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Abstract 

A (3,6)�Fullerene is a 3�regular planar graph whose faces are triangles and 

hexagons.  In this paper we compute the number of paths, independent sets and 

k�matchings of small size in an arbitrary (3,6)�fullerene. Then we compute the 

Wiener polarity of these graphs. We also present a lower bound for the number of 

perfect matching in these cubic graphs. 

 

1. Introduction 

We consider only finite graphs without loops and multiple edges. Let G be such a graph and 

let n and m be the number of its vertices and edges, respectively. A (k;6)�fullerene is a cubic 

planar graph whose faces have sizes k and 6. The only values of k for which a (k,6)�fullerene 

exists are 3, 4 and 5. The (3,6)�fullerenes have received recent attention from chemists due to 

their similarity to ordinary fullerenes. The Euler’s formula implies that an n�vertex 

(3,6)�fullerene has exactly four faces of size 3 and n/2 – 2 hexagons. A (3,6)�fullerene is 
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called ITR if its triangles have no common edge. In this paper we study this class of 

chemically interested fullerenes, see [1�4] for details. 

A matching of graph G is a subgraph of G such that every edge shares no vertex with 

any other edge. That is, each vertex in matching M has degree one. A k-matching is a 

matching of size k and Mk(G) denotes the number of k�matching in G. It is easily seen that 

M1(G) is equal to the number of edges in G. A perfect matching is a matching such that 

exactly one edge of the matching is incident on each vertex of the graph. In other word perfect 

matching is a matching of size n/2. 

In Chemistry, perfect matching called Kekulé structure and have some application in 

stability of molecular graphs. for example, fullerene is a molecule consisting entirely of 

carbon atoms. Each carbon is three connected to other carbon atoms by one double bound and 

two single bound. The set of doubled bonds in a fullerene is precisely a perfect matching in 

corresponding its molecular graph. It turns out that the number of perfect matching is highly 

related to the stability of the molecule. We encourage to the interested readers to consult 

papers [5�10] for some useful algorithms for calculation of Kekulé structures. 

The matching polynomial of graph is defined as . A 

graph G is called matching unique if  it is uniquely determined by its matching polynomial, It 

is easy to see that the house graph and the complete bipartite graph K2,3 have the same 

matching polynomial and so non-isomorphic graphs do not necessarily have distinct matching 

polynomials, See [6] for more details. In this paper, we computed exact formula for the small 

coefficient of matching polynomial. 

Throughout this paper, our notation is standard and taken mainly from [11] and other 

standard books on graph theory. The path and cycle with n vertices are called n�path and 

n�cycle, respectively. Suppose that G and H are two graphs. A splice of G and H by vertices a 

� V(G) and b � V(H) is the graph obtained by identifying the vertices a and b. An 

independent set for G is a subset of V(G), no two of which are adjacent. The size of an 

independent set is the number of vertices it contains, [12,13]. The set of all independent sets 

of G is denoted by Ind(G). Finally, d(G,k) denotes the number of ordered vertices with 

distance k, where the distance between two vertices is defined as the number of edges in a 

shortest path connecting them. We encourage the interested readers to consult [14�18] for 

more information on the results of this paper. 
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In this paper, we continue our earlier works on computing the number of independent 

sets of size k and k�matchings in fullerene graphs. Here, we consider (3,6)-fullerenes and 

compute these factors for small values of k. 

 

2. Main results 

For a graph G, Pk(G) , Mk(G) and Indk(G) denote the number of k-paths, k-matchings and  k 

independent set of G, respectively. In this section, exact formulas for the number of k-path, k 

≤ 7, k�independent set and k-matchings, k = 2, 3 in a (3,6)�fullerene are presented.  
 

Theorem 1. If F is a (3,6)�fullerene graph with m edges then  

i) P2(F) = m, P3(F) = 2m, P4(F) = 4m – 12 and P7(F) = 30m; 

ii) If  F is  ITR  then P5(F) = 8m – 24  and  P6(F) = 16m – 24;  

iii) If F have exactly two induced subgraphs A and B such that A � B � K4 – e 

then P5(F) = 8m – 32   and   P6(F) = 16m – 32. 
 

Proof. (i) Clearly, P2(F) = m and P3(F) = � � ����
�

	



�

�n
i

i mn
d

1 23
2

. To count the number of paths 

with four vertices, choose an edge e = uv of F. To construct a 4�path in F, we have to choose 

two edges of F, each of them incident to exactly one endpoint of e. But there are 12 

undesirable cases and so P4(F) = m  2  2 – 12= 4m – 12. To complete this part, we choose a 

vertex u. Then we paste two 3-paths to u. There are 32m ways to choice these two paths. By 

subtracting the cases that six edges give a hexagon or a the splice of a triangle and a path of 

length 3, we have 12 choices and so P7(F) = 32m – 6h – 12 = 30m, where h denotes the 

number of hexagons. 

(ii) To calculate P5(F), we first choose one vertex u and construct a 5�path with u as its 

centre. There are n choices for the vertex u and 3 × 2 × 2 cases for edges attach to u. By 

subtraction of the cases that we have the splice of a triangle and K2, we have P5(F) = 12n – 24 

= 8m – 24. To compute P6(F), we choose an edge e = uv. Then we paste a 3-path to u and 

another to v. There are m choice for e and 4 × 4 = 16 ways to choice these two paths. We now 

subtract the cases that we find the splice of a triangle and a path of length 3. Thus, P6(F) = 

16m – 24, as desired. 
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(iii) To compute P5(F), we notice that there is a new undesirable case that we obtain an 

induced subgraph isomorphic to K4 – e. There are 4 × 2 = 8 choices for such induced 

subgraphs. So, by our calculation in the case (ii), P5(F) = 8m – 24 – 8 = 8m - 32. To end the 

proof, we compute P6(F). A similar argument shows that P6(F) = 16m – 32. 
▼ 

 
The Wiener polarity index of the molecular graph G is defined as Wp(G) = d(G,3) 

[19,20]. In the best of our knowledge, the Wiener polarity index had some information about 

the applicability of this topological index. We now apply the previous theorem to compute 

the Wiener polarity index, the number of k�matchings and the number of k�independent sets 

in a fullerene graph. 
 

Corollary 2. Suppose F is a n-vertex (3,6)�fullerene. Then Wp(F) = 9/2n – 6. 
 

Proof. By Theorem 2, the number of 3�paths is P4(F) = 4m – 12. We have to subtract the 

cases that a hexagon is constructed. If h is the number of hexagons and m is the number of 

edges then Wp(F) = 4m – 12 – 3h = 3m – 6 = 9/2n – 6.  

▼ 
 

Theorem 3. If F is a (3,6)�fullerene with exactly n vertices and m edges. Then  

1) M2(F) = 
2

52 mm � , 

2) M3(F) = ,1682
3

2 �����
�

	



�

� mm
m

 

Proof. Suppose that e and f are two arbitrary edges of F. Then either e and f have a common 

vertex or {e,f} is 2-matching of F. Thus, P3(F) + M2(F) = m(m�1)/2 and by Theorem 1(i), 

M2(F) = m(m – 5)/2. To prove the second part, we have to count the number of 3�matchings. 

We choose three different edges e1, e2 and e3. Then we have four different types for these 

edges which are depicted in Figure 1. 
 

    
A B C D 

Figure 1. Four Different Types for the Edges e1, e2 and e3. 

 
If N(T) denotes the number of triangles then we have: 
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We now again apply Theorem 1 to deduce that  
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Theorem 4. Every n�vertex (3,6)�fullerene has at least 2(n�76)/61 perfect matching.  

 
Proof. Suppose W is a maximal set of hexagons without common edge in F. Since each 

member of W has exactly two perfect matching, there are at least 2|W| perfect matchings in F. 

So, it is enough to prove that there exists a maximal set W of independent hexagons such 

that |W| ≥ (n�76)/122. Consider an embedding of F into plane and construct its dual, F*, as 

follows: The vertices F* are in correspondence with plane regions of F and two vertices are 

adjacent if the corresponding regions have a common edge. Notice that F has exactly four 

triangles. So, we have a four element set U = {u1, u2, u3, u4} in F* corresponding to triangles 

of F. Choose vertices w1, w2, …, wt of F* in the following way: 

i) The distance between each of wi and uj, 1 ≤ i ≤ t and 1 ≤ j ≤ 4, are at least three, 

ii) The distance between wi and wj, 1 ≤ i ≠ j ≤ t, are at least five. 

Set  W = {w1, w2, ..., wt}. If the members of W satisfy these conditions then we can 

construct a perfect matching for F [21, Theorem 2.1]. Choose a fixed vertex ui. Then ui has 

exactly three neighbours and at most six second neighbours in F*. Therefore, there are at 

most 4(1 + 3 + 6) = 40 vertices in F* with distance smaller than 3 from ui. On the other hand, 

since each wi has degree six, there are 6d vertices in F* with distance d from wi. So, for each 

wi, there are at most 1 + 6 + 12 + 18 + 24 = 61 vertices with distance smaller than five from 

wi. Therefore, |W| ≥ (n/2 + 2 – 40)/61 = (n � 76)/122.  
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Figure 2. The Configuration of the Hexagon Y and the Six Vertices in F*. 

 
We now extend W to a perfect matching of F. The Tait's theorem states that the edge set 

of every planar cubic bridgeless graph is the union of three perfect matchings. We colour 

these three perfect matching by different colours. By four colour theorem, we can colour F* 

in a way that each hexagon Y has the same colour as six hexagons depicted in Figure 2. 

Therefore, we have 6|W| disjoint hexagons and so 2|W| of these hexagons having the same 

colour the corresponding edges of these hexagons give us the desired perfect matchings of F. 

This completes the proof. 

▼ 
 

Theorem 5. Suppose F is a (3,6)�fullerene with exactly h hexagons. Then, 

i) Ind2(F) = 2h2 + 4h, 

ii) Ind3(F) = 1/3(4h3�10h+36). 
 

Proof. For each 2�element set {u,v} � V(F), u an v are adjacent or is an independent set, as 

desired. The second part is obtained from the nu mber of all triples of vertices by subtracting 

the number of those triples that do not represent 3�independent sets. There are three different 

types of vertices, type 1, type 2 and type 3, that are not independent. The type 1 subgraphs 

are those constructed from an edge f and a vertex non-incident to f, the type 2 are subgraphs 

isomorphic to a 3�path, and type 3 are triangles. Notice that every 3�path has been counted 

twice and each triangle has been counted thrice. Therefore, the number of subgraphs of type 

1 is m(n–2), the number of type 2 is P3(F) and the number of type 3 is four. Therefore, 

Ind3(F) = 1/3(4h3�10h+36), proving the theorem.  

▼ 
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