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Abstract

The Wiener index is a distance-based topological index defined as the sum of distances

between all pairs of vertices in a graph. Fibonacenes form a class of unbranched catacondensed

benzenoid hydrocarbons having zig-zag structure. Collective properties of the Wiener index for

some classes of fibonacenes have been studied in [4]. We present new families of fibonacenes for

which the sum of their Wiener indices can be easily calculated.

1. Introduction

In this paper we are concerned with finite undirected connected graphs. The vertex

set of G is denoted by V (G). If u and v are vertices of G, then the number of edges in

the shortest path connecting them is said to be their distance and is denoted by d(u, v).

The Wiener index is a well-known distance-based topological index introduced as

structural descriptor for acyclic organic molecules [19]. It is defined as the sum of distances

between all unordered pairs of vertices of a graph G:

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

The Wiener index is extensively used in theoretical chemistry for the design of quanti-

tative structure–property relations (mainly with physico-chemical properties) and quanti-

tative structure–activity relations including biological activities of the respective chemical
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compounds. Since benzenoid hydrocarbons are attracting the great interest of theoretical

chemists, the theory of the Wiener index of the respective molecular graphs have been

intensively developed in the last three decades. The bibliography on the Wiener index and

its applications can be found in books [3, 8, 11, 12, 17, 18] and reviews [5, 6, 13, 14, 15, 16].

In this paper we study the Wiener index for hexagonal chains having zig-zag structure.

We deal mainly with so-called collective properties of the Wiener index, i.e. the main

results don’t reflect the property of Wiener index of any particular graph, but a collective

property of sets of such graphs. This approach may be useful in studying of topological

indices of molecular graphs or in characterizing sets of graphs obtained after destruction

of hexagonal networks. Some results in this direction have been reported in [4].

2. Fibonacenes

A hexagonal system is a connected plane graph in which every inner face is bounded

by hexagon. An inner face with its hexagonal bound is called a hexagonal ring (or simply

ring). Two hexagonal rings are either disjoint or have exactly one common edge (adjacent

rings), and no three rings share a common edge. A vertex of a hexagonal system belongs

to at most three hexagonal rings. A hexagonal system is called catacondensed if it does

not possess three hexagonal rings sharing a common vertex. A ring having exactly one

adjacent ring is called terminal . A catacondensed hexagonal system having exactly two

terminal rings is called a hexagonal chain. A ring adjacent to exactly two other rings

has two vertices of degree 2. If these two vertices are adjacent, then the ring is angularly

annelated, if these two vertices are not adjacent, then it is linearly annelated. A fibonacene

is a hexagonal chain without linearly annelated hexagonal rings. Examples of fibonacenes

are shown in Fig. 1. The name of these chains comes from the fact that the number

of perfect matchings of any fibonacene relates with the Fibonacci numbers. Detailed

information about properties of fibonacenes can be found in [1, 4, 9, 10].

Denote by Fh the set of all fibonacenes with h rings. Throughout this article h always

denotes the number of hexagonal rings in a graph.

Among the fibonacenes with a fixed number of rings two are extremal with regard

to their Wiener indices: the helicene Hh and the zig-zag fibonacene Zh (see examples in

Fig. 1). If all hexagonal rings are regular, then the helicene has the spiral structure while

all rings of the zig-zag fibonacene lie on a straight line.
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Figure 1: Three small and three large fibonacenes.

3. Representation of fibonacenes

A fibonacene’s edge is called cut-edge if it belongs to two rings (cut a paper model

of a fibonacene along this edge produces two fibonacenes). Denote by C(G) the set of

all cut-edges of a fibonacene G ∈ Fh except cut-edges belonging to the first and the

last hexagons, |C(G)| = h − 3. This set can be decomposed into two disjoint subsets:

C(G) = U(G)∪Z(G). Namely, suppose that all cut-edges of G are sequentially numbered

by 0, 1, 2,...,h− 2. For a cut-edge ei ∈ C(G), consider a subgraph Pi with four hexagons

containing cut-edges {ei−1, ei, ei+1}, 1 ≤ i ≤ h− 3. Subgraph Pi is isomorphic to helicene

H4 or to zig-zag fibonacene Z4 for every i = 1, 2, ..., h − 3 (see Fig. 2). We assume that

ei ∈ U(G) if Pi
∼= H4 and ei ∈ Z(G) if Pi

∼= Z4. Denote by u(G) the cardinality of U(G).

The structure of an arbitrary fibonacene G ∈ Fh can be represented as a binary code

r(G) = (r1, r2, ..., rh−3). If a cut-edge ei belongs to U(G) then ri = 1, otherwise ri = 0,

i = 1, 2, ..., h− 3 (see Fig. 2). A fibonacene with non-trivial symmetry has a symmetrical

code. For instance, the most right large fibonacene in Fig. 1 has the following code:

(010010010). Denote by Sh the set of all symmetrical fibonacenes with h rings.

A fibonacene induced by a binary vector r will be denoted by G(r). Components of

a reverse code r∗ of a code r are defined as r∗i = rh−2−i, 1 ≤ i ≤ h − 3. It is clear that

fibonacenes G(r) and G(r∗) are always isomorphic. We will assume that r(G) corresponds

to one of two possible codes of G (it is not important how to choose r(G)).

-567-



����

����

����

����

����

��������

����

ei

ei−1 ei+1

ei ∈ U(G)

ri = 1

Pi

���

����

����

����

��������

����

����

����
ei

ei−1

ei+1

ei ∈ Z(G)

ri = 0

Pi

����

����

����

��������

����

����

��������

����

����

��������

��������

����

����

����

����

����

0
0

1

0

1 1

G

r(G) = (001011)

Figure 2: Binary representation of fibonacenes.

All codes of a family of graphs Gh = {G(r1), G(r2), ..., G(rk)} with h rings form the

binary k × (h− 3) matrix M(Gh) with rows r1, r2, ..., rk. The complement of a family Gh
is defined as Gh = {G(r1), G(r2), ..., G(rk)}, where r denotes the bitwise negation of r.

4. Linked fibonacenes

By family of fibonacenes we mean a multiset, i.e. a family may contain isomorphic

graphs. A family or set of fibonacenes Gh = {G1, G2, ..., Gk} is called m-linked if every

column of the matrix M(Gh) contains exactly m units, i.e. ri(G1)+ri(G2)+ ...ri(Gk) = m

for every i = 1, 2, ..., h− 3. An example of such a family is shown in Fig. 3.

Let Gh be a m-linked family of fibonacenes and | Gh| = k. If m = 0 and k ≥ 1 then Gh
contains k zig-zag fibonacenes Zh. If m = k then Gh contains k helicenes Hh. If Zh �∈ Gh
then m ≤ |Gh| ≤ m(h− 3).

Let G, G ′ be arbitrary m-linked and m′-linked families of fibonacenes, respectively. It

is clear that G ∪ G ′ is always (m+m′)-linked family. If G ∩ G ′ is a m′′-linked family then

G \G ′ is (m−m′′)-linked family. The complement G is a (k−m)-linked family if | G| = k.

The notion of linked fibonacenes has been introduced in [4]: two graphs G(r) and

G′(r′) are linked if r′ = r and a fibonacene G is self-linked if G(r) ∼= G(r). Self-linked

fibonacenes exist if their number of rings h is odd. A set of fibonacenes G is called complete

if for every fibonacene G ∈ G the set always contains its linked graph G [4].

Examples.

1. A fibonacene G and its linked graph G always form a 1-linked set.

2. Any complete set of fibonacenes Gh is | Gh|/2– linked, Gh = ∪{G,G}.
3. The set of all symmetrical fibonacenes Sh is | Sh|/2– linked. Indeed, this set can be

also represented as union of disjoint 1-linked sets {G,G}, i.e. Sh is a complete set.
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⎢⎢⎣
r(G1)
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r(G4)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1 1 0 1 0
1 0 0 0 0 1
1 1 0 1 1 0
0 0 1 1 0 1

⎤
⎥⎥⎦.

Figure 3: 2-linked family of fibonacenes G9.

4. The set of all fibonacenes is | Fh|/2– linked for even h, Fh = ∪{G,G}. Let Lh ⊂ Fh

be the set of all self-linked fibonacenes for odd h. Then F ′
h = Fh \ Lh = ∪{G,G} is a

| F ′
h|/2– linked set.

5. Let Bh be a family of fibonacenes induced by all binary vectors of length h − 3.

Since Bh = ∪{G,G}, Bh is a |Bh|/2– linked family.

6. Let G ∈ Fh be an arbitrary fibonacene and r(G) has m units. Then the family

generated by all cyclic shifts of bits in r(G) is m-linked.

5. Wiener index of linked fibonacenes

It is known that Wiener indices of helicene Hh and zig-zag fibonacene Zh are the

minimal and the maximal W -values among all fibonacenes [2, 7]:

Wmin = W (Hh) =
1

3

(
8h3 + 72h2 − 26h+ 27

)
,

Wmax = W (Zh) =
1

3

(
16h3 + 24h2 + 62h− 21

)
,

Wmax − Wmin = 16

(
h− 1

3

)
.

Denote by Ws the average value of Wmin and Wmax, i.e.

Ws =
1

2
(Wmax +Wmin) = 4h3 + 16h2 + 6h+ 1.
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Further, these W -values will be considered only for graphs with h rings. The sum of

the Wiener indices for all fibonacenes G ∈ G will be denoted by W (G) =∑G∈G W (G).

Let e ∈ U(G) be a cut-edge of G ∈ Gh and u = |U(G)|. Denote by l(e) and r(e) the

numbers of rings of two fibonacenes obtained by cutting G along the edge e, l(e)+r(e) = h.

To calculate the Wiener index of an arbitrary fibonacene G, it is sufficient to examine its

cut-edges from U(G) [4]:

W (G) = Wmax + 16 u(h− 1)− 16
∑

e∈U(G)

l(e)r(e). (1)

The following result shows how to calculate the Wiener index for a m-linked family of

fibonacenes.

Proposition 1. For an arbitrary m-linked family of fibonacenes Gh = {G1, G2, ..., Gk},

W (Gh) = | Gh|Wmax −m(Wmax −Wmin)

= | Gh|Wmax − 16m

(
h− 1

3

)

= 1
3
(8h3(2k −m) + 24h2(k + 2m) + 2h(31k − 44m)− 3(7k − 16m)) .

Proof . Let ui = |U(Gi)|, i = 1, 2, ..., k. Applying formula (1) to every fibonacene of Gh,
we have

W (Gh) = kWmax + 16(u1 + u2 + ...+ uk)(h− 1)− 16
∑

e∈U1∪...∪Uk

l(e)r(e).

Since Gh is a m-linked family, u1 + u2 + ...+ uk = m(h− 3) = mu(Hh) and

∑
e∈U1∪...∪Uk

l(e)r(e) = m
∑

e∈U(Hh)

l(e)r(e).

Then W (Gh) = (k −m)Wmax +mW (Hh) and Proposition 1 follows. �

For graphs in Fig. 3, W (G9) = 4203+4523+4107+4235 = 17068 = 4·4715−16·2
(
9−1
3

)
.

Corollary 2. [4] For an arbitrary fibonacene G ∈ Gh,

W (G) +W (G) = Wmin +Wmax = 2Ws = 8h3 + 32h2 + 12h+ 2.

Corollary 3. Let Gh and G ′
h be m-linked families of fibonacenes with h rings. Then

W (Gh) = W (G ′
h) if and only if | Gh| = | G ′

h|.

Proof . By Proposition 1, we have W (Gh)−W (G ′
h) = Wmax(| Gh| − | G ′

h|). �
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Corollary 4. For an arbitrary | Gh|/2–linked family of fibonacenes Gh,
W (Gh) = | Gh|Ws.

Proof . By Proposition 1, we can write W (Gh) = | Gh|Wmax − | Gh|
2
(Wmax −Wmin) =

| Gh| (Wmax +Wmin)/2 = | Gh|Ws. �

Since the set of all fibonacenes Fh with odd h contains the subset Lh of self-linked

graphs, Fh is not | Fh|/2– linked. However, it is known that for any G ∈ Lh the equality

W (G) = Ws holds (see Corollary 2). Then W (Fh) = | Fh|Ws also for odd h.

Examples.

1. Let Gh be a family of fibonacenes with odd h induced by all binary vectors of length

h−3 having h−3
2

units. The cardinality of this family is equal to

(
h− 3

1
2
(h− 3)

)
. The number

of graphs G ∈ Gh with ri(G) = 1 for every fixed i = 1, 2, ..., h− 3 is equal to

(
h− 4

1
2
(h− 5)

)
.

Therefore, Gh is a

(
h− 4

1
2
(h− 5)

)
– linked family. Since

(
h− 4

1
2
(h− 5)

)
=

1

2

(
h− 3

1
2
(h− 3)

)
, we can

apply Corollary 4. Therefore, W (Gh) = | Gh|Ws =

(
h− 3

1
2
(h− 3)

)
Ws.

2. By distance dH(G1, G2) between fibonacenes G1 and G2 we mean Hamming distance

dH(r(G1), r(G2)) between their binary codes r(G1) and r(G2), i.e. dH(G1, G2) is equal to

the number of codes’ components for which ri(G1) �= ri(G2), i = 1, 2, ..., h− 3.

Denote by S(G0) the sphere of radius 1 with the center in a fibonacene G0: S(G0) =

{G ∈ Fh | dH(G0, G) = 1}, |S(G0)| = h − 3. It is clear that S(G) = S(G). Therefore,

S(G) ∪ S(G) is a complete set of fibonacenes and W (S(G) ∪ S(G)) = 2(h− 3)Ws.

6. Symmetrically linked fibonacenes

In this section, we define more general families of fibonacenes Gh = {G1, G2, ..., Gk}
which include linked families. Let M(Gh) = [mi,j], i = 1, 2, ..., k, j = 1, 2, ..., h − 3.

Columns j1 and j2 of M(Gh) are called symmetrical if j2 = h− 2− j1 for 1 ≤ j1 ≤ �h−3
2
�.

A family of fibonacenes Gh is called symmetrically a-linked if the sum of units in every pairs

of symmetrical columns of M(Gh) is equal to a (if h is even then the central column does

not take into account), i.e. a =
∑k

i=1mi,j +
∑k

i=1 mi,h−2−j for every j = 1, 2, ..., �h−3
2
�

and a ≤ 2k. It is clear that a m-linked family is always symmetrically 2m-linked. An

example of such a family is shown in Fig. 4.
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Figure 4: Symmetrically 3-linked family of fibonacenes G8.

Proposition 6. For an arbitrary symmetrically a-linked family of fibonacenes Gh (with b

units in the central column of M(Gh) for even h),

W (Gh) = | Gh|Wmax − 8a

(
h− 1

3

)
− φ(a, b),

where φ(a, b) = 0 for odd h and φ(a, b) = 2(h− 2)2(2b− a) for even h.

Proof . To calculate W (Gh), we apply formula (1). Denote by ci the sum of units in i-th

column of M(Gh). For ei ∈ U(G), we shall write l(ei) = li and r(ei) = ri. Let h be even.

Then ∑
G∈Gh

u(G) = c1 + c2 + ...+ ch−3

= (c1 + ch−3) + (c2 + ch−4) + ...+ (ch−4
2

+ ch
2
) + ch−2

2

= 1
2
a(h− 4) + b = 1

2
u(Hh)− 1

2
a+ b.

Since lh−2
2

= rh−2
2

= h
2
,

∑
G∈Gh

∑
e∈U(G) l(e)r(e) = c1 l1 r1 + c2 l2 r2 + ...+ ch−3 lh−3 rh−3

= l1 r1 [ c1 + ch−3 ] + l2 r2 [ c2 + ch−4 ] + ...+ lh−4
2

rh−4
2

[ ch−4
2

+ ch
2
] + ch−2

2
lh−2

2
rh−2

2

= a[ l1 r1 + l2 r2 + ...+ lh−4
2

rh−4
2

] + b lh−2
2

rh−2
2

= 1
2
a
∑

e∈U(Hh)
l(e)r(e)− 1

2
a lh−2

2
rh−2

2
+ b lh−2

2
rh−2

2

= 1
2
a
∑

e∈U(Hh)
l(e)r(e)− 1

8
ah2 + 1

4
bh2.
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Substituting these equalities into formula (1), we get Proposition 6. For odd h, all

calculations are almost the same. �
For the family of fibonacenes in Fig. 4, we have a = 3, b = 1, and W (G8) = 3273 +

3193 + 3241 + 3129 = 12836 = 4 · 3401− 8 · 3
(
8−1
3

)
− 2(8− 2)2(2− 3).
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