necessary to examine the following two cases.

Case 1. u is an end vertex of Lq (see the branching vertex u of the tree T3 in Figure

3 for an example).

In this case, it is easily seen that T −u contains p−1 components, each of which does

not contain any vertices of Lq and again has a Pr-factor, and hence is a r−component of

T − u. This fact implies that each summand ni(u)nj(u)nk(u) in (5) contains the factor

r2, and hence the factor 2r (since r is even), so the relation (2) holds.

Case 2. u is an internal vertex of Lq (see the branching vertex u of the tree T0 in

Figure 1 for an example).

Then there are exactly two components of T − u, without loss of generality, say T1

and T2, each contains some vertices of Lq. Recall that T1, T2, ..., Tp are the components

of T − u, we easily get

|V (T1)|+ |V (T2)|+ |V (T3)|+ ...+ |V (Tp)| = |V (T )| − 1 = mr − 1. (6)

Note that each of the components T3, ..., Tp does not contain any vertices of Lq and

again has a Pr-factor, and hence is a r−component of T − u. Therefore, we may assume

that |V (T3)| + ... + |V (Tp)| = sr, where s is a positive integer. Now by (6), we arrive at

|V (T1)|+ |V (T2)| = (m− s)r − 1.

Since r is even, (m− s)r− 1 is an odd number. So |V (T1)| and |V (T2)| have different
parities. Thus one of T1, T2 is a 2-component of T − u. Using this as well as the fact

that r is even and T3, ..., Tp are r−components of T − u, we can conclude that each

summand ni(u)nj(u)nk(u) in (5) contains the factor 2k. So the relation (2) holds, and

this completes the proof of the theorem. �
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