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Abstract

In graph theory, a (r, s)-fullerene graph is a 3-regular planar graph whose

faces are r- or s-gons. Recently, Behmaram et al. (MATCH Commun.

Math. Comput. Chem. 69 (2013) 25–32.) computed the number of

paths, matchings and independent sets of low order in (4,6)-fullerene

graphs. But, the general form of fullerene graph is (5,6)-fullerene graph.

Thus, in this paper, we consider (5,6)-fullerene graphs and calculate the

number of paths of low order. Then we apply these numbers to obtain

the number of k-matchings and k-independent sets in (5,6)-fullerene

graphs when k = 2, 3, 4. By this, we correct some previous results by

Behmaram et al. (Appl. Math. Lett. 25 (2012) 1721–1724.)

1 Introduction

The graphs considered in this paper are finite, loopless and contain no multiple edges.

Given a graph G, let V (G) and E(G) be the vertex and edge sets of G, respectively. As

usual, n-path denotes the path with n vertices. A subset M of E is called a matching in
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G if it is a set of edges with no shared endpoints. The two endpoints of an edge in M are

said to be matched under M . (See [3, 6, 9, 10] for details) A k-matching is a matching

with k edges. We denote M(G, k) the number of k-matchings in G. It is easy to see that

M(G, 1) is equal to the number of edges in G. Given a graph G, a subset S of V is called

an independent set of G if no two vertices of S are adjacent in G. The size of independent

set is the number of vertices it contains. A k-independent set is an independent set of

size k. The number of k-independent sets in G is denoted by Indk(G).

A fullerene is any molecule composed entirely of carbon, in the form of a hollow sphere,

ellipsoid or tube. The first fullerene was discovered in 1985 by Kroto et al. [19, 20]. The

discovery of fullerenes greatly expanded the number of known carbon allotropes, which

until recently were limited to graphite, diamond, and amorphous carbon such as soot and

charcoal. For the past decade, the chemical and physical properties of fullerenes have

been a hot topic in the field of research and development, and are likely to continue to be

for a long time.

In graph theory, a (r, s)-fullerene graph is a 3-regular planar graph whose faces are r-

or s-gons. From the very beginning, fullerene graphs have been attracting attention of

graph theory researchers. A number of graph-theoretical invariants and some structure

properties of fullerene graphs were studied [1, 7, 12, 13, 21, 22]. Recently, Behmaram et

al. [5] discussed (4,6)-fullerene graphs and computed the number of paths of low order

and used these numbers to obtain the number of k-matchings and k-independent sets

when k = 2, 3, 4. But, (5,6)-fullerene graphs are more typical in chemistry. In Figure

1, a (5,6)-fullerene graph with 28 carbon atoms is depicted. So, in this paper, we take

(5,6)-fullerene graphs in consideration and calculate the number of paths of low order in

a fullerene graph. Then we apply these numbers to obtain the number of k-matchings

and k-independent sets when k = 2, 3, 4.

Figure 1: A (5,6)-fullerene with 28 carbon atoms.
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Let F be a (5,6)-fullerene graph and p, h, n and m be the number of pentagons,

hexagons, carbon atoms and bonds between them, respectively. We can easily have 3n =

2m by using the Handshaking Theorem. Since the number of edges is m = (5p+6h)
2

= 3n
2

and the number of faces is f = p+ h, we can deduce that 5p+6h
3
− 5p+6h

2
+ p+ h = 2 from

the Euler’s formula. Therefore p = 12, n = 2h + 20, m = 3h + 30. This implies that

such molecules made up entirely of n carbon atoms and having 12 pentagons and n
2
− 10

hexagonal faces [2].

More background material as well as basic computational techniques for matchings

and independent sets in a graph can be consulted in [8, 11, 14–17].

2 Main Results

Suppose G is a graph. Define Pk(G) and M(G, k) to be the number of k-paths and

k-matchings of G, respectively. In this section, exact formulas for the number of k-paths

(k ≤ 10), k-matchings and k-independent sets (k = 2, 3, 4), in a (5,6)-fullerene graph are

presented by the following theorems.

Theorem 2.1. If F is a (5,6)-fullerene graph with h hexagons, then

i) Pk(F ) = 2k−2(3h+ 30), k = 2, 3, 4, 5;

ii) P6(F ) = 48h+ 420;

iii) P7(F ) = 90h+ 840;

iv) P8(F ) = 180h+ 1800;

v) P9(F ) = 372h+ 3720;

vi) P10(F ) = 756h+ 7560.

Proof. (i) Since every edge is a 2-path, P2(F ) = m and the number of 3-paths is

P3(F ) = 3n = 2m because a fullerene graph is a cubic graph. To count the number of

4-paths, we choose an edge e = uv in F . To construct a 4-path in F , we have to choose

two edges of F such that each of them is incident to exactly one endpoint of e, see Figure
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2(a). Therefore, we have P4(F ) = 4m. To compute the number of 5-paths, we consider a

vertex u of F . For constructing a 5-path with u as its midpoint, we have twelve choices,

see Figure 2(b). Thus P5(F ) = 12n = 8m. For m = 3h+ 30, we have proved (i).

u v
e

(a)

u

b
Figure 2

(ii) When calculating P6(F ), we first choose an edge e = uv and construct a 6-path

with e as its middle edge. To do this, we have four choices to pick a 3-path starting at

u and four for v, see Figure 3. But there are 5× 12 = 60 cases that we find a pentagon.

Thus P6(F ) = 16m− 60 = 48h+ 420.

u v
e

Figure 3

(iii) To calculate P7(F ), we choose a vertex v and then construct a 7-path with v as

its midpoint. In a similar way as computing P5(F ), there are 48 ways since there are

three edges incident to v and others have exactly two ways to choose. By subtracting

the cases that six edges give a pentagon with a hanging edge or a hexagon, we have

P7(F ) = 48n− 6h− 120 = 90h+ 840.

(iv) In this case we apply a similar method as ii. We choose an edge e = uv and count

the number of 4-paths start at u and v. Then we have to omit the cases where we find

one of following subgraphs:

• A subgraph H1 isomorphic to hexagon T with a pendant edge.
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• A subgraph H2 constructed from a pentagon and a 3-path by unifying a pendant

vertex of the 3-path and a vertex of the pentagon.

By a similar argument as iii, P8(F ) = 64m− 12h− 120 = 180h+ 1800.

(v) To compute P9(F ), we use a similar method as iii. We choose a vertex u and then

paste two 5-paths to v. There are 192n ways to choose these two paths. By subtracting

the cases that eight edges give a subgraph constructed from a pentagon and a 4-path

by unifying a pendant vertex of the 4-path with a vertex of the pentagon or a subgraph

constructed from a hexagon and a 3-path by unifying a pendant vertex of the 3-path with

a vertex of the hexagon, we have P9(F ) = 192n− 12h− 120 = 372h+ 3720.

(vi) We apply a similar method to that in ii to calculate P10(F ). We choose an edge

e = uv and count the number of 5-paths starting at u and v. Then we have to subtract

the cases that we find one of following subgraphs:

• A subgraph H1 constructed from a pentagon and a 5-path by unifying a pendant

vertex of the 5-path and a vertex of the pentagon.

• A subgraph H2 constructed from a hexagon and a 4-path by unifying a pendant

vertex of the 4-path and a vertex of the pentagon.

Similarly, we have P10(F ) = 256m− 12h− 120 = 756h+ 7560.

We now apply Theorem 2.1 to count the number of k-matchings and k-independent

sets in a (5,6)-fullerene graph.

Theorem 2.2. Suppose F is a (5,6)-fullerene graph with h hexagons, then

i) M(F, 2) = 9
2
h2 + 165

2
h+ 375;

ii) M(F, 3) = 9
2
h3 + 225

2
h2 + 929h+ 2540;

iii) M(F, 4) = 27
8
h4 + 405

4
h3 + 9021

8
h2 + 22167

4
h+ 10155.

Proof. (i) Since for every two edges e and f in graph G, either e and f have a common

vertex or they constitute a 2-matching, M(F, 2) + P3(F ) =
(
3h+30

2

)
. By Theorem 2.1(i),

P3(F ) = 2m, we get M(F, 2) = 9
2
h2 + 165

2
h+ 375.
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(ii) We use an argument similar to those given in [18] to calculate M(F, 3). It is ob-

tained from the number of all 3-subsets subtracting the number of the 3-subsets which are

not 3-matchings. There are three cases that a 3-subset does not represent a 3-matching:

(1) A 4-path whose number is 4m by Theorem 2.1;

(2) A 3-path and an isolated edge and the number P3(F )(m− 7);

(3) A star graph with 3 edges and notice that every star graph can be obtained by three

3-paths, thus the number is 1
3
P3(F ).

Therefore, we have

M(F, 3) =

(
m

3

)
− P4(F )− P3(F )(m− 7)− 1

3
P3(F )

=

(
m

3

)
− 4m− 2m(m− 7)− 2

3
m

=
9

2
h3 +

225

2
h2 + 929h+ 2540.

(iii) To calculate M(F, 4), we count the number of 4-subsets in F minus the number

of those 4-subsets which are not 4-matchings. The cases where 4-subsets do not represent

4-matchings are shown in Figure 4.

A B C

E F G
Figure 4. The possible 4-subsets of edges which are not 4-matchings.

Let N(A), N(B), N(C), N(E), N(F ) and N(G) are the number of subgraphs which

are isomorphic to those are depicted in Figure 4. Then we have:

• N(A): By Theorem 2.1(i), N(A) = P5(F ) = 24h+ 240.
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• N(B): Choose a vertex v, three edges incident to v and an edge e which do not

have common neighbor. Then we have,

N(B) = n(m− 9) = 6h2 + 102h+ 420.

• N(C): For computing N(C), we choose a 4-path and an edge which is disjoint from

this 4-path. Then,

N(C) = P4(F )× (m− 9) = 36h2 + 612h+ 2520.

• N(E): To calculate N(E), we have to choose two 3-paths which have no common

neighbors. Then we have:

N(E) =
1

2
× 3n× [5 + 3(n− 8)] = 18h2 + 303h+ 1230.

• N(F ): We have to choose a 3-path and then pick a 2-matching which do not have

common neighbors. Then,

N(F ) = P3(F )×
{(

m− 7

2

)
− [5 + 3(n− 8)]

}
= 27h3 + 639h2 + 4962h+ 12720.

• N(G): In this case, we must count the number of subgraphs of F constructed from

a 4-path T and a vertex adjacent to a vertex of degree 2 in T . By Theorem 2.1, the

number of 4-path is P4(F ) and there are two choices for the added vertex. Therefore,

N(G) =
1

2
× P4(F )× 2 = 12h+ 120.

Therefore,

M(F, 4) =

(
3h+ 30

4

)
−N(A)−N(B)−N(C)−N(E)−N(F )−N(G)

=
27

8
h4 +

405

4
h3 +

9021

8
h2 +

22167

4
h+ 10155,

which completes the proof.

Theorem 2.3. Suppose F is a (5,6)-fullerene graph with h hexagons, then

i) Ind2(F ) = 2h2 + 36h+ 160,
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ii) Ind3(F ) = 4
3
h3 + 32h2 + 758

3
h+ 660,

iii) Ind4(F ) = 2
3
h4 + 56

3
h3 + 580

3
h2 + 2689

3
h+ 1630.

Proof. (i) We choose two vertices which are not adjacent. Thus, Ind2(F ) = 1
2
n(n− 4) =

2h2 + 36h+ 160.

(ii) This is obtained from the number of all triples of vertices by subtracting the

number of those triples that do not represent 3-independent sets. We consider two types

of vertices that are not independent. One type is constructed from an edge f and a

vertex which is not incident to f ; the other type is constructed from a 3-path. Clearly,

the number of the first type is m(n− 6) and the other is P3(F ). Therefore,

Ind3(F ) =

(
n

3

)
−m(n− 6)− P3(F ) =

4

3
h3 + 32h2 +

758

3
h+ 660.

(iii) To count the number of 4-independent sets, we have to count the number of all 4-

subsets of vertices and then subtract the number of those 4-subsets that do not represent

4-independent sets. There are exactly five different types of sets of four vertices that are

not 4-independent sets, see Figure 5.

(1) (2) (3) (4) (5)
Figure 5. The possible 4-subsets of vertices which are not 4-independent sets.

The first type is 4-subset of vertices constructed from an edge and two components

that each of them is a vertex; the second is a 2-matching; the third is a 3-path with a

vertex outside the path; the forth is a 4-path and the last one is a 3-star. Notice that, for

calculating the number of the first and the second type, we can count the cases that an

edge is picked and an edge with two vertices which are not incident to the picked edge is

chosen, then add the number of 2-matchings since it is counted twice. Therefore,

Ind4(F ) =

(
n

4

)
− 1

2
m(n− 6)(n− 7) +M(F, 2)− P3(F )(n− 8)− P4(F )− n

=
2

3
h4 +

56

3
h3 +

580

3
h2 +

2689

3
h+ 1630.
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Remark. Recently, Behmaram et al. [4] obtained results almost identical to ours. We

didn’t know the work done by Behmaram et al. until Professor Gutman mentioned this.

In their paper, the numbers M(F, 3), M(F, 4) and Ind4(F ) are different from ours. We

have examined their paper. For the three inconsistent parts, we found that their results

were incorrect. More details are in the following:

For computing M(F, 3), in the proof of the second formula in Corollary 1, the formula

M(F, 3) =
(
m
3

)
− (m− 2)P3(F ) + P4(F ) + 2n is correct. But the calculated result 9

2
h3 +

225
2
h2+937h+2620 is wrong. By computing this, we have M(F, 3) = 9

2
h3+ 225

2
h2+929h+

2540 which is as same as ours.

For computing M(F, 4), they discussed six cases and calculated the number of these

cases which are N(A), N(B), N(C), N(E), N(F ) and N(G). When they computed

N(C), they did the wrong calculation that 12(h + 10)(m − 9) is 36(h + 10)(h + 7) not

36(h+10)(h− 7). And 12(h+10)(m− 9) is 36h2+612h+2520 which is as same as ours.

When they calculated N(E), they first chose a 3-path and then picked another 3-path

in the remained vertices. Thus they had 9n(n − 3)/2. But when choosing the second

3-path, they may choose a 3-path whose vertices are adjacent to the vertices of the first

3-path. They didn’t consider this case. And for computing N(F ), they made the same

mistake.

For computing N(G), the formula N(G) = 2P4(F ) is wrong. Suppose that G is

constructed from a 4-path abcd and a vertex e which is adjacent to b. Then G is also

constructed from a 4-path ebcd and the vertex a which is adjacent to b. Thus each

subgraph G is counted twice. So, N(G) = 1
2
P4(F )× 2 = P4(F ).

To sum up, their formula for computing M(F, 4) is incorrect.

For computing Ind4(F ), they didn’t discussed in details. But from their formula, we

can see that they counted the number of 4-subsets of vertices and then subtracted the

number of those 4-subsets that do not represent a 4-independent set. According to their
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method, the 4-paths and 3-stars should be counted thrice, not twice. And a 2-matching

is counted twice, a 3-path with a vertex outside the path is counted twice, the two cases

were not considered by them. Therefore, their formula is wrong.

Moreover,
(
2h+20

4

)
− (3h + 30)

(
2h+18

2

)
+
(
3h+30

2

)
+ 12h2 + 22h + 1160 �= 2

3
h4 + 74

3
h3 +

1075
3
h2− 2675

3
h−24610. Further, if h is a small positive integer, then 2

3
h4+ 74

3
h3+ 1075

3
h2−

2675
3
h− 24610 is negative.

By correcting their mistakes, we can have the consequence just as the same as ours.
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