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Abstract

We find an upper bound for the number of bay regions over the set of hexagonal
systems with h hexagons. We also determine extremal values of vertex-degree based
topological indices over the set of all hexagonal systems with a fixed number of
hexagons.

1 Introduction

A great variety of vertex-degree-based topological indices (molecular structure descriptors)

have been considered in the mathematico-chemical literature [9]. Given nonnegative real

numbers Ψ (i, j) for every 1 ≤ i ≤ j ≤ n− 1, they are of the form

TI = TI(G) =
∑

1≤i≤j≤n−1

mij Ψ(i, j) (1)

where G is a graph with n vertices and mij is the number of edges of G connecting a

vertex of degree i with a vertex of degree j. Many important topological indices are

of this type, for instance, the second Zagreb index is obtained by setting Ψ(i, j) = ij

[5], in the connectivity index Ψ(i, j) = 1√
ij

[14], in the atom-bond connectivity index

Ψ(i, j) =
√

i+j−2
ij

[3], in the geometric-arithmetic index Ψ(i, j) = 2
√
ij

i+j
[15], in the sum-

connectivity index Ψ (i, j) = 1√
i+j

[18], in the augmented Zagreb index Ψ (i, j) = (ij)3

(i+j−2)3

[4] and in the harmonic index Ψ (i, j) = 2
i+j

[17], just to mention a few.
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Figure 1. Different types of inlets in a hexagonal system

Our interest in this paper is to study the maximal and minimal values of a topological

index TI of the form (1) over the class of all hexagonal systems with a fixed number of

hexagons. The motivation comes from the papers [6, 10, 13, 16], where extremal values

of different topological indices of the form (1) are considered over the set of hexagonal

systems with a fixed number of hexagons.

For the definition of hexagonal systems and details of this theory we refer to [7]. When

going along the perimeter of a hexagonal system, then a fissure, bay, cove, and fjord are,

respectively, paths with degree sequences

(2, 3, 2) , (2, 3, 3, 2) , (2, 3, 3, 3, 2) and (2, 3, 3, 3, 3, 2) ,

(see Figure 1). The number of fissures, bays, coves and fjords of a hexagonal system S are

denoted, respectively by f = f (S) , B = B(S), C = C(S), and F = F (S). The parameter

r = r (S) = f (S) + B (S) + C (S) + F (S)

was introduced in [11] and is called the number of inlets of S. Another useful parameter

associated to a hexagonal system is the so-called number of bay regions of S, denoted by

b = b(S), and defined as

b(S) = B(S) + 2C(S) + 3F (S)

which counts the number of edges on the perimeter, connecting two vertices of degree 3.

If b (S) = 0 then we say that S is a convex hexagonal system [2].

We will denote by ni (S) the number of internal vertices of the hexagonal system S.

Recall that S is a catacondensed hexagonal system if ni (S) = 0.

Since any hexagonal system S has only vertices of degree 2 and 3, the general expres-

sion for TI given in (1) simplifies as

TI(S) = m22 Ψ(2, 2) +m23 Ψ(2, 3) +m33 Ψ(3, 3) (2)
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From the well known relations [11] in a hexagonal system S with n vertices and h hexagons

m22 = n− 2h− r + 2

m23 = 2r

m33 = 3h− r − 3

we deduce from (2) that

TI (S) = Ψ (2, 2)n+ [3Ψ (3, 3)− 2Ψ (2, 2)]h

+ [2Ψ(2, 3)−Ψ(2, 2)−Ψ(3, 3)] r

+ [2Ψ(2, 2)− 3Ψ(3, 3)] . (3)

From the fact that n = 4h + 2 − ni, it follows from relation (3) that if S and U are

hexagonal systems with h hexagons then

TI (S)− TI (U) = q [r (S)− r (U)] + Ψ (2, 2) [ni (U)− ni (S)] (4)

where q = 2Ψ (2, 3)−Ψ(2, 2)−Ψ(3, 3).

Surprisingly, most of the topological indices studied in the literature satisfy the con-

dition

−Ψ(2, 2) ≤ q < 0

as we can see in the Table of Example 3.6. It turns out that under this condition, we

completely solve in this paper the problem of finding the maximal and minimal value

of a topological index of the form (1), over the set HSh of all hexagonal systems with

h hexagons. In Theorem 3.1 part (4) we show that the minimal value is attained in

the hexagonal system W with maximal number of inlets, a hexagonal system which was

introduced in [2]. In order to find the maximal value, we previously show in Theorem

3.4 a sharp upper bound of the number of bay regions over HSh, based on a result of

Wu and Deng [16]. As a consequence, in Theorem 3.5 we show that the maximal value

is attained in E (see Figure 4), a catacondensed hexagonal system introduced in [12].

Another application of Theorem 3.4 is given in Theorem 3.7, where we solve a problem

proposed by Wu and Deng [16].

We also find the maximal TI-value when q > 0 and the minimal TI-value when

q < −Ψ(2, 2) in Theorem 3.1.

Finally, in Section 2 we solve the extremal TI-value problem but in the class of convex

hexagonal systems with a fixed number of hexagonos.
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Figure 2. Spiral hexagonal system

Figure 3. Convex hexagonal system with maximal number of internal vertices

2 Convex hexagonal systems with extremal TI-value

Recall that Harary and Harborth [8] constructed the “spiral” hexagonal systems (see

Figure 2), hexagonal systems with maximal number of internal vertices.

In other words, if S is a hexagonal systems with h hexagons and F is a spiral hexagonal

system with h hexagons then

ni (S) ≤ ni (F ) = 2h+ 1−
⌈√

12h− 3
⌉

(5)

where �x� denotes the least integer greater or equal to x. Depending on h, the number

of bay regions in a spiral hexagonal system can be 0 or 1. However, it was shown in [2]

that for every h there exists a convex hexagonal system W (i.e. a hexagonal system such

that b (W ) = 0) with h hexagons and maximal number of internal vertices

ni (W ) = 2h+ 1−
⌈√

12h− 3
⌉
. (6)

These were constructed by modifying the spiral hexagonal systems S such that b (S) = 1

(see Figure 3). We can rely on this result to determine the extremal values of a TI of the

form (1) over the set CHSh of all convex hexagonal systems with h hexagons.
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Theorem 2.1 Let TI be a vertex-degree topological index of the form (2) and set p =

2Ψ (2, 3) − Ψ(3, 3). Let W be a convex hexagonal system with h hexagons such that (6)

holds and let C be a catacondensed hexagonal system with h hexagons. Then:

1. If p = 0 then TI is constant over CHSh;

2. If p > 0 then W (resp. C) has minimal (resp. maximal) TI-value over CHSh ;

3. If p < 0 then W (resp. C) has maximal (resp. minimal) TI-value over CHSh .

Proof. From [2] we know that

r (S) = 2h (S)− ni (S)− 2

for every convex hexagonal system S. Hence by (4), for every S, U ∈ CHSh

TI (S)− TI (U) = q [r (S)− r (U)] + Ψ (2, 2) [ni (U)− ni (S)]

= [ni (U)− ni (S)] [q +Ψ(2, 2)] = [ni(U)− ni(S)] p .

1. Clearly, if p = 0 then TI is constant over CHSh. 2. Assume that p > 0. Let

W ∈ CHSh such that (6) holds and let C be a catacondensed hexagonal system (i.e.,

ni(C) = 0). Then for every S ∈ CHSh

TI (S)− TI (W ) = [ni (W )− ni (S)] p ≥ 0

and

TI (S)− TI (C) = −ni (S) p ≤ 0

which shows that W has minimal TI-value and C has maximal TI-value over CHSh. 3.

The proof is similar to part 2.

3 Hexagonal systems with extremal TI-value

We next consider the problem of extremal TI-values over the set HSh of all hexagonal

systems with h hexagons.

Theorem 3.1 Let TI be a vertex-degree topological index of the form (2) and set q =

2Ψ (2, 3)−Ψ(2, 2)−Ψ(3, 3). Then

1. If q = 0 then the catacondensed hexagonal systems (resp. spiral hexagonal systems)

have maximal (resp. minimal) TI-value over HSh;
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2. If q > 0 then the linear hexagonal chain has maximal TI-value over HSh;

3. If q ≤ −Ψ(2, 2) then the linear hexagonal chain has minimal TI-value over HSh;̇

4. If −Ψ(2, 2) ≤ q < 0 then the convex hexagonal system W has minimal TI-value

over HSh .

Proof. Let S be a hexagonal system with h hexagons.

1. Assume that q = 0 and denote by F the spiral hexagonal system with h hexagons.

Then by (4) and (5)

TI (F )− TI (S) = Ψ (2, 2) [ni (S)− ni (F )] ≤ 0 .

Consequently F has minimal TI-value. If V is a catacondensed hexagonal system then

ni (V ) = 0 which implies

TI (V )− TI (S) = Ψ (2, 2) [ni (S)] ≥ 0

and so V has maximal TI-value.

2. Suppose that q > 0 and let L be the linear hexagonal system with h hexagons. It

was shown in [2] that r (S) ≤ r (L) = 2 (h− 1). Since ni (L) = 0 and ni (S) ≥ 0 it follows

from (4) that

TI (L)− TI (S) = q [r (L)− r (S)] + Ψ (2, 2) [ni (S)] ≥ 0 .

Thus L has maximal TI-value.

3. Suppose that q ≤ −Ψ(2, 2). Recall that in [2] we have

r (S) + ni (S) = 2 (h− 1)− b (S) . (7)

Since r (L)− r (S) ≥ 0 and b (S) ≥ 0 then

TI (L)− TI (S) = q [r (L)− r (S)] + Ψ (2, 2) [ni (S)]

≤ −Ψ(2, 2) [r (L)− r (S)] + Ψ (2, 2) [ni (S)]

= Ψ (2, 2) [(r (S) + ni (S))− 2 (h− 1)]

= Ψ (2, 2) [−b (S)] ≤ 0 .

Thus L has minimal TI value.
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4. Assume that −Ψ(2, 2) ≤ q < 0. Since ni (S) − ni (W ) ≤ 0 it follows from (7), (4)

and the fact that b (W ) = 0 that

TI (W )− TI (S) = q [r (W )− r (S)] + Ψ (2, 2) [ni (S)− ni (W )]

≤ q [r (W )− r (S)] + (−q) [ni (S)− ni (W )]

= q [r (W ) + ni (W )− (r (S) + ni (S))]

= q b(S) ≤ 0 .

Consequently W has minimal TI-value.

Example 3.2 Consider the case where Ψ(i, j) = k > 0 for every 2 ≤ i ≤ j ≤ 3. Then

TI (S) = m22Ψ(2, 2) +m23Ψ(2, 3) +m33Ψ(3, 3)

= k · (m22 +m23 +m33) = k ·m (S)

where m (S) is the number of edges the hexagonal system S ∈ HSh has. We apply The-

orem 3.1 (part 1 since q = 0) to conclude that the catacondensed hexagonal systems have

maximal TI-value, and the minimal TI-value is attained in the spiral hexagonal systems.

This is consistent with Harary–Harborth’s paper “Extremal Animals” [8], where they show

that

3h+
⌈√

12h− 3
⌉
≤ m (S) ≤ 5h+ 1 .

The upper bound occurs in the catacondensed hexagonal systems and the lower bound in

the spiral hexagonal systems.

What can we say about the maximal TI-value for q < 0? In order to give an answer to

this question recall that the general connectivity indices were introduced by Bollobás and

Erdös [1] as the vertex-degree topological index where Ψ (i, j) = [ij]α, for every α ∈ R. It

is denoted by Rα. In other words, for a graph G

Rα (G) =
∑
uv

[d (u) d (v)]α

where uv runs over the set of all edges of G.

Let E be the catacondensed hexagonal system with h hexagons [12] (see Figure 4).

It was shown in [12] that r (E) =
⌈
h
2
+ 1
⌉
and since ni (E) = 0 it follows from (7) that

b (E) = 2 (h− 1)−
⌈
h

2
+ 1

⌉
=

⌈
3

2
h− 7

2

⌉
(8)

In a recent paper the following result was proved:
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Figure 4. Catacondensed hexagonal system with minimal number of inlets

Theorem 3.3 [16, Theorem 10] Let S ∈ HSh. Then Rα (E) ≥ Rα (S) for every α <

ln2
ln3−ln2

.

Based on this result we can find an upper bound for the number of bay regions over

the set HSh.

Theorem 3.4 For every S ∈ HSh

b (S) ≤ b (E) =

⌈
3

2
h− 7

2

⌉
.

Proof. From (4)

Rα (E)−Rα (S) = q [r (E)− r (S)] + Ψ (2, 2) [ni (S)] (9)

where

q = 2Ψ (2, 3)−Ψ(2, 2)−Ψ(3, 3)

= 2 · 6α − 4α − 9α

and

Ψ (2, 2) = 4α.

Hence from (9) and Theorem 3.3 we deduce

0 ≤ Rα (E)−Rα (S)

4α

=
2 · 6α − 4α − 9α

4α
[r (E)− r (S)] + ni (S)

=

[
2 ·
(
3

2

)α

− 1 +

(
3

2

)2α
]
[r (E)− r (S)] + ni (S)

= −
[(

3

2

)α

− 1

]2
[r (E)− r (S)] + ni (S)
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for every α < ln2
ln3−ln2

. Equivalently,

[(
3

2

)α

− 1

]2
[r (E)− r (S)] ≤ ni (S) (10)

for every α < ln2
ln3−ln2

. Consequently, letting α → −∞ on both sides of (10) it follows

that

r (E)− r (S) ≤ ni (S) (11)

Hence from (11), (7) and (8)

b (S) = 2 (h− 1)− r (S)− ni (S)

≤ 2 (h− 1)− r (E) = 2 (h− 1)−
⌈
h

2
+ 1

⌉

= b (E) .

One application of Theorem 3.4 to the study of topological indices is the following:

Theorem 3.5 Let TI be a vertex-degree topological index of the form (2) and set q =

2Ψ (2, 3)−Ψ(2, 2)−Ψ(3, 3). If

−Ψ(2, 2) ≤ q < 0

then E has maximal TI-value over HSh.

Proof. Let S ∈ HSh. By (4) and (7)

TI (E)− TI (S) = q [r (E)− r (S)] + Ψ (2, 2) [ni (S)]

= q [b (S)− b (E) + ni (S)] + Ψ (2, 2) [ni (S)] (12)

= q [b (S)− b (E)] + [q +Ψ(2, 2)] [ni (S)] .

By Theorem 3.4 we know that b (S)− b (E) ≤ 0 and since q < 0 then

q [b (S)− b (E)] ≥ 0.

On the other hand, ni (S) ≥ 0 and by hypothesis q +Ψ(2, 2) > 0, hence

[q +Ψ(2, 2)] [ni (S)] ≥ 0

and the result follows from (12).

Let us examine now the list of the most important vertex-degree-based topological

indices.
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Example 3.6 We consider a topological index of the form

TI = TI (S) = m22Ψ(2, 2) +m23Ψ(2, 3) +m33Ψ(3, 3)

Recall that

q = 2Ψ (2, 3)−Ψ(2, 2)−Ψ(3, 3) .

The following table contains information that allows us to determine the extreme values

of TI from the theorems described above (Theorems 3.1 and 3.5).

ij 1√
ij

2
√
ij

i+j
2

i+j
1√
i+j

(ij)3

(i+j−2)3

√
i+j−2

ij

q -1 -.0168 -.0404 -.0333 -.0138 -3.3906 .0404
Ψ(2, 2) 4 .5 1 .5 .5 8 0.70
Minimal W W W W W W ∗
Maximal E E E E E E L

As we can see, the second Zagreb index, the connectivity index, the geometric-arithmetic

index, the sum-connectivity index, the harmonic index and the augmented Zagreb index

satisfy −Ψ(2, 2) ≤ q < 0. Consequently, by Theorem 3.1 (part 4) the minimal value

of these topological indices is the convex hexagonal system W and by Theorem 3.5, the

maximal value is the catacondensed hexagonal system E. By Theorem 3.1 part 2, the

maximal value of the atom-bond connectivity index is attained in L since q > 0 in this

case.

Finally, we present an answer to a problem proposed in [16, Problem 1] related to the

general connectivity index Rα:

Theorem 3.7 Let Rα be the general connectivity index. Then

1. If α ≥ ln(2)
ln(3)−ln(2)

then the linear hexagonal chain L has minimal Rα-value over HSh;

2. If α ≤ ln(2)
ln(3)−ln(2)

then the convex hexagonal system W has minimal Rα-value and the

catacondensed hexagonal system E has maximal Rα-value over HSh.

Proof. As we noted in the proof of Theorem 3.4, q = −4α
[(

3
2

)α − 1
]2

and so q < 0

for every α ∈ R, α �= 0. On the other hand,

q +Ψ(2, 2) = 2 · 6α − 9α.

It can be easily checked that

q +Ψ(2, 2) ≤ 0⇔ α ≥ ln (2)

ln (3)− ln (2)
.
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Hence, if α ≥ ln(2)
ln(3)−ln(2)

then q ≤ −Ψ(2, 2), which implies by Theorem 3.1 (part 3) that

the linear hexagonal chain L has minimal Rα-value. If α ≤ ln(2)
ln(3)−ln(2)

then

−Ψ(2, 2) ≤ q < 0

and so by Theorem 3.1 (part 4), the convex hexagonal system W has minimal TI-value

over HSh and by Theorem 3.5, E has maximal TI-value over HSh.

In conclusion, the extremal value problem of a topological index of the form (1) over

the set HSh is completely solved when −Ψ(2, 2) ≤ q ≤ 0. We know the maximal value

when q > 0 and the minimal value when q < −Ψ(2, 2) . However, we do not have an

answer for the following problem.

Problem 3.8 The following questions remain open:

1. Find the minimal TI-value over HSh when q > 0;

2. Find the maximal TI-value over HSh when q < −Ψ(2, 2) .

Bearing in mind (4) and (7), Problem 3.8 is equivalent to find the maximal and

minimial value of the function

S � b (S) +
q +Ψ(2, 2)

q
ni (S)

where S runs over the set HSh. Note that whether q > 0 or q < −Ψ(2, 2), we have

q+Ψ(2,2)
q

> 0. The difficulty here is that the maximal value of the function b (S) occurs

when ni (S) is minimal, and viceversa.
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[15] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and

arithmetical means of end–vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–

1376.

[16] R. Wu, H. Deng, The general connectivity indices of benzenoid systems and

phenylenes, MATCH Commun. Math. Comput. Chem. 64 (2010) 459–470.

[17] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
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