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Abstract

Carbon nanotubes have become interesting object of research because of unusual
properties such as conductivity and strength. Our interest is in a class of armchair
carbon nanotubes, called cyclic polypyrenes and their resonance graphs. The res-
onance graph reflects the structure of perfect matchings (t.i. Kekulé structures)
of a carbon nanotube. We show the connection of the resonance graph of a cyclic
polypyrene to Lucas cubes; these are graphs with a vertex set of all binary strings
of a given length without consecutive 1’s and 1 in the first and the last bit, where
two vertices are adjacent if their strings differ in exactly one bit.

The main result of this paper is that the resonance graph of a cyclic polypyrene
is an amalgam of two Lucas cubes together with a box Pn

3 and one isolated vertex.
The direct corollary of this result is the number of Kekulé structures of a cyclic
polypyrene.

1 Introduction

We continue with the research on the structure of resonance graphs of some carbon nan-

otubes started in [25, 26]. We focus on structures called cyclic polypyrenes. Pyrene is a

hexagonal system consisted of 4 hexagons. By superimposing pyrene hexagonal systems

and embedding them on a surface of a cylinder, we obtain a cyclic structure called cyclic
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polypyrene. They belong to very interesting structures chemically known as carbon nan-

otubes. Carbon nanotubes vere discovered in 1991 [11] and can be imagined as a C70

fullerene with many thousands of carbon rings inserted across its equator, giving a tiny

tube with about 1.5 nm of diameter and a length of several microns. In 1996 Smalley

group at Rice university successfully synthesized the aligned single-walled nanotubes [22],

which are carbon nanotubes with the almost alien property of electrical conductivity and

super-steel strength. Carbon nanotubes have attracted great attention in different re-

search fields such as chemistry physics, artificial materials, and so on. For the details, see

[2, 3, 24].

The resonance graph of a graph G reflects the structure of perfect matchings of G.

The resonance graph of a cyclic polypyrene is strongly connected to Lucas cubes [1, 5,

12, 14, 18], which are subgraphs of well known Fibonacci cubes [9, 10, 13]; both of them

were introduced as models for interconnection networks.

Our main result explains the structure of the resonance graph of a cyclic polypyrene;

it is the union of the amalgam of two Lucas cubes together with a box P n
3 and one isolated

vertex.

In the next section we give all the necessary definitions. In the third section, we state

and proof the main theorem, fromm which we obtain a corollary concerning the Kekulé

count of a cyclic polypyrene.

2 Preliminaries

Benzenoid graphs are 2-connected planar graphs such that every inner face is encircled

by a 6-cycle (hexagon); for details see survey [8]. Benzenoid graphs are generalization of

benzenoid systems, also called hexagonal systems. Pyrene is a hexagonal system consisting

of 4 hexagons; see Figure 1 a). Superimposing several pyrene hexagonal systems through

a hexagon we obtain a polypyrene. Further, if embedded on a surface of a cylinder we

obtain a cyclic structure which belongs to the class of well known carbon nanotubes; let

us define them more precisely.

Choose any lattice point in the hexagonal lattice H as the origin O. Let �a1 and �a2

be the two basic lattice vectors. Choose a vector �OA = n�a1 + m�a2 such that n and m

are two integers and at least one of them is not zero. Draw two straight lines L1 and L2

passing through O and A perpendicular to OA, respectively. By rolling up the hexagonal
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Figure 1: a) A hexagonal system pyrene, b) a (5, 5)-type nanotube T5 called cyclic
polypyrene.

strip between L1 and L2 and gluing L1 and L2 such that A and O superimpose, we can

obtain a hexagonal tessellation H of the cylinder; see Figure 1 b). L1 and L2 indicate the

direction of the axis of the cylinder. Using the terminology of graph theory, a nanotube T

is defined to be the finite graph induced by all the hexagons of H that lie between c1 and

c2, where c1 and c2 are two vertex-disjoint cycles of H encircling the axis of the cylinder.

The vector �OA is called the chiral vector of T . The cycles c1 and c2 are the two open-ends

of T . If e is an edge of cycle c1 or c2 then it is a peripheral edge of T .

For any nanotube T , if its chiral vector is �OA = n�a1 + m�a2, T will be called an

(n,m)-type nanotube, see Figure 1 b). If n = m, nanotube is an armchair nanotube and

if exactly one of n or m is zero, then it is a zigzag nanotube.

For n ≥ 1 a cyclic polypyrene Tn is a (n, n)-type armchair nanotube consisting of

n overlapping pyrene molecules as seen on Figure 1 b). Let c1 and c2 be the cycles

encircling Tn. It is clear, that Tn is a bipartite planar graph, see Figure 2 a) and b)

(note that hexagons of Tn are 6-cycles in the planar drawing of Tn). Let T ∗
n be the dual

graph of Tn, and let c∗1, c
∗
2 be the vertices of T

∗
n corresponding to cycles (faces) c1, c2 of Tn,

respectively. Then the hexagons of Tn can be divided into three disjoint subsets denoted

X ,Y and Z. The set X is formed of hexagons whose corresponding vertices in a graph

induced on set V (T ∗
n) − {c∗1, c∗2} are of degree 3 and are also incident to the vertex c∗1 in

T ∗
n . The set Y is defined analogously; the corresponding vertices are now adjacent to the

vertex c∗2 in T ∗
n . All other hexagons of Tn form a set Z (the corresponding vertices in a
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graph induced on V (T ∗
n) − {c∗1, c∗2} are of degree 4). Note that cardinalities of all three

sets of hexagons for Tn are equal to n.

Figure 2: a) A planar drawing of a cyclic polypyrene T3 with labeled hexagons, b) T3 with
the dual graph T ∗

3 .

The following definitions are well known for hexagonal systems and can be extended

to nanotubes.

A 1-factor or a perfect matching of a graph G is a spanning subgraph with every vertex

having degree one (in the chemical literature these are known as Kekulé structures, see

[7]). Let M be a perfect matching of a graph G. A cycle c of G is M-alternating if the

edges of c appear alternately in and off the perfect matching M .

Let P be a set of hexagons of a nanotube T . The subgraph of T obtained by deleting

from T the vertices of the hexagons in P is denoted by T − P . It is clear that T − P can

be the empty graph.

Let P be a set of hexagons of a nanotube T with a perfect matching. Then the set P

is called a resonant set of T if the hexagons in P are pair-wise disjoint and there exists

such a perfect matching of T that contains a perfect matching of each hexagon in P . A
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resonant set is maximal if it is not contained in another resonant set. A resonant set P

such that T −P is empty or has a unique perfect matching is called a canonical resonant

set.

The resonance graph R(T ) of a nanotube T is the graph whose vertices are the perfect

matchings of T , and two perfect matchings are adjacent whenever their symmetric differ-

ence is the edge set of a hexagon of T . The concept is quite natural and has a chemical

meaning, therefore it is not surprising that it has been independently introduced in the

chemical literature [4, 6] as well as in the mathematical literature [23] under the name

Z-transformation graph.

Let H1 be a subgraph of a graph G1 and H2 a subgraph of G2, where H1 and H2 are

graphs isomorphic to a given graph H. Then the amalgam of G1 and G2 is obtained

from G1 and G2 by identifying their subgraphs H1 and H2. The graph operation is called

amalgamation.

The Cartesian product G�H of two graphs G and H is the graph with the vertex set

V (G) × V (H) and (a, x)(b, y) ∈ E(G�H) whenever ab ∈ E(G) and x = y , or, if a = b

and xy ∈ E(H). The Cartesian product of n copies of a graph G is Gn.

The vertex set of the n-dimensional hypercube Q, n ≥ 0, consists of all binary strings

of length n, two vertices being adjacent if the corresponding strings differ in precisely one

place.

The Fibonacci cubes are for n ≥ 0 defined as follows. The vertex set of Γn is the set of

all binary strings b1b2 . . . bn containing no two consecutive 1’s. Two vertices are adjacent

in Γn if they differ in precisely one bit.

A Lucas cube Λn is very similar to the Fibonacci cube Γn. The vertex set of Λn

is the set of all binary strings of length n without consecutive 1’s and also without 1

in the first and the last bit. The edges are defined analogously as for the Fibonacci

cube. Both, Fibonacci and Lucas cubes are subgraphs of hypercubes. The vertices of the

Lucas cube Λn, n ≥ 1, are Lucas strings of length n and the number of all such strings

is a Lucas number Ln = |V (Λn)|. The following closed formula is known as the Binet

formula for the Lucas numbers Ln =
(

1+
√
5

2

)n
+
(

1−√
5

2

)n
and the first Lucas numbers

are 1, 3, 4, 7, 11, 18, 35, . . .

Finally, for X ⊆ V (G) let G[X] denotes the subgraph of G induced by the set X.
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3 Main result

The resonance graph structure of some nanotubes has been already discussed; for a single

strip nanotubes called cyclic polyphenantrenes in [25] and for more general case, cyclic

fibonacenes in [26]. Our main result explains the structure of the resonance graph of some

related molecules, t.i. cyclic polypyrenes.

Theorem 3.1 For a cyclic polypyrene Tn, n ≥ 1, the resonance graph R(Tn) is isomor-

phic to the disjoint union of an amalgam of two Lucas cubes Λ2n, P
n
3 and K1.

Proof.

Let Tn be a cyclic polypyrene and let c1 and c2 be the cycles encircling Tn. Further,

let X ,Y , Z be the sets of hexagons of Tn as described above; with X = {X1, X2, . . . , Xn},
Y = {Y1, Y2, . . . , Yn} and Z = {Z1, Z2, . . . , Zn}, where for each i = 1, 2, . . . n any triple of

vertices corresponding to hexagons Xi, Yi, Zi forms a 3-cycle in the dual graph T ∗
n .

LetM(Tn) be the set of perfect matchings of Tn. M(Tn) can be divided into three (not

disjoint) setsM1(Tn),M2(Tn) andM3(Tn). M1(Tn) is consisted of all perfect matchings

of Tn that contains edges of c1 with end-vertices of degree 2 and similarly in M2(Tn) are

all those perfect matchings that contain edges of c2 with end-vertices of degree 2. And

in the setM3(Tn) there are perfect matchings without peripheral edges of hexagons from

Z. By the name Z-peripheral edges we mean peripheral edges of hexagons from Z.
Let us start with the resonance graph induced on vertices from M3(Tn). Since none

of the Z-peripheral edges takes part in any perfect matching from M3(Tn), the induced

resonance graph is isomorphic to the resonance graph of n (disjoint) copies of a benzenoid

graph with two hexagons, that is a naphtalene. The resonance graph of the naphtalene is

a path on three vertices P3. By the decomposition theorem from [15] the resonance graph

of n copies of naphtalene is isomorphic to the Cartesian product P n
3 (see Figure 3 ) and

therefore

R(Tn)[M3(Tn)] = P n
3 .

Let us proceed with the resonance graph of Tn induced with the vertex set M1(Tn).

Every perfect matching from M1(Tn) is fixed on peripheral edges with ends of degree

two on c1. Let this set of fixed vertices be V1. Then the subgraph of Tn induced on the

vertex set V (Tn) − V1 is isomorphic to a carbon nanotube called cyclic polyphenantrene

(see [25] ) or more general case to a cyclic fibonacene (see [26]). We know from [26] that
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Figure 3: The resonance graph of T3 induced with perfect matchings from M3(T3).

the resonance graph of a cyclic fibonacene with 2n hexagons is isomorphic to the union

of Lucas cube Λ2n and two isolated vertices. In the same paper the structure of Λ2n is

well explained; it is consists of two maximal hypercubes of dimension n, one induced

with the maximal resonant set Y and the other with the maximal resonant set Z. Let

the first hypercubes be Q1
Y and the other Q1

Z ; see Figure 5 a). From the structure of

Lucas cube we know that they share exactly one vertex which is also a center vertex of

a Lucas cube; let it be vertex u1 (note that it is labeled with 02n). Beside that there are

some other maximal hypercubes of smaller dimensions, each of them containing vertex

u1 (for more details see [26]). Let us denote the two isolated vertices in the resonance

graph induced on M1(Tn) with M1 and M ′
1. In one of them, say M1, both cycles c1 and

c2 are alternating cycles, such that every Z-peripheral edge is in M1, see Figure 4. The

other perfect matching M ′
1 is without Z-peripheral edges and therefore M ′

1 ∈ M3(Tn).

Note that this is the only perfect matching in M1(Tn) without Z-peripheral edges and

therefore M1(Tn) ∩M3(Tn) = {M ′
1}.

Similarly, the resonance graph induced onM2(Tn) is isomorphic to the Lucas cube Λ2n

together with two isolated vertices. The two maximum cardinality hypercubes of Λ2n are

now induced with the maximal resonant sets X and Z sharing a center vertex u2, so let

the first one be Q2
X and the other one Q2

Z ; see Figure 5 a). The two isolated vertices in the

resonance graph induced on M2(Tn) are now M2 and M ′
2, where in the perfect matching

M2 both cycles c1 and c2 are again alternating cycles containing every Z-peripheral edge,

so M2 = M1 = M belongs toM1(Tn)∩M2(Tn) (again see Figure 4). Since M is without
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Figure 4: A perfect matching M1 = M2 = M of T3 that is an isolated vertex in R(T3).

alternating hexagons, it is an isolated vertex in R(Tn). The other perfect matching M ′
2

is without Z-peripheral edges and therefore M ′
2 ∈ M3(Tn) (note that M ′

1 �= M ′
2). Like

before, this is the only such perfect matching and therefore M2(Tn) ∩M3(Tn) = {M ′
2}.

Next we consider the resonance graph induced on the set M1(Tn) ∪M2(Tn)−
{M,M ′

1,M
′
2} (perfect matchings M ′

1 and M ′
2 are excluded since both of them belong to

M3(Tn) and M is an isolated vertex in R(Tn)). Hypercube Q1
Z is a maximal hypercube

of the Lucas cube Λ2n and from [26] follows that the corresponding resonant set in Tn,

t.i. Z, is a canonical resonant set. Since Q2
Z is also a maximal hypercube of Λ2n induced

by a canonical resonant set Z, hypercubes Q1
Z and Q2

Z coincide and are isomorphic to

n-dimensional hypercube Qn. Any other perfect matching from M1(Tn) has at least one

alternating hexagon from Y , and perfect matchings fromM2(Tn) have always at least one

alternating hexagon from X . Thus we can conclude that the subgraph of R(Tn) induced

on perfect matchings from the intersection M1(Tn) ∩M2(Tn) is isomorphic only to Qn.

Further, no perfect matching fromM1(Tn)−M2(Tn) is adjacent to any perfect matching

fromM2(Tn)−M1(Tn) since in any perfect matching from the first set hexagons from X
are not alternating and in the second case hexagons from Y do not alternate. Therefore the

resonance graph induced on the set of perfect matchingsM1(Tn)∪M2(Tn)−{M,M ′
1,M

′
2}

is isomorphic to the amalgam of two Lucas cubes Λ2n, as seen on Figure 5 b) (note that

the amalgamation is determined with the isomorfizem f between Q1
Z and Q2

Z ; f(u1) =

v2 , f(v1) = u2 where v1, v2 are antipodal vertices of u1, u2 in Q1
Z , Q

2
Z , respectively).

�

-540-



Figure 5: a) The resonance graphs induced with hexagons from Y , Z and X , Z b) the
amalgam of two Lucas cubes.

Let K(G) be the number of perfect matchings (t.i. Kekulé structures) of a graph G.

The number of Kekulé structures is known only for some cases. Significant work on the

topic was done in [21], followed by many others. For example, the recurrence relation

for K of some capped zig-zag nanotubes was established in [16]. The Kekulé count of

cyclic variants of naphtalene and benzo[c]phenantrenes were obtained in [17]. Some other

results were obtained in [19] and [20] using the techniques of the transfer matrix. Using

Theorem 3.1 and the Binet formula for the Lucas numbers we can directly get the number

of Kekulé structures for a cyclic polypyrene.

Corollary 3.2 The number of perfect matchings of a cyclic polypyrene Tn, n ≥ 1, is

K(Tn) = 2L2n − 2n + 3n + 1,

where L2n =
(

1+
√
5

2

)2n
+
(

1−√
5

2

)2n
.
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