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Abstract. Triply periodic structures are the usual subjects of crystallographic studies while 
the objects of these are the crystals or reticulations. There are amorphous materials with no 
ordered atomic arrays and some ordered structures with no translational periodicity, 
eventually called quasicrystals. This study presents a variety of five-fold symmetry molecular 
networks with 1-periodicity. The construction and topology (the genus calculation included) 
of these structures is described in terms of the net parameters, in a crystallographic manner. 

 

1  Introduction 
Polymorphism is maybe the most general property of the matter, in its appearance, 

while its causes are multiple, with the geometry and involved symmetry playing an essential 

role. The long-range order in crystals is described by the translational symmetry, considering 

the crystal (or better, the corresponding network) is infinite. However, a crystal is finite and 

often imperfections/defects appear, so that the border between crystal and amorphous is rather 

diffuse. 

 Short-range order of matter was described to appear in quasicrystals, associated with 

rotational symmetry, not allowed in classical (translational) crystallography. High quality 

stable quasicrystals, with typical features of crystalline phases, have been isolated and their 

structure established. The Nobel prize for quasicrystals in 2011 came to recognize the 

importance of this kind of ordered matter; it can be either a dense or a spongy one. 
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In respect of dense structures, we have to address to the well-known problems of space 

filling by polyhedral cells [1-5] and sphere-packing [6-12]. According to Ulam conjecture 

[13], all hard convex shapes pack more densely than the spheres, which have a maximum 

packing fraction of � = �/�18 � 0.7405. This happens in the face-centered cubic fcc array and 

was conjectured by Kepler but only recently demonstrated by Hales [14].  

Spongy structures, like zeolites and the synthesized spongy carbon, represent atomic 

arrangements showing large hollows and/or channels or tubes. Substructures of such materials 

can be viewed as units of negative curvature, eventually belonging to the well-defined triply 

periodic minimal surfaces: P, D and G [15]. The graphs associated to these surfaces are called 

labyrinth graphs [16]. Since a hollow can be viewed as a simple torus (i.e. a hyper-ring, of 

which edges are tubes), Diudea [17] termed such spongy structures as multi-tori.  

Intersection-free triply periodic minimal surfaces are of unbounded genus but can be 

characterized by calculating the genus per unit cell “ uc” [15] , defined in terms of the integral 

Gaussian curvature according to the Gauss-Bonnet [18]  

 (1/ 2 )uc uc
k da� �� ���  

with uc� being the Euler-Poincaré characteristic per unit cell [19]. From this, the surface genus 

[20] is calculated by: 

 1 /ucg n�� �  

where n=1 for non-orientable (Moebius) surfaces and n=2 for orientable surfaces.  

Multi-tori MT are structures of high genera (see below) and are supposed to result by 

self-assembly of some repeating units (i.e., monomers) which can be designed by opening of 

cages/fullerenes or by applying appropriate map/net operations on small polyhedral objects, 

usually the Platonic solids. They can be encountered in zeolites [21], natural or synthetic 

aluminosilicates with an open/spongy three-dimensional crystal structure.  

The article is structured as follows. After the introductory part, some basic map 

operations used in the building of repeating units of periodic structures are presented. In the 

third part the new 1-periodic networks are discussed. The genus calculation in such 

quasicrystals is given in the forth’s section. Conclusions and references will close the paper.   
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2  Operations on Maps 
Design of the structures herein discussed is based on “operations on maps”, merely 

applied on the Platonic solids: tetrahedron (T), cube (C), octahedron (Oct), dodecahedron 

(Do) and icosahedron (Ico). A map M is a discretized surface domain while the operations on 

maps are topological modifications of a parent map. The symmetry of parents is preserved by 

running these operations. Several operations on maps are known and are currently used to 

decorate a surface domain. The reader is invited to consult some recent publications in this 

respect [22]. In the following, only the most important operations will be detailed. 

Dual Du: put a point in the center of each face of the map, next join two such points if 

their corresponding faces share a common edge [23]. It is the (Poincaré) dual Du(M). The 

vertices of Du(M) represent faces in M and vice-versa. In the transformed map, the following 

relations exist: Du(M); 0fv � ; 0ee � ; 0vf � . Dual of the dual returns the original map: 

Du(Du(M))=M. Tetrahedron is self-dual while the other Platonic polyhedra form pairs: 

Du(Cube)=Octahedron; Du(Dodecahedron)= Icosahedron (see Fig. 1 for symbols hereafter 

used). It is also known the Petrie dual. 

   

 

 

 

 

 

Tetrahedron 

T 33 

Cube 

C 43 

Octahedron 

Oct 34 

Dodecahedron 

Do 53 

Icosahedron 

Ico 35 

Fig. 1: The five Platonic polyhedra.

 

Medial Med: put new vertices in the middle of the original edges and join two vertices 

if the edges span an angle (and are consecutive). Medial is a 4-valent graph and Med(M) = 

Med(Du(M)), as illustrated in Fig. 2, left. The transformed map parameters are: Med(M); 

0ev � ; 02ee � ; 00 vff �� .The medial operation rotates parent s-gonal faces by �/s [23]. 

Points in the medial represent original edges, thus this property can be used in topological 

analysis of edges in the parent polyhedron. Similarly, the points in dual give information on 

the topology of parent faces.  
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Med(C) = Cuboctahedron 

(3.4)2 

Tr(Oct) = Truncated Octahedron 

4.62 

Fig. 2. Medial and Truncation. 
 

Truncation Tr: cut off the neighborhood of each vertex by a plane close to the vertex, 

such that it intersects each edge meeting the vertex. Truncation is similar to the medial, the 

transformed map parameters being: Tr(M); 0002 vdev �� ;  03ee � ; 00 vff ��  [23]. This 

was the main operation used by Archimedes in building its well-known 13 solids.  Fig. 2, 

right illustrates a transform by this operation. 

 

Polygonal mapping Pn: add a new vertex in the center of each face. Put n-3 points on 

the boundary edges. Connect the central point with one vertex on each edge (the end points 

included). Thus, the parent face is covered by triangles (n=3), quadrilaterals (n=4) and 

pentagons (n=5). The P3 operation is also called stellation or triangulation. The transformed 

map parameters are: Pn(M); 000 )3( fenvv ���� ; 0ene � ; 00 fsf � . Fig. 3 gives examples 

of the Pn operations realization [24]. 

 

 
P3(Do) (35)3(36)5 

 

 
P4(Do) (45)3(43)5 

 

 
P5(Do) (55)3(53)5 

Fig. 3. Polygonal Pn operations on the Dodecahedron Do. 

  

Leapfrog Le (tripling) is a composite operation [25-27] that can be written as: 

 ))(())(()( 3 MDuTrMPDuMLe ��         

A sequence of stellation-dualization rotates the parent s-gonal faces by �/s. Leapfrog 

operation is illustrated, on a pentagonal face, in Fig. 4. 
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A bounding polygon, of size 2d0, is formed around each original vertex. In the most 

frequent cases of 4- and 3-valent maps, the bounding polygon is an octagon and a hexagon, 

respectively. 
 

P3 Du

 
 

Fig. 4. The Leapfrog Le operation on a pentagonal face 

 

If the map is a d0 regular graph, the number of vertices in Le(M) is d0 times larger than 

in the original map M, irrespective of the tessellation type. Note that in Le(M) the vertex 

degree is always 3, as a consequence of the involved triangulation P3. In other words, the dual 

of a triangulation is a cubic net. It is also true that truncation always provides a trivalent 

lattice. A nice example of using Le operation is: Le(Dodecahedron) = Fullerene C60, (5.62)60.  

Quadrupling Q (Chamfering) [25,28] is another composite operation, cf. sequence: 
 

3 3( ) ( ( ( )))PQ M E Tr P M��       

where E- denotes the (old) edge deletion (dashed lines, in Fig. 5) in the truncation TrP3 of each 

central vertex of the P3 operation. The Q operation leaves unchanged the initial orientation of 

the polygonal faces.  
 

P3 TrP3

 
 

Fig. 5. The Quadrupling Q operation on a pentagonal face. 

 

The vertex multiplication ratio in a Q transformation is d0 + 1 irrespective of the 

original map tessellation. Q operation involves two �/s rotations, so that the initial orientation 
of the polygonal faces is preserved. Note that, the quadrupling transform of a 4-valent map is 
not a regular graph anymore (because of mixing the new trivalent vertices with the parent 4-
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valent ones). Only Q(M) of a 3-valent map is a 3-regular graph. Q insulates the parent faces 
always by hexagons. An example of this operation is: Q (Dodecahedron) = Fullerene C80, 
(5.62)60(63)20. It is also called “chamfering” (edge chamfering being equivalent to vertex 
truncation).  

Septupling S. Two operations on maps are known: the septupling S1 and S2 [24,27,29-
31].  

The S1 operation was also called Capra Ca - the goat, by the Romanian name of the 
English leapfrog children game [32]. It is a composite operation that can be written as: 

))(()( 51 5
MPTrMS P�         

with TrP5 meaning the truncation of the new, face centered, vertices introduced by P5 
operation, which involves an E2 (i.e., two new points put on each edge) operation.  

The nuclearity of the [33] polyhedra is given by: 

0;);( 22 	�
��� babababam                 

which provides the multiplication factor m = v/v0. In a 3-valent map, Le ((1,1); m = 3; Q 
((2,0); m = 4 and S((2,1); m = 7. An example of this operation is: S1 (Dodecahedron) = 
Fullerene C140, (5.62)60(63)80. 

S1 insulates any face of M by its own hexagons, which are not shared with any old 

face. It is an intrinsic chiral operation (it rotates the parent edges by �/(3/2)s and was 
extensively illustrated in ref. 25. Since P5 operation can be done either clockwise or counter-
clockwise, it results in an enantiomeric pair of objects: S1S(M)  and S1R(M), with the subscript 
S and R referring to sinister/rectus stereochemical isomery. 

 S1 can continue with the open operation: ))(( MSOp ik where k represents the number 

of points added on the boundary of the parent faces that become the open faces. The resulting 
open objects have all the polygons of the same (6+k) size. The above operation sequence 
enables the construction of negatively curved networks. Fig. 6 gives the steps of S1 realization 
on a square face in a trivalent lattice, up to the open structure.  

 

 
P5(M) 

 
S1(M) 

 
Op(S1(M)) 

Fig. 6. Septupling S1 operation on a square face, up to the open structure. 
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The vertex multiplication ratio in an S transformation is 2d0 + 1 irrespective of the 

original map tiling. 

The S2 operation [31] is a simpler one (Fig. 7); it can be achieved by putting four 

vertices on each edge of the parent map M (E4 operation) and next join these new vertices in 

order (-1, +3):  

 ))(( 4)3,1(2 MEJS ���         

It insulates the double sized parent faces by pentagons and parent vertices by pentagon 

d0-multiples; the transformed objects are non-chiral ones. 

 

 
E4(M) 

 
S2(M) 

 
Op2a(S2(M)) 

Fig. 7. Septupling S2 operation on a square face, up to the open structure. 

 

Chirality in S2 is brought by the Op operation Op2a, achieved by adding two points on 

alternative edges of the double sized parent face boundary (Fig. 7).  

The transformed lattice parameters are identical to those provided by S1. Note that both the 

septupling operations keep the parent vertices. The transformed lattice parameters are: 

)(&)( 21 MSMS ; )12( 00 �� dvv ; 07ee � ; )1( 00 �� sff . An example of this operation is: S2 

(Tetrahedron) = Fullerene C28, (53)4(52.6)24. 

Peter John [27] has proposed a generalization of operations on maps, inspired from the 

work of Goldberg [33] and the representation of polyhedra in the (a,b) “inclined coordinates” 

(60o between axes).  

TOPO GROUP CLUJ has developed four main software programs dedicated to 

polyhedral tessellation and embedment in surfaces of various genera, either as finite or 

infinite lattices: TORUS, CageVersatile_CVNET, JSCHEM, OMEGA counter and Nano-

Studio [34-38]. 
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3  Structure Design 
 The hypothetical structures herein discussed were designed by using CVNET and 

NANO STUDIO. The units used in construction of more complex structures are presented in 

Fig.8. Five such units, denoted here U1, form a hyper pentagonal ring R5. A dodecahedron 

having in lieu of its pentagonal faces the hyper-pentagons R5 hyper-faces) is a spongy 

structure, named in the following U20, to remember the 20 simple cages/units composing it. 

Next, by identifying the hyper-faces of two units U20 one obtains 1-periodic structures. There 

are experimental data showing that in alloys like AlMn, AlFe, AlCuCo, and AlCoNi, with a 

diffraction pattern of tenfold rotational symmetry, have also a 1-dimensional translational 

periodicity along the tenfold rotational axis [39]. This symmetry is also called “axial” 

symmetry. The rod-like structures herein discussed have been characterized in 

crystallographic terms by using the TOPOS software [40]. 

  
 

Truncated Tetrahedron 

TT_12 (3.62) 

Truncated Octahedron 

TO_24 (4.62) 

Cuboctahedron 

CO_12 (3.4)2  

   
C28 ; (53)4(52.6)24 

By S2(T) 

 BTA_48 (6.82) 

By spanning Le(P4(T)) 

BTZ_24; (6.92) 

By Op(Le(T)) 

Fig. 8. Units U1 used in construction of complex structures 
 

4  Computational Details 
By the aid of TOPOS (program package for multipurpose crystallochemical analysis 

[40] we classified the 1-periodic structures assigning them to a space group compatible with 

the structure and computing the Point Symbol. All the structures are new and never described 

before in TOPOS databases.   
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We used three programs: atom.exe, hinzalign.exe and hin2topos.exe in order to 

transfer the studied structures to TOPOS.  

 The program atom.exe enabled to find the direction/orientation of the structure. The 

three input parameters are: a0, �, �, where a0 is an atom of the structure to be the origin of the 

new coordinates while � (metric) and � (angular) are tolerance parameters. 

 For an atom a, let Ea be the set of edges incident to a. For two atoms, a, a� we define 

the “vertex similarity” as the cardinality of Ea �s Ea� = {ea ea � Ea, � ea�� Ea�,  ea- ea�� �; 

� ( ea, ea�) � �}. 

 The program collects a set S(a0) of atoms of maximal similarity to a0. The atoms in 

S(a0) are candidates to be paired with a0 to form the repetitive vector. The vector is chosen 

according to various criteria, like “shortest”, “longest” etc. 

Given a vector �, the program hinzalign.exe first rotates the coordinate system such 

that the z axis becomes parallel to �. The coordinates of each atom are recalculated based on 

the new (rotated) coordinate system. Next, the coordinate system is translated with the origins 

in the atom a0 (i.e., in the new (translated) coordinate system, a0 will be (0,0,0)).  

The resulting .hin-file was converted to a TOPOS file using the third program, called 

hin2topos.exe.  

The images obtained with the TOPOS program have to be similar to the original 

structure in order to be correctly interpreted. 

For each structure, the coordination of the nodes (3-c, 4-c and so on), the number of 

topologically independent nodes (n-nodal), and the Point Symbol (PS) is given. (For the 

definition of Point Symbol see [41]. The crystallographic data are availble in the 

supplemenatry as .cif file. 

 

5  1-Periodic Networks 
In this section, eleven new 1-periodic networks are listed, together with their 

crystallographic description and the map operation used in their design. 

 

 The U20 structures in Fig. 9 and 10 are built up from BTA_48 and BTZ_24 (Fig. 8, 

bottom row), structures called “polybenzenes” in [42-44]. The unit BTZU20_480 was shown 

to self-arrange in a more complex spherical arrays [45]. 
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BTAU20_780 BTA20_4_2490 

The unit U1 is BTA_48 (Fig. 8)  

designed by spanning Le(P4(T))  
 

 
 

TOPOS view BTA20_k is a 3-c 27-nodal net 

 PS (6.82)11(62.8)26(63)14 

 

Fig. 9. BTA20_k rod-like structure 

 

 

 

BTZU20_480 BTZ20_4_1560 

The unit U1 is BTZ_24 (Fig. 8)  

designed by spanning S2(T) 

 
 

TOPOS view BTZ20_k is 3-c net 20-nodal net 

PS (5.6.8)2(5.82)3(6.82)6 

Fig. 10. BTZ20_k rod-like structure 
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The unit TP4TrsU20_350 (Fig. 11) can arrange spherically (as mentioned above for the 

polybenzene units) or (its tetrapodal units TP4Trs_22) translationally, as in the diamond 

structure [46]. 
 

 

 

 
TP4TrsU20_350 TP4Trs20_4_1115  

The unit U1 designed by Trs(P4(T)) 
 

 
  

 

TOPOS view TP4Trs20_k is 3,4-c 20-nodal net 

PS (3.52)2(3.54.8)5(53)4(54.6.8)6 

Fig. 11. TP4Trs20_k rod-like structure 

 

 

 

 

IDU20_150 

 

ID20_4_465  

The structure U20 was designed by applying twice the  
medial Med operation on the centered icosahedron;  

the core of U20 is the Archimedean 
Icosidodecahedron (ID) 
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TOPOS view Med(Med(IP)) 

ID20_k is 4,6-c 8-nodal net   

PS(32.42.52)6(33.44.55.63)8(33.44.56.62)7 

 

Fig. 12. ID20_k rod-like structure 

 

The structures in Fig. 12 have as the cage unit the Cuboctahedron; the unit IDU20 is 

built up by the sequence Med(Med(IP)), the iterative medial operation performed on the 

centered icosahedron, by operating all the rings. Its core is the Archimedean 

icosidodecahedron, ID=Med(Ico)_30. Next, IDU20 can form  either a rod-like or a sphere-like 

array or a spherical one [45].  

The units 28U20_380 (Fig. 13) and 28U20_400 (Fig. 14) are spongy and filled 

structures, respectively [45]. They are built up by the small fullerene C28. 

 

 

 

 

28U20_380 28(380)20_4_1190  
 

 

 

 

 
TOPOS view 28(380)20_k is 3,4-c 21-nodal net  

PS(52.6)12(53)12(54.6.8)19(55.6)11  

Fig. 13. 28(380)20_k rod-like structure 
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28U20_400 28(400)20_4_1270 

   
TOPOS view 28(400)20_k is 3,4-c 23 nodal net 

PS(52.6)12(53)8(54.6.8)13(55.6)17(56)8 

 

Fig. 14. 28(400)20_k rod-like structure 

 
 

TT84U20 (TT84)20_4_240 

 

 

 

 
TOPOS view  (TT84)20_k is 4,5,6-c 5 nodal net  

PS(32.4.63)10(33.42.5.64)5(35.45.65)11 

 

Fig. 15. (TT84)20_k rod-like structure 
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TTDu80U20 (TTDu80)20_4_260 

 
 

TOPOS view  (TTDu80)20_k is 5,6-c 5-nodal net   

PS(33.44.53)3(33.46.55.6)(33.46.56)2 

Fig. 16. (TTDu80)20_k rod-like structure 

 

The units TT84U20 (Fig. 15) and TTDu80U20 (Fig. 16) are related to each other and to 

the icosahedral diamond [45,47]. They are based on the truncated tetrahedron TT. 

The units 60TOU20_300 (Fig. 17) and 60TTU20_150 (Fig. 18) represent aggregations 

of C60 [45,48] 

 

 

 

 

 
60TOU20_300 

Core=C60 
(60TO)20_4_930  

 
 

TOPOS view (60TO)20_k is 3,4-c 12-nodal net 
 PS(4.62)6(42.5.63)11(42.64)4. 

Fig. 17. (60TO)20_k rod-like structure 
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60TTU20_150 (60TT)20_4_465 
 

 

 
TOPOS view (60TT)20_k is 3,4-c 8-nodal net  PS(3.5.64)11(3.62)6(3.64.10)4.

Fig. 18. (60TT)20_k rod-like structure 

 

The structure in Figs. 19 and 20 represent substructures and quasicrystals of the diamond D5 

[45,49]. 

  

D5_Dia_sin_226 D5_ Dia_anti_226 

Fig. 19. Substructures of the diamond D5 

 

  

D5_sin_e524_1330, top 

The isomer D5_anti is the mtn network,  

also known as clathrate II [49,50] 

D5_sin_e524_1330, side 
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TOPOS view  

 D5_sin_e52k is 3,4-c 27-nodal net with 

PS(53)18(55.6)18(55.8)16(56)13. 

Fig.20. D5_sin_e52k rod-like structure 

 

6  Genus Calculation 
In spongy structures, built by tube junctions, the following theorem holds [51]: 

 

Theorem. The genus of a structure, composed from u units, of genus gu, is calculated as: 

g=u(gu-1)+1, irrespective of the unit tessellation. 

 

In fact, the above formula counts the hollows in a rod-like network and was used mainly to 

check the consistency of a designed structure. It was tested on numerous examples, some of 

them being presented in Tables 1 to 3. 

In spongy 1-periodic structures bearing closed/finite units, the genus can be calculated 

from the number of windows (i.e. open faces fop): g=fop-1. 

            In filled 1-periodic structures, the consistency of structures is checked by an extension 

of Euler-Poincaré formula, due to Schläfli [52]: 

 

 
0 1 2 3 0f f f f f� � � � �

 
where the sum of figures (f0=point; f1=edge; f2=face and f3=cage) of a structure equals zero. 

An example is given in Table 4. 
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Table 1. Genus calculation in 28(380)20-k (closed) structures (Fig. 13) 

28(380)20 _k v e f5 f6 f �  g gu

g=k(gu-

1)+1 

fop 

g= fop-1

1 380 660 240 20 260 -20 11 - 11 12 11 

2 650 1140 420 30 450 -40 21 11 21 22 21 

3 920 1620 600 40 640 -60 31 11 31 32 31 

4 1190 2100 780 50 830 -80 41 11 41 42 41 
 

Table 2. Genus calculation in (60TO)20_k rod-like structure (Fig. 17)
 

(60TO)20_k v e f4 f6=4u f v-e+f-2 g u=f4/6 gu g=u(gu-1)+1

1 300 540 120 80 200 -42 21 20 2 21 

2 510 930 210 140 350 -72 36 35 2 36 

3 720 1320 300 200 500 -102 51 50 2 51 

4 930 1710 390 260 650 -132 66 65 2 66 

Table 3. Genus calculation in Diamond D5 substructures (Fig. 19) 

Structure v e gu u 

g=1+u(gu-

1) 

fop 

g= fop-1 

20(12)28(1)ada 158 274 1.5 4 3 4 3 

20(18)28(2)dia_sin 226 398 2;1.5 3+2 5 6 5 

20(18)28(2)dia_anti 226 398 1.5 8 5 6 5 

 

Table 4. Space filling figures calculation in rod-like (TT84)20_k structures 

cf. 0 1 2 3 0f f f f f� � � � �  (Fig. 15) 

k Atoms v e r3 r6 

u=v-e+r-

2 c=v-e+r f 

1 84 84 192 80 50 20 22 0 

2 136 136 323 140 85 36 38 0 

3 188 188 454 200 120 52 54 0 

4 240 240 585 260 155 68 70 0 
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7  Conclusions 

Structures showing 1-periodicity can be associated to quasicrystal networks having 

axial symmetry. We focused here on the construction of such hypothetical structures by the 

aid of map operations (as implemented in CVNET software) in designing the repeating units 

and a builder (Nano Studio) in assembling them in large 1-periodic networks. Topology of 

these structures was presented in crystallographic terms. Also the genus calculation vas 

rationalized function of the net parameters. 
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Supporting Materials. The structural data in .cif format for all the 11 1-periodic structures 
here described. 
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